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Explicating the structure of  feedback control theory, Dorf  and Bishop’s Modern Control Systems 
aids students in understanding feedback control systems and discusses exciting topics like green 
engineering, human-centered design, and the Internet of  Things. The fourteenth edition retains 
the emphasis on design that has historically characterized this book, presenting a clear exposition 
of  the basic principles of  frequency- and time-domain design techniques.

This book helps students navigate various aspects of  the control system design process, 
illustrating these through detailed examples covering applications in robotics, manufacturing, 
medicine, and transportation, among others. Using real-world engineering problems associated 
with designing a controller for a disk drive read system, Modern Control Systems develops a 
Sequential Design Example across chapters. In the same spirit, each chapter presents 
a Continuous Design Problem in which students design a table slide for high-precision 
machinery. Each chapter’s Continuous Design Problem helps students apply the concepts and 
tools of  that chapter to address a different design aspect of  the overarching design problem.

Ideal for engineering students pursuing senior-level courses as well as for those with no previous 
background in control engineering, the fourteenth edition presents several key features.

• Skills Check questions test students’ knowledge of  the chapter material.

• Over 980 end-of-chapter exercises, around 300 of  which are new or updated, help 
students strengthen their problem-solving abilities as they work their way from the exercises 
to the design- and computer-based problems.

• A companion website offers several additional resources including the m-files described in 
the book and appendices on z-Transform pairs, matrix algebra, MATLAB, and the LabVIEW 
MathScript RT Module, among others.
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Preface

MODERN CONTROL SYSTEMS—THE BOOK

Global issues such as climate change, clean water, sustainability, pandemics, waste man-
agement, emissions reduction, and minimizing raw material and energy use have led 
many engineers to re-think existing approaches to engineering design. One outcome 
of the evolving design strategy is to consider green engineering and human-centered 
design. The goal of these approaches to engineering is to design products that mini-
mize pollution, reduce the risk to human health, and improve the living environment. 
Applying the principles of green engineering and human-centered design highlights the 
power of feedback control systems as an enabling technology.

To reduce greenhouse gases and minimize pollution, it is necessary to 
improve both the quality and quantity of our environmental monitoring systems. 
One example is to use wireless measurements on mobile sensing platforms to 
 measure the external environment. Another example is to monitor the quality of 
the delivered power to measure leading and lagging power, voltage variations, and 
waveform harmonics. Many green engineering systems and components require 
careful monitoring of  current and voltages. For example, current transformers 
are used in various capacities for measuring and monitoring current within the 
power grid network of interconnected systems used to deliver electricity. Sensors 
are key components of any feedback control system because the measurements 
provide the required information as to the state of the system so the control sys-
tem can take the   appropriate action.

The role of control systems  will continue to expand as the global issues facing 
us require ever increasing levels of automation and precision. In the book, we 
present key examples from green engineering such as wind turbine control and 
modeling of a photovoltaic generator for feedback control to achieve maximum 
power delivery as the sunlight varies over time.

The wind and sun are important sources of renewable energy around the 
world. Wind energy conversion to electric power is achieved by wind energy tur-
bines connected to electric generators. The intermittency characteristic of the 
wind makes smart grid development essential to bring the energy to the power 
grid when it is available and to provide energy from other sources when the wind 
dies down or is disrupted. A smart grid can be viewed as a system comprised of 
hardware and software that routes power more reliably and efficiently to homes, 
businesses, schools, and other users of power in the presence of intermittency 
and other disturbances. The irregular character of wind direction and power also 
results in the need for reliable, steady electric energy by using control systems on 
the wind turbines themselves. The goal of these control devices is to reduce the 
effects of wind intermittency and the effect of wind direction change. Energy stor-
age systems are also critical technologies for green engineering. We seek energy 
storage systems that are renewable, such as fuel cells. Active control can be a key 
element of effective renewable energy storage systems as well.

 15
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16 Preface

Another exciting development for control systems is the evolution of the 
 Internet of Things—a network of physical objects embedded with electronics, 
 software, sensors and connectivity. As envisioned, each of the millions of the 
devices on the network will possess an embedded computer with connectivity 
to the Internet. The ability to control these connected devices will be of great 
interest to control engineers. Indeed, control engineering is an exciting and a 
challenging field. By its very nature, control engineering is a multidisciplinary 
subject, and it has taken its place as a core course in the engineering curriculum. 
It is reasonable to expect different approaches to mastering and practicing the 
art of control engineering. Since the subject has a strong mathe matical founda-
tion, we might approach it from a strictly theoretical point of view, emphasizing 
theorems and proofs. On the other hand, since the ultimate objective is to imple-
ment controllers in real systems, we might take an ad hoc approach relying only 
on intuition and hands-on experience when designing feedback control systems. 
Our approach is to present a control engineering methodology that, while based 
on mathematical  fundamentals, stresses physical system modeling and practical 
control system designs with  realistic system specifications.

We believe that the most important and productive approach to learning is for 
each of us to rediscover and re-create anew the answers and methods of the past. 
Thus, the ideal is to present the student with a series of problems and questions 
and point to some of the answers that have been obtained over the past decades. 
The traditional method—to confront the student not with the problem but with 
the finished solution—is to deprive the student of all excitement, to shut off the 
creative impulse, to reduce the adventure of humankind to a dusty heap of theo-
rems. The issue, then, is to present some of the unanswered and important prob-
lems that we continue to confront, for it may be asserted that what we have truly 
learned and understood, we discovered ourselves.

The purpose of this book is to present the structure of feedback control theory 
and to provide a sequence of exciting discoveries as we proceed through the text 
and problems. If this book is able to assist the student in discovering feedback 
control system theory and practice, it will have succeeded.

WHAT’S NEW IN THIS EDITION

This latest edition of Modern Control Systems incorporates the following key updates:

	❏ Available as both an eText and print book.

	❏ Video solutions for select problems throughout the text.

	❏ Interactive figures added throughout the eText to enhance student learning.

	❏ In the eText, interactive Skills Check multiple-choice questions at the end of each 
chapter.

	❏ Over 20% new or updated problems. There are over 980 end-of-chapter exercises, 
problems, advanced problems, design problems, and computer problems.

	❏ Expanded use of color for clarity of presentation.

	❏ An updated companion website available at www.pearsonglobaleditions.com for 
 students and faculty.
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Preface 17

THE AUDIENCE

This text is designed for an introductory undergraduate course in control systems 
for engineering students. There is very little demarcation between the various engi-
neering areas in control system practice; therefore, this text is written without any 
 conscious bias toward one discipline. Thus, it is hoped that this book will be equally 
useful for all engineering disciplines and, perhaps, will assist in illustrating the utility 
of control engineering. The numerous problems and examples represent all fields, 
and the examples of the sociological, biological, ecological, and economic control sys-
tems are intended to provide the reader with an awareness of the general applicabil-
ity of control theory to many facets of life. We believe that exposing students of one 
discipline to examples and problems from other disciplines will provide them with the 
ability to see beyond their own field of study. Many students pursue careers in engi-
neering fields other than their own. We hope this introduction to control engineering 
will give students a broader understanding of control system design and analysis.

In its first thirteen editions, Modern Control Systems has been used in senior-
level courses for engineering students at many colleges and universities globally. It 
also has been used in courses for engineering graduate students with no previous 
background in control engineering.

THE FOURTEENTH EDITION

With the fourteenth edition, we have created an interactive e-textbook to fully use 
rich, digital content for Modern Control Systems to enhance the learning experience. 
This version contains embedded videos, dynamic graphs, live Skills Check quizzes, 
and active links to additional resources. The electronic version provides a powerful 
interactive experience that would be difficult, if not impossible, to achieve in a print 
book.

A companion website is also available to students and faculty using the four-
teenth edition. The website contains many resources, including the m-files in the 
book,  Laplace and z-Transform tables, written materials on matrix algebra and 
complex numbers, symbols, units, and conversion factors, and an introduction to 
MATLAB and to the LabVIEW MathScript RT Module. The MCS  website is 
available at www.pearsonglobaleditions.com.

We continue the design emphasis that historically has characterized  Modern 
Control Systems. Using the real-world engineering problems associated with 
 designing a controller for a disk drive read system, we present the Sequential 
Design  Example, which is considered sequentially in each chapter using the meth-
ods and concepts in that chapter. Disk drives are used in computers of all sizes 
and they represent an important application of control engineering. Various 
aspects of the design of  controllers for the disk drive read system are considered 
in each  chapter. For example, in Chapter 1 we identify the control goals, identify 
the  variables to be controlled, write the control specifications, and establish the 
preliminary  system configuration for the disk drive. Then, in Chapter 2, we obtain 
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18 Preface

models of the  process, sensors, and actuators. In the remaining chapters, we con-
tinue the design process, stressing the main points of the chapters.

(b)

Head slider

Rotation
of arm

Actuator
motor

Disk

Track b

Spindle

Arm
Track a

In the same spirit as the Sequential Design Example, we present a design prob-
lem that we call the Continuous Design Problem to give students the opportunity 
to build upon a design problem from chapter to chapter. High-precision machin-
ery places stringent demands on table slide systems. In the Continuous Design 
Problem, students apply the techniques and tools presented in each chapter to the 
development of a design solution that meets the specified requirements.

Cutting
tool

Table

x

The computer-aided design and analysis component of the book continues 
to evolve and improve. Also, many of the solutions to various components of the 
Sequential Design Example utilize m-files with corresponding scripts included in 
the figures.

A Skills Check section is included at the end of each chapter. In each Skills 
Check section, we provide three sets of problems to test your knowledge of the 
chapter material. This includes True or False, Multiple Choice, and Word Match 
problems. To obtain direct feedback, you can check your answers with the answer 
key provided at the conclusion of the  end-of-chapter problems.
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Preface 19

PEDAGOGY

The book is organized around the concepts of control system theory as they have 
been developed in the frequency and time domains. An attempt has been made to 
make the selection of topics, as well as the systems discussed in the examples and 
problems, modern in the best sense. Therefore, this book includes discussions on 
robust control systems and system sensitivity, state variable models, controllability 
and observability, computer control systems, internal model control, robust PID 
controllers, and computer-aided design and analysis, to name a few. However, the 
classical topics of control theory that have proved to be so very useful in practice 
have been retained and expanded.

Building Basic Principles: From Classical to Modern. Our goal is to present a clear 
exposition of the basic principles of frequency and time-domain design techniques. 
The classical methods of control engineering are thoroughly covered: Laplace trans-
forms and transfer functions; root locus design; Routh– Hurwitz  stability analysis; 
frequency response methods, including Bode, Nyquist, and  Nichols; steady-state 
error for standard test signals; second-order system approximations; and phase and 
gain margin and bandwidth. In addition, coverage of the state variable method is 
 significant. Fundamental notions of controllability and observability for state vari-
able models are discussed. Full state feedback design with Ackermann’s formula 
for pole placement is presented, along with a discussion on the limitations of state 
variable feedback. Observers are introduced as a means to provide state estimates 
when the complete state is not measured.

Upon this strong foundation of basic principles, the book provides many oppor-
tunities to explore topics beyond the traditional. In the latter chapters, we present 
introductions into more advanced topics of robust control and digital control, as 
well as an entire chapter devoted to the design of feedback control systems with a 
focus on practical industrial lead and lag compensator structures. Problem solving 
is emphasized throughout the chapters. Each chapter (but the first) introduces the 
student to the notion of computer-aided design and analysis.

Progressive Development of Problem-Solving Skills. Reading the chapters, 
attending lectures and taking notes, and working through the illustrated examples 
are all part of the learning process. But the real test comes at the end of the chapter 
with the problems. The book takes the issue of problem solving seriously. In each 
chapter, there are five problem types:

	❏ Exercises

	❏ Problems

	❏ Advanced Problems

	❏ Design Problems

	❏ Computer Problems

For example, the problem set for Mathematical Models of Systems, Chapter 2 
includes 31 exercises, 51 problems, 9 advanced problems, 6 design problems, and 
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10 computer-based problems. The exercises permit the students to readily utilize the 
concepts and methods introduced in each chapter by solving relatively straightfor-
ward exercises before attempting the more complex problems. The problems require 
an extension of the concepts of the chapter to new situations. The advanced prob-
lems represent problems of increasing complexity. The design problems emphasize 
the design task; the computer-based problems give the student practice with prob-
lem solving using computers. In total, the book contains more than 980 problems. 
The abundance of problems of increasing complexity gives students confidence in 
their problem solving ability as they work their way from the exercises to the design 
and computer-based problems. An instructor’s manual, available to all adopters of 
the text for course use, contains complete solutions to all end-of-chapter problems.

A set of m-files, the Modern Control Systems Toolbox, has been developed 
by the authors to supplement the text. The m-files contain the scripts from each 
 computer-based example in the text. You may retrieve the m-files from the com-
panion available at www.pearsonglobaleditions.com.

Design Emphasis without Compromising Basic Principles. The all-important 
topic of design of real-world, complex control systems is a major theme through-
out the text. Emphasis on design for real-world applications addresses interest in 
design by ABET and industry.

The design process consists of seven main building blocks that we arrange into 
three groups:

1. Establishment of goals and variables to be controlled, and definition of speci-
fications (metrics) against which to measure performance

2. System definition and modeling

3. Control system design and integrated system simulation and analysis

In each chapter of this book, we highlight the connection between the design 
process and the main topics of that chapter. The objective is to demonstrate differ-
ent aspects of the design process through illustrative examples.

Various aspects of the control system design process are illustrated in detail 
in many examples across all the chapters, including applications of control design 
in robotics, manufacturing, medicine, and transportation (ground, air, and space).

Each chapter includes a section to assist students in utilizing computer-aided 
design and analysis concepts and in reworking many of the design examples. 
 Generally, m-files scripts are provided that can be used in the design and analyses 
of the feedback control systems. Each script is annotated with comment boxes 
that highlight important aspects of the script. The accompanying output of the 
script  (generally a graph) also contains comment boxes pointing out significant 
elements. The scripts can also be utilized with modifications as the foundation for 
solving other related problems.

Learning Enhancement. Each chapter begins with a chapter preview describing  
the topics the student can expect to encounter. The chapters conclude with an 
 end-of-chapter summary, skills check, as well as terms and concepts. These sections  
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reinforce the important concepts introduced in the chapter and serve as a refer-
ence for later use.

Color is used to add emphasis when needed and to make the graphs and fig-
ures easier to interpret. For example, consider the computer control of a robot to 
spray-paint an automobile. We might ask the student to investigate the closed-loop 
system stability for various values of the controller gain K and to determine the 
response to a unit step disturbance, 1( ) =T s sd , when the input 0( ) =R s . The 
associated figure assists the student with (a) visualizing the problem, and (b) taking 
the next step to develop the transfer function model and to complete the analyses.

THE ORGANIZATION

Chapter 1 Introduction to Control Systems. Chapter 1 provides an introduction 
to the basic history of control theory and practice. The purpose of this chapter is to 
describe the general approach to designing and building a control system.

Establish the system configuration

Obtain a model of the process, the
actuator, and the sensor

If the performance meets the specifications,
then finalize the design.

If the performance does not meet the
specifications, then iterate the configuration. 

Establish the control goals

Topics emphasized in this example

Write the specifications

Optimize the parameters and
analyze the performance

Describe a controller and select key
parameters to be adjusted

(1) Establishment of goals,
      variables to be controlled,
      and specifications.

Shading indicates the
topics that are emphasized
in each chapter.  Some chapters
will have many shaded blocks,
and other chapters will emphasize
just one or two topics. }

}

}

(2) System definition
      and modeling.

(3) Control system design,
      simulation, and analysis.

In this column remarks
relate the design topics on
the left to specific sections,
figures, equations, and tables
in the example.

Identify the variables to be controlled
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Chapter 2 Mathematical Models of Systems. Mathematical models of physical 
systems in input–output or transfer function form are developed in Chapter 2. A 
wide range of systems are considered.

Chapter 3 State Variable Models. Mathematical models of systems in state vari-
able form are developed in Chapter 3. The transient response of control systems 
and the performance of these systems are examined.

Chapter 4 Feedback Control System Characteristics. The characteristics of feed-
back control systems are described in Chapter 4. The advantages of feedback are 
discussed, and the concept of the system error signal is introduced.

Chapter 5 The Performance of Feedback Control Systems. In Chapter 5, the per-
formance of control systems is examined. The performance of a control system is 
correlated with the s-plane location of the poles and zeros of the transfer function 
of the system.

(b)

G(s)Gc(s)

Compute triangular
wave input.

Linear simulation.
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Chapter 6 The Stability of Linear Feedback Systems. The stability of feedback 
systems is investigated in Chapter 6. The relationship of system stability to the 
charac teristic equation of the system transfer function is studied. The Routh– 
Hurwitz  stability criterion is introduced.

Chapter 7 The Root Locus Method. Chapter 7 deals with the motion of the roots 
of the characteristic equation in the s-plane as one or two parameters are  varied. 
The locus of roots in the s-plane is determined by a graphical method. We also 
introduce the popular PID controller and the Ziegler-Nichols PID tuning method.

Chapter 8 Frequency Response Methods. In Chapter 8, a steady-state sinusoid 
input signal is utilized to examine the steady-state response of the system as the 
frequency of the sinusoid is varied. The development of the frequency response 
plot, called the Bode plot, is considered.

Chapter 9 Stability in the Frequency Domain. System stability utilizing fre-
quency response methods is investigated in Chapter 9. Relative stability and the 
Nyquist criterion are discussed. Stability is considered using Nyquist plots, Bode 
plots, and Nichols charts.

Chapter 10 The Design of Feedback Control Systems. Several approaches to  
designing and compensating a control system are described and developed  

K

(b)

(a)

R(s)
+

-

Computer

Y(s)
1

s + 5
1

s + 1

Td(s)

+

+

Computer

Line conveyor

Hydraulic motor

Robot and tableTable encoder

Line encoder

Screw

Input
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in  Chapter 10. Various candidates for service as compensators are presented and 
it is shown how they help to achieve improved performance. The focus is on lead 
and lag compensators.

Chapter 11 The Design of State Variable Feedback Systems. The main topic of 
Chapter 11 is the design of control systems using state variable models.  Full-state 
feedback design and observer design methods based on pole placement are 
 discussed. Tests for controllability and observability are presented, and the concept 
of an  internal model design is discussed.

Chapter 12 Robust Control Systems. Chapter 12 deals with the design of highly 
accurate control systems in the presence of significant uncertainty. Five methods 
for robust design are discussed, including root locus, frequency response, ITAE 
methods for robust PID controllers, internal models, and pseudo-quantitative feed-
back.

Chapter 13 Digital Control Systems. Methods for describing and analyzing the 
performance of computer control systems are described in Chapter 13. The stabil-
ity and performance of sampled-data systems are discussed.
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PREVIEW

A control system consists of interconnected components to achieve a desired 
purpose. In this chapter, we discuss open- and closed-loop feedback control systems. 
We examine examples of control systems through the course of history. Early 
 systems incorporated many of the basic ideas of feedback that are employed in 
modern control  systems. A design process is presented that encompasses the estab-
lishment of goals and variables to be controlled, definition of specifications, system 
definition, modeling, and analysis. The iterative nature of design allows us to handle 
the design gap effectively while accomplishing necessary trade-offs in complexity, 
performance, and cost. Finally, we introduce the Sequential Design Example: Disk 
Drive Read System. This example will be considered sequentially in each chapter of 
this book. It represents a practical control system design problem while simultane-
ously serving as a useful learning tool.

DESIRED OUTCOMES

Upon completion of Chapter 1, students should be able to:

	❏ Give illustrative examples of control systems and describe their relationship to key 
contemporary issues.

	❏ Recount a brief history of control systems and their role in society.

	❏ Predict the future of controls in the context of their evolutionary pathways.

	❏ Recognize the elements of control system design and possess an appreciation of  
appreciate  controls in the context of engineering design.
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30 Chapter 1  Introduction to Control Systems

1.1 INTRODUCTION

Engineers create products that help people. Our quality of life is sustained and 
enhanced through engineering. To accomplish this, engineers strive to understand, 
model, and control the materials and forces of nature for the benefit of humankind. 
A key area of engineering that reaches across many technical areas is the multi-
disciplinary field of control system engineering. Control engineers are concerned 
with understanding and controlling segments of their environment, often called 
 systems, which are interconnections of elements and devices for a desired purpose. 
The  system might be something as clear-cut as an automobile cruise control sys-
tem, or as extensive and complex as a direct brain-to-computer system to control 
a  manipulator. Control engineering deals with the design (and implementation) 
of control systems using linear, time-invariant mathematical models representing 
actual physical nonlinear, time-varying systems with parameter uncertainties in the 
presence of external disturbances. As computer systems—especially embedded 
processors—have become less expensive, require less power and space, while grow-
ing more computationally powerful, at the same time that sensors and actuators 
have simultaneously experienced the same evolution to more capability in smaller 
packages, the application of control systems has grown in number and complexity. 
A sensor is a device that provides a measurement of a desired external signal. For 
example, resistance temperature detectors (RTDs) are sensors used to measure 
temperature. An  actuator is a device employed by the control system to alter or 
 adjust the environment. An electric motor drive used to rotate a robotic manipu-
lator is an example of a device transforming electric energy to mechanical torque.

The face of control engineering is rapidly changing. The age of the 
Internet of Things (IoT) presents many intriguing challenges in control system 
 applications in the environment (think about more efficient energy use in homes 
and  businesses), manufacturing (think 3D printing), consumer products, energy, 
medical devices and healthcare, transportation (think about automated cars!), 
among many  others [14]. A challenge for control engineers today is to be able 
to create simple, yet reliable and accurate mathematical models of many of our 
modern, complex, interrelated, and interconnected systems. Fortunately, many 
modern  design tools are available, as well as open source software modules and 
Internet-based user groups (to share ideas and answer questions), to assist the 
modeler. The implementation of the control systems themselves is also becom-
ing more automated, again assisted by many resources readily  available on the 
Internet coupled with access to relatively inexpensive computers, sensors, and 
actuators. Control  system engineering focuses on the modeling of a wide assort-
ment of physical systems and using those models to design controllers that will 
cause the closed-loop systems to possess desired performance characteristics, 
such as stability, relative stability, steady-state tracking with prescribed maxi-
mum errors, transient tracking (percent overshoot, settling time, rise time, and 
time to peak), rejection of external disturbances, and robustness to modeling 
 uncertainties. The extremely  important step of the overall design and implemen-
tation process is  designing the control systems, such as PID controllers, lead and 
lag controllers, state variable feedback controllers, and other popular controller 
structures. That is what this  textbook is all about!
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Control system engineering is based on the foundations of feedback theory 
and linear system analysis, and it integrates the concepts of network theory and 
communication theory. It is founded on a strong mathematical foundation, yet is 
very practical and impacts our lives every day in almost all we do. Indeed, control 
engineering is not limited to any engineering discipline but is equally applicable to 
aerospace, agricultural, biomedical, chemical, civil, computer, industrial, electrical, 
environmental, mechanical, nuclear engineering, and even computer science. Many 
aspects of control engineering can also be found in studies in systems engineering.

A control system is an interconnection of components forming a system con-
figuration that will provide a desired system response. The basis for analysis of a 
system is the foundation provided by linear system theory, which assumes a cause–
effect relationship for the components of a system. A component, or process, to be 
controlled can be represented graphically, as shown in Figure 1.1. The input– output 
 relationship represents the cause-and-effect relationship of the process, which in 
turn represents a processing of the input signal to provide a desired output signal. 
An open-loop control system uses a controller and an actuator to obtain the desired 
response, as shown in Figure 1.2. An open-loop system is a system without feedback.

ProcessInput Output
FIGURE 1.1
Process to be 
controlled.

Process Output
Desired output

response
ActuatorController

FIGURE 1.2
Open-loop control 
system (without 
feedback).

Process
Actual
output

Desired output
response

Actuator
Error

Sensor
Measurement output Feedback

-
Controller

FIGURE 1.3
Closed-loop 
feedback  control 
system (with 
feedback).

An open-loop control system utilizes an actuating device to control the process 
directly without using feedback.

In contrast to an open-loop control system, a closed-loop control system utilizes 
an additional measure of the actual output to compare the actual output with the 
desired output response. The measure of the output is called the feedback signal. 
A simple closed-loop feedback control system is shown in Figure 1.3. A feedback 
control system is a control system that tends to maintain a prescribed relationship of 
one system variable to another by comparing functions of these variables and using 
the difference as a means of control. With an accurate sensor, the measured output 
is a good approximation of the actual output of the system.
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A feedback control system often uses a function of a prescribed relationship 
between the output and reference input to control the process. Often the difference 
between the output of the process under control and the reference input is ampli-
fied and used to control the process so that the difference is continually reduced. In 
general, the difference between the desired output and the actual output is equal 
to the error, which is then adjusted by the controller. The output of the control-
ler causes the actuator to modulate the process in order to reduce the error. For 
 example, if a ship is heading incorrectly to the right, the rudder is actuated to direct 
the ship to the left. The system shown in Figure 1.3 is a negative feedback control 
system, because the output is subtracted from the input and the difference is used as 
the input signal to the controller. The feedback concept is the foundation for con-
trol system analysis and design.

Measurement
noise

Disturbance

Process
Actual 
output

Desired output
response

ActuatorController
Error

Sensor
Measurement output Feedback

- +

+

+

+

FIGURE 1.4
Closed-loop 
 feedback system 
with external 
 disturbances and 
measurement 
noise.

A closed-loop control system uses a measurement of the output and feedback 
of this signal to compare it with the desired output (reference or command).

A closed-loop control has many advantages over open-loop control, including 
the ability to reject external disturbances and improve measurement noise attenua-
tion. We incorporate disturbances and measurement noise in the block diagram as 
external inputs, as illustrated in Figure 1.4. External disturbances and measurement 
noise are inevitable in real-world applications and must be addressed in practical 
control system designs.

The feedback systems in Figures 1.3 and 1.4 are single-loop feedback systems. 
Many feedback control systems contain more than one feedback loop. A common 
multiloop feedback control system is illustrated in Figure 1.5 with an inner loop 
and an outer loop. In this scenario, the inner loop has a controller and a sensor and 
the outer loop has a controller and sensor. Other varieties of multiloop feedback 
systems are considered throughout the book as they represent more practical situ-
ations found in real-world applications. However, we use the single-loop feedback 
system for learning about the benefits of feedback control systems since the out-
comes readily scale to multiloop systems.

Due to the increasing complexity of systems under active control and the inter-
est in achieving optimum performance, the importance of control system engineering 
continues to grow. Furthermore, as the systems become more complex, the interre-
lationship of many controlled variables must be considered in the control scheme.   
A block diagram depicting a multivariable control system is shown in Figure 1.6.
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Section 1.2 Brief History of Automatic Control 33

A common example of an open-loop control system is a microwave oven set 
to operate for a fixed time. An example of a closed-loop control system is a person 
steering an automobile (assuming his or her eyes are open) by looking at the auto’s 
location on the road and making the appropriate adjustments.

The introduction of feedback enables us to control a desired output and can 
improve accuracy, but it requires attention to the issues of stability and performance. 

1.2 BRIEF HISTORY OF AUTOMATIC CONTROL

The use of feedback to control a system has a fascinating history. The first applications 
of feedback control appeared in the development of float regulator mechanisms 
in Greece in the period 300 to 1 b.c. [1, 2, 3]. The water clock of Ktesibios used 
a float regulator. An oil lamp devised by Philon in approximately 250 b.c. used a 
float regulator in an oil lamp for maintaining a constant level of fuel oil. Heron of 
Alexandria, who lived in the first century a.d., published a book entitled Pneumatica, 
which outlined several forms of water-level mechanisms using float regulators [1].

The first feedback system to be invented in modern Europe was the tem-
perature regulator of Cornelis Drebbel (1572–1633) of Holland [1]. Dennis Papin 
(1647–1712) invented the first pressure regulator for steam boilers in 1681. Papin’s 
pressure regulator was a form of safety regulator similar to a pressure-cooker valve.

Process
Actual 
output

Desired output
response

ActuatorController #2 Controller #1
Error

Sensor #2
Measurement output Feedback

Error

Sensor #1
Measurement output Feedback

Outer
loop

Inner
loop

--

FIGURE 1.5 Multiloop feedback system with an inner loop and an outer loop.

Actual 
output

Desired
output

response

Error

Measurement output Feedback

ProcessActuatorController

Sensor

Comparison

FIGURE 1.6 Multivariable control system.
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34 Chapter 1  Introduction to Control Systems

The first automatic feedback controller used in an industrial process is gener-
ally agreed to be James Watt’s flyball governor, developed in 1769 for controlling 
the speed of a steam engine [1, 2]. The all-mechanical device, illustrated in Figure 
1.7, measured the speed of the output shaft and utilized the movement of the 
flyball to control the steam valve and therefore the amount of steam entering 
the engine. As depicted in Figure 1.7, the governor shaft axis is connected via 
mechanical linkages and beveled gears to the output shaft of the steam engine. 
As the steam engine output shaft speed increases, the ball weights rise and move 
away from the shaft axis and through mechanical linkages the steam valve closes 
and the engine slows down.

The first historical feedback system is the water-level float regulator said to 
have been invented by I. Polzunov in 1765 [4]. The level regulator system is illus-
trated in Figure 1.8. The float detects the water level and controls the valve that 
covers the water inlet in the boiler.

The next century was characterized by the development of automatic con-
trol systems through intuition and invention. Efforts to increase the accuracy of 
the control system led to slower attenuation of the transient oscillations and even 
to unstable systems. It then became imperative to develop a theory of automatic 
control. In 1868, J. C. Maxwell formulated a mathematical theory related to con-
trol theory using a differential equation model of a governor [5]. Maxwell’s study 
was  concerned with the effect various system parameters had on the system perfor-
mance. During the same period, I. A. Vyshnegradskii formulated a mathematical 
theory of regulators [6].

Prior to World War II, control theory and practice developed differently in the 
United States and western Europe than in Russia and eastern Europe. The main 

Measured
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Governor
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Shaft axis

Engine

Valve

Boiler

Steam

Output
shaft

FIGURE 1.7
Watt’s flyball 
governor.
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impetus for the use of feedback in the United States was the development of the 
telephone system and electronic feedback amplifiers by Bode, Nyquist, and Black 
at Bell Telephone Laboratories [7–10, 12].

Harold S. Black graduated from Worcester Polytechnic Institute in 1921 
and joined Bell Laboratories of American Telegraph and Telephone (AT&T). 
At that time, the major task confronting Bell Laboratories was the improve-
ment of the telephone system and the design of improved signal amplifiers. 
Black was assigned the task of linearizing, stabilizing, and improving the ampli-
fiers that were used in tandem to carry conversations over distances of several 
thousand miles. After years of working on oscillator circuits, Black had the 
idea of negative feedback amplifiers as a way to avoid self-oscillations. His idea 
would enhance the stability of circuit stability over a wide range of frequency 
bands [8].

The frequency domain was used primarily to describe the operation of the feed-
back amplifiers in terms of bandwidth and other frequency variables. In contrast, 
the eminent mathematicians and applied mechanicians in the former Soviet Union 
inspired and dominated the field of control theory. The Russian theory tended to 
utilize a time-domain formulation using differential equations.

The control of an industrial process (manufacturing, production, and so on) 
by automatic rather than manual means is often called automation. Automation 
is prevalent in the chemical, electric power, paper, automobile, and steel in-
dustries, among others. The concept of automation is central to our industrial 
society. Automatic machines are used to increase the production of a plant. 
Industries are concerned with the productivity per worker of their plants. 
Productivity is defined as the ratio of physical output to physical input [26]. In 
this case, we are referring to labor productivity, which is real output per hour of 
work.

A large impetus to the theory and practice of automatic control occurred 
during World War II when it became necessary to design and construct auto-
matic airplane piloting, gun-positioning systems, radar antenna control sys-
tems, and other military systems based on the feedback control approach.  

Steam

Water

Float

Valve

FIGURE 1.8
Water-level float 
regulator.
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The complexity and expected performance of these military systems necessitated 
an extension of the available control techniques and fostered interest in control 
systems and the development of new insights and methods. Prior to 1940, for 
most cases, the design of control systems was an art involving a trial-and-error 
approach. During the 1940s, mathematical and analytical methods increased in 
number and utility, and control engineering became an engineering discipline in 
its own right [10–12].

Another example of the discovery of an engineering solution to a control sys-
tem problem was the creation of a gun director by David B. Parkinson of Bell 
Telephone Laboratories. In the spring of 1940, Parkinson was intent on improv-
ing the automatic level recorder, an instrument that used strip-chart paper to plot 
the record of a voltage. A critical component was a small potentiometer used to 
control the pen of the recorder through an actuator. If a potentiometer could be 
used to control the pen on a level recorder, might it be capable of controlling other  
machines such as an antiaircraft gun? [13].

After considerable effort, an engineering model was delivered for testing to the 
U.S. Army on December 1, 1941. Production models were available by early 1943, 
and eventually 3000 gun controllers were delivered. Input to the controller was pro-
vided by radar, and the gun was aimed by taking the data of the airplane’s present 
position and calculating the target’s future position.

Frequency-domain techniques continued to dominate the field of control fol-
lowing World War II with the increased use of the Laplace transform and the com-
plex frequency plane. During the 1950s, the emphasis in control engineering the-
ory was on the development and use of the s-plane methods and, particularly, the 
root locus approach. Furthermore, during the 1980s, the use of digital computers 
for control components became routine. The technology of these new control ele-
ments to perform accurate and rapid calculations was formerly unavailable to con-
trol engineers. These computers are now employed especially for process  control 
systems in which many variables are measured and controlled simultaneously by 
the computer.

With the advent of Sputnik and the space age, another new impetus was im-
parted to control engineering. It became necessary to design complex, highly 
accurate control systems for missiles and space probes. Furthermore, the ne-
cessity to minimize the weight of satellites and to control them very accurately 
has spawned the important field of optimal control. Due to these requirements, 
the time-domain methods developed by Liapunov, Minorsky, and others have 
been met with great interest. Theories of optimal control developed by L.  S. 
Pontryagin in the former Soviet Union and R. Bellman in the United States, as 
well as studies of robust  systems, have contributed to the interest in time-domain 
methods. Control engineering must consider both the time-domain and the fre-
quency-domain approaches simultaneously in the analysis and design of control 
systems.

A notable advance with worldwide impact is the U.S. space-based radionaviga-
tion system known as the Global Positioning System or GPS [82–85]. In the distant 
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past,  various strategies and sensors were developed to keep explorers on the oceans 
from getting lost, including following coastlines, using compasses to point north, and 
sextants to measure the angles of stars, the moon, and the sun above the horizon. The 
early explorers were able to estimate latitude accurately, but not longitude. It was not 
until the 1700s with the development of the chronometer that, when used with the 
 sextant, the longitude could be estimated. Radio-based navigation systems began to 
appear in the early twentieth century and were used in World War II. With the advent 
of Sputnik and the space age, it became known that radio signals from satellites could 
be used to navigate on the ground by observing the Doppler shift of the received 
radio signals. Research and development culminated in the 1990s with 24 navigation 
satellites (known as the GPS) that solved the fundamental problem that explorers 
faced for centuries by providing a dependable mechanism to pinpoint the current lo-
cation. Freely available on a continuous worldwide basis, GPS provides very reliable 
location and time information anytime, day or night, anywhere in the world. Using 
GPS as a sensor to provide position (and velocity) information is a mainstay of ac-
tive control systems for transportation systems in the air, on the ground, and on the 
oceans. The GPS assists relief and emergency workers to save lives, and helps us with 
our everyday activities including the control of power grids, banking, farming, survey-
ing, and many other tasks.

Global navigation satellite services (such as GPS, GLONASS, and Galileo) 
providing position, navigation, and timing data coupled with evolving wireless 
 mobile technology, highly capable mobile computing systems and devices, global 
geographic information systems, and semantic web are supporting the evolving 
field of ubiquitous positioning [100-103]. These systems can provide information 
on the location of people, vehicles, and other objects as a function of time across 
the globe. As personal ubiquitous computing [104] contiues to push active control 
technology to the edge where the action is taking place, we will be faced with 
many opportunities to design and field autonomous systems based on the firm 
ground of system theoretic concepts covered in this introductory text on modern 
control systems.

The evolution of the Internet of Things (IoT) is having a transformational 
impact on the field of control engineering. The idea of the IoT, first proposed 
by Kevin Ashton in 1999, is the network of physical objects embedded with elec-
tronics, software, sensors, and connectivity—all elements of control engineer-
ing [14]. Each of the “things” on the network has an embedded computer with 
connectivity to the Internet. The ability to control connected devices is of great 
interest to control engineers, but there remains much work to be done, especially 
in establishing standards [24]. The International Data Corporation estimates that 
there will be 41.6 billion IoT devices generating 79.4 zettabytes (ZB) of data by 
the year 2025 [106]. One ZB is equal to one trillion GB! Figure 1.9 presents a 
technology roadmap that illustrates that in the near future control engineering is 
likely to play a role in creating active control applications for connected devices 
(adopted from [27]).

A selected history of control system development is summarized in Table 1.1.
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FIGURE 1.9 Technology roadmap to the Internet of Things enhanced with artificial intelligence with 
applications to control engineering (Source: SRI Business Intelligence).

Table 1.1 Selected Historical Developments of Control Systems

1769 James Watt’s steam engine and governor developed.

1868 J. C. Maxwell formulates a mathematical model for a governor control of a steam engine.

1913 Henry Ford’s mechanized assembly machine introduced for automobile production.

1927 H. S. Black conceives of the negative feedback amplifier and H. W. Bode analyzes feedback 
amplifiers.

1932 H. Nyquist develops a method for analyzing the stability of systems.

1941 Creation of first antiaircraft gun with active control.

1952 Numerical control (NC) developed at Massachusetts Institute of Technology for control of 
 machine-tool axes.

1954 George Devol develops “programmed article transfer,” considered to be the first industrial 
robot design.

1957 Sputnik launches the space age leading, in time, to miniaturization of computers and advances 
in automatic control theory.

1960 First Unimate robot introduced, based on Devol’s designs. Unimate  installed in 1961 for tend-
ing die-casting machines.

1970 State-variable models and optimal control developed.
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1980 Robust control system design widely studied.

1983 Introduction of the personal computer (and control design software soon thereafter) brought 
the tools of design to the engineer’s desktop.

1990 The government ARPANET (the first network to use the Internet Protocol) was decommis-
sioned and private connections to the Internet by commercial companies rapidly spread.

1994 Feedback control widely used in automobiles. Reliable, robust systems  
demanded in manufacturing.

1995 The Global Positioning System (GPS) was operational providing  
positioning, navigation, and timing services worldwide.

1997 First ever autonomous rover vehicle, known as Sojourner, explores the Martian surface.

2007 The Orbital Express mission performed the first autonomous space rendezvous and docking.

2011 The NASA Robonaut R2 became the first US-built robot on the International Space Station 
designed to assist with crew extravehicular activities (EVAs).

2013 For the first time, a vehicle—known as BRAiVE and designed at the University of Parma, 
Italy—moved autonomously on a mixed traffic route open to public traffic without a passen-
ger in the driver seat.

2014 Internet of Things (IoT) enabled by convergence of key systems including embedded systems, 
wireless sensor networks, control systems, and automation.

2016 Space X successfully lands the first rocket on an autonomous spaceport drone ship controllrd by 
an autonomus robot.

2019 Alphabet’s Wing begins making first commercial drone deliveries in the US.

1.3 EXAMPLES OF CONTROL SYSTEMS

Control engineering is concerned with the analysis and design of goal-oriented 
systems. Therefore the mechanization of goal-oriented policies has grown into a hi-
erarchy of goal-oriented control systems. Modern control theory is concerned with 
systems that have self-organizing, adaptive, robust, learning, and optimum qualities.

EXAMPLE 1.1 Automated vehicles

Driving an automobile is a pleasant task when the auto responds rapidly to the driver’s 
commands. The era of autonomous or self-driving vehicles is almost upon us [15, 19, 
20]. The autonomous vehicle must be able to sense the changing  environment, perform 
trajectory planning, prescribe the control inputs that include steering and turning, ac-
celerating and braking, and many other functions typically handled by the driver, and 
actually implement the control strategy. Steering is one of the critical functions of au-
tonomous vehicles. A simple block diagram of an  automobile steering control system 
is shown in Figure 1.10(a). The desired course is compared with a measurement of the 
actual course in order to generate a measure of the error, as shown in Figure 1.10(b). 
This measurement is obtained by visual and tactile (body movement) feedback, as pro-
vided by the feel of the steering wheel by the hand (sensor). This feedback system is 
a familiar version of the steering control system in an ocean liner or the flight controls 
in a large airplane. A typical  direction-of-travel response is shown in Figure 1.10(c). ■

Table 1.1 (continued)
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EXAMPLE 1.2 Human-in-the-loop control

A basic, manually controlled closed-loop system for regulating the level of fluid in a 
tank is shown in Figure 1.11. The input is a reference level of fluid that the operator 
is instructed to maintain. (This reference is memorized by the operator.) The power 
amplifier is the operator, and the sensor is visual. The operator compares the actual 
level with the desired level and opens or closes the valve (actuator), adjusting the 
fluid flow out, to maintain the desired level. ■

EXAMPLE 1.3 Humanoid robots

The use of computers integrated with machines that perform tasks like a human 
worker has been foreseen by several authors. In his famous 1923 play, entitled 
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Fluid input

Valve Fluid output

FIGURE 1.11
A manual  control 
system for 
 regulating the level 
of fluid in a tank by 
adjusting the output 
valve. The opera-
tor views the level 
of fluid through a 
port in the side of 
the tank.

R.U.R. [48], Karel Capek called artificial workers robots, deriving the word from 
the Czech noun robota, meaning “work.”

A robot is a computer-controlled machine and involves technology closely 
 associated with automation. Industrial robotics can be defined as a particular field of 
 automation in which the automated machine (that is, the robot) is designed to substi-
tute for human labor [18, 33]. Thus robots possess certain humanlike characteristics. 
Today, the most common humanlike characteristic is a mechanical manipulator 
that is patterned somewhat after the human arm and wrist. Some devices even have 
anthropomorphic mechanisms, including what we might recognize as mechanical 
arms, wrists, and hands [28]. An example of an anthropomorphic robot is shown in  
Figure 1.12. We recognize that the automatic machine is well suited to some tasks, 
as noted in Table 1.2, and that other tasks are best carried out by humans [106]. ■

EXAMPLE 1.4 Electric power industry

There has been considerable discussion recently concerning the gap between practice 
and theory in control engineering. However, it is natural that theory precedes the 
applications in many fields of control engineering. Nonetheless, it is interesting to 
note that in the electric power industry, the largest industry in the United States, 
the gap is relatively insignificant. The electric power industry is primarily interested 
in energy conversion, control, and distribution. It is critical that computer control 
be increasingly applied to the power industry in order to improve the efficient use 
of energy resources. Also, the control of power plants for minimum waste emis-
sion has become increasingly important. The modern, large-capacity plants, which 
exceed several hundred megawatts, require automatic control systems that account 
for the interrelationship of the process variables and optimum power production. 
It is common to have 90 or more manipulated variables under coordinated con-
trol. A simplified model showing several of the important control  variables of a 
large boiler–generator system is shown in Figure 1.13. This is an example of the 
 importance of measuring many variables, such as pressure and oxygen, to provide 
information to the computer for control calculations. ■

The electric power industry has used the modern aspects of control engineering 
for significant and interesting applications. It appears that in the process industry, 
the factor that maintains the applications gap is the lack of instrumentation to mea-
sure all the important process variables, including the quality and composition of 
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the product. As these instruments become available, the applications of modern 
control theory to industrial systems should increase measurably.

EXAMPLE 1.5 Biomedical engineering

There have been many applications of control system theory to biomedical 
 experimentation, diagnosis, prosthetics, and biological control systems [22, 23, 48]. The 
control systems under consideration range from the cellular level to the central ner-
vous system and include temperature regulation and neurological, respiratory, and 
cardiovascular control. Most physiological control systems are closed-loop systems. 
However, we find not one controller but rather control loop within control loop, 
forming a hierarchy of systems. The modeling of the structure of biological processes 
confronts the analyst with a high-order model and a complex structure. Prosthetic 
devices aid millions of people worldwide. Recent advances in feedback control 

FIGURE 1.12
The Honda ASIMO 
humanoid robot. 
ASIMO walks, 
climbs stairs, and 
turns corners. 
(David Coll Blanco/
Alamy Stock Photo)

Table 1.2 Task Difficulty: Human Versus Automatic Machine

Tasks Difficult for a Machine Tasks Difficult for a Human

Displaying real emotions
Acting based on ethical principles
Precise coordination with other robots
Anticipating human actions and responses
Acquiring new skills on its own

Operating in toxic environments
Highly repetitive activities
Deep underwater surveys
Outer planet space exploration
Working diligently with no breaks for long periods
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technology will profoundly transform the lives of amputees and people living with 
paralysis. Much progress has been made in the restoration of sensation of touch and 
pain and in connecting prosthetic limb sensors with haptic feedback  directly back 
to the brain. Figure 1.14 depicts a prosthetic had and arm with the same dexterity 
as a human arm. Especially fascinating are advances in brain- controlled feedback 
of prosthetic limbs enabling the power of the human brain to guide the movement 
[39]. Another fascinating advance in the development of prosthetic limbs is to make 
possible the sense of touch and pain [22]. Much progress has been made in the res-
toration of sensation of touch and pain and in connecting sensors to the prosthetic 
limbs with haptic feedback directly back to the brain. ■

EXAMPLE 1.6 Social, economic, and political systems

It is interesting and valuable to attempt to model the feedback processes preva-
lent in the social, economic, and political spheres. This approach is undeveloped at 
present but appears to have a bright future. Society is composed of many feedback 
systems and regulatory bodies, which are controllers exerting the forces on society 
necessary to maintain a desired output. A simple lumped model of the national 
 income feedback control system is shown in Figure 1.15. This type of model helps 
the analyst to understand the effects of government control and the dynamic ef-
fects of government spending. Of course, many other loops not shown also exist, 
since, theoretically, government spending cannot exceed the tax collected without 
generating a deficit, which is itself a control loop containing the Internal Revenue 
Service and the Congress. In a socialist country, the loop due to consumers is de- 
emphasized and government control is emphasized. In that case, the measurement 
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FIGURE 1.14
Recent advances in electronic prosthetics have resulted in the development of a prosthetic hand 
and arm that has the same dexterity as a human arm. (Kuznetsov Dmitriy/Shutterstock).
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block must be accurate and must respond rapidly; both are very difficult character-
istics to realize from a bureaucratic system. This type of political or social feedback 
model, while usually nonrigorous, does impart information and understanding. ■

EXAMPLE 1.7 Unmanned aerial vehicles

The ongoing area of research and development of unmanned aerial vehicles (UAVs) 
is full of potential for the application of control systems. These aircrafts are also known 
as drones. An example of a drone is shown in Figure 1.16. Drones are unmanned but 
are usually controlled by ground operators. Typically they do not operate autono-
mously, and their inability to provide the level of safety required in a complex airspace 
keeps them from flying freely in the commercial airspace although package delivery 
via drones has begun. One significant challenge is to develop control systems that will 
avoid in-air collisions. Ultimately, the goal is to employ the drone autonomously in 
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FIGURE 1.16
A commercial 
drone (GuruXOX/
Shuttterstock).

such applications as aerial photography to assist in disaster mitigation, survey work 
to assist in construction projects, crop monitoring, and continuous weather monitor-
ing. An intriguing emerging area of applied research is the integration of artificial 
intelligence (AI) and drones [74]. Smart unmanned aircraft will require significant 
deployment of advanced control systems throughout the airframe. ■

EXAMPLE 1.8 Industrial control systems

Other familiar control systems have the same basic elements as the system shown in 
Figure 1.3. A refrigerator has a temperature setting or desired temperature, a thermostat 
to measure the actual temperature and the error, and a compressor motor for power 
amplification. Other examples in the home are the oven, furnace, and water heater. 
In industry, there are many examples, including speed controls; process temperature and 
pressure controls; and position, thickness, composition, and quality controls [17, 18].

Feedback control systems are used extensively in industrial applications. 
Thousands of industrial and laboratory robots are currently in use. Manipulators can 
pick up objects weighing hundreds of pounds and position them with an  accuracy 
of one-tenth of an inch or better [28]. Automatic handling equipment for home, 
school, and industry is particularly useful for hazardous, repetitious, dull, or simple 
tasks. Machines that automatically load and unload, cut, weld, or cast are used by 
industry to obtain accuracy, safety, economy, and productivity [28, 41].

Another important industry, the metallurgical industry, has had considerable 
success in automatically controlling its processes. In fact, in many cases, the control 
theory is being fully implemented. For example, a hot-strip steel mill is controlled 
for temperature, strip width, thickness, and quality.

There has been considerable interest recently in applying the feedback control 
concepts to automatic warehousing and inventory control. Furthermore, automatic 
control of agricultural systems (farms) is receiving increased interest. Automatically 
controlled silos and tractors have been developed and tested. Automatic control of 
wind turbine generators, solar heating and cooling, and automobile engine perfor-
mance are important modern examples [20, 21]. ■
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1.4 ENGINEERING DESIGN

Engineering design is the central task of the engineer. It is a complex process in 
which both creativity and analysis play major roles.

Design is the process of conceiving or inventing the forms, parts, and details of 
a system to achieve a specified purpose.

Design activity can be thought of as planning for the emergence of a particular 
product or system. Design is an innovative act whereby the engineer creatively 
uses knowledge and materials to specify the shape, function, and material con-
tent of a system. The design steps are (1) to determine a need arising from the 
values of various groups, covering the spectrum from public policy makers to the 
consumer; (2) to specify in detail what the solution to that need must be and to 
embody these values; (3) to develop and evaluate various alternative solutions to 
meet these specifications; and (4) to decide which one is to be designed in detail 
and fabricated.

An important factor in realistic design is the limitation of time. Design takes place 
under imposed schedules, and we eventually settle for a design that may be less than ideal 
but considered “good enough.” In many cases, time is the only competitive advantage.

A major challenge for the designer is writing the specifications for the technical 
product. Specifications are statements that explicitly state what the device or product is 
to be and do. The design of technical systems aims to provide appropriate design spec-
ifications and rests on four characteristics: complexity, trade-offs, design gaps, and risk.

Complexity of design results from the wide range of tools, issues, and  knowledge 
to be used in the process. The large number of factors to be considered illustrates 
the complexity of the design specification activity, not only in assigning these fac-
tors their relative importance in a particular design, but also in giving them sub-
stance either in numerical or written form, or both.

The concept of trade-off involves the need to resolve conflicting design goals, 
all of which are desirable. The design process requires an efficient compromise 
 between desirable but conflicting criteria.

In making a technical device, we generally find that the final product does not 
appear as originally visualized. For example, our image of the problem we are solv-
ing does not appear in written description and ultimately in the specifications. Such 
design gaps are intrinsic in the progression from an abstract idea to its realization.

This inability to be absolutely sure about predictions of the performance of a tech-
nological object leads to major uncertainties about the actual effects of the designed 
devices and products. These uncertainties are embodied in the idea of unintended con-
sequences or risk. The result is that designing a system is a risk-taking activity.

Complexity, trade-off, gaps, and risk are inherent in designing new systems and 
devices. Although they can be minimized by considering all the effects of a given 
design, they are always present in the design process.

Within engineering design, there is a fundamental difference between the two 
major types of thinking that must take place: engineering analysis and synthesis. 
Attention is focused on models of the physical systems that are analyzed to provide 
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insight and that indicate directions for improvement. On the other hand, synthesis is 
the process by which these new physical configurations are created.

Design is a process that may proceed in many directions before the desired one 
is found. It is a deliberate process by which a designer creates something new in 
 response to a recognized need while recognizing realistic constraints. The design 
process is inherently iterative—we must start somewhere! Successful  engineers 
learn to simplify complex systems appropriately for design and analysis purposes. 
A gap between the complex physical system and the design model is inevitable. 
Design gaps are intrinsic in the progression from the initial concept to the final 
product. We know intuitively that it is easier to improve an initial concept incre-
mentally than to try to create a final design at the start. In other words, engineering 
design is not a linear process. It is an iterative, nonlinear, creative process.

The main approach to the most effective engineering design is parameter 
 analysis and optimization. Parameter analysis is based on (1) identification of the 
key  parameters, (2) generation of the system configuration, and (3) evaluation of 
how well the configuration meets the needs. These three steps form an iterative 
loop. Once the key parameters are identified and the configuration synthesized, the 
designer can  optimize the parameters. Typically, the designer strives to identify a 
limited set of parameters to be adjusted.

1.5 CONTROL SYSTEM DESIGN

The design of control systems is a specific example of engineering design. The goal 
of control engineering design is to obtain the configuration, specifications, and 
identification of the key parameters of a proposed system to meet an actual need.

The control system design process is illustrated in Figure 1.17. The design pro-
cess consists of seven main building blocks, which we arrange into three groups:

1. Establishment of goals and variables to be controlled, and definition of specifications 
(metrics) against which to measure performance.

2. System definition and modeling.

3. Control system design and integrated system simulation and analysis.

In each chapter of this book, we will highlight the connection between the 
 design process illustrated in Figure 1.17 and the main topics of that chapter. The 
 objective is to demonstrate different aspects of the design process through illustra-
tive examples. We have established the following connections between the chapters 
in this book and the design process block diagram:

1. Establishment of goals, control variables, and specifications: Chapters 1, 3, 4, and 13.

2. System definition and modeling: Chapters 2–4, and 11–13.

3. Control system design, simulation, and analysis: Chapters 4–13.

The first step in the design process consists of establishing the system goals. 
For example, we may state that our goal is to control the velocity of a motor ac-
curately. The second step is to identify the variables that we desire to control (for 
example, the velocity of the motor). The third step is to write the specifications in 
terms of the accuracy we must attain. This required accuracy of control will then lead 
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48 Chapter 1  Introduction to Control Systems

to the identification of a sensor to measure the controlled variable. The performance 
specifications will describe how the closed-loop system should perform and will in-
clude (1) good regulation against disturbances, (2) desirable responses to commands, 
(3) realistic actuator signals, (4) low sensitivities, and (5) robustness.

As designers, we proceed to the first attempt to configure a system that will result 
in the desired control performance. This system configuration will normally consist of a 
sensor, the process under control, an actuator, and a controller, as shown in Figure 1.3. 
The next step consists of identifying a candidate for the actuator. This will, of course, 
depend on the process, but the actuation chosen must be capable of effectively adjusting 
the performance of the process. For example, if we wish to control the speed of a rotating 
flywheel, we will select a motor as the actuator. The sensor, in this case, must be capable 
of accurately measuring the speed. We then obtain a model for each of these elements.

Students studying controls are often given the models, frequently represented in 
transfer function or state variable form, with the understanding that they represent the 
underlying physical systems, but without further explanation. An obvious question is, 
where did the transfer function or state variable model come from? Within the context 

Establish the system configuration

Obtain a model of the process, the
actuator, and the sensor

If the performance meets the specifications,
then finalize the design.

If the performance does not meet the
specifications, then iterate the configuration. 

Establish the control goals

Topics emphasized in this example

Write the specifications

Optimize the parameters and
analyze the performance

Describe a controller and select key
parameters to be adjusted

(1) Establishment of goals,
      variables to be controlled,
      and specifications.

Shading indicates the
topics that are emphasized
in each chapter.  Some chapters
will have many shaded blocks,
and other chapters will emphasize
just one or two topics. }

}

}

(2) System definition
      and modeling.

(3) Control system design,
      simulation, and analysis.

In this column remarks
relate the design topics on
the left to specific sections,
figures, equations, and tables
in the example.

Identify the variables to be controlled

FIGURE 1.17 The control system design process.
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Section 1.5 Control System Design 49

of a course in control systems, there is a need to address key questions surrounding 
modeling. To that end, in the early chapters, we will provide insight into key modeling 
concerns and answer fundamental questions: How is the transfer function obtained? 
What basic assumptions are implied in the model development? How general are the 
transfer functions? However, mathematical modeling of physical systems is a subject in 
and of itself. We cannot hope to cover the mathematical modeling in its entirety, but in-
terested students are encouraged to seek outside references (see, for example, [76–80]).

The next step is the selection of a controller, which often consists of a summing 
amplifier that will compare the desired response and the actual response and then 
forward this error-measurement signal to an amplifier.

The final step in the design process is the adjustment of the parameters 
of the system to achieve the desired performance. If we can achieve the desired 
 performance by adjusting the parameters, we will finalize the design and proceed 
to document the results. If not, we will need to establish an improved system con-
figuration and perhaps select an enhanced actuator and sensor. Then we will repeat 
the design steps until we are able to meet the specifications, or until we decide the 
specifications are too demanding and should be relaxed.

The design process has been dramatically affected by the advent of powerful 
and inexpensive computers, and effective control design and analysis software. 
For example, the Boeing 777 was the world’s first 100% digitally designed civilian 
 aircraft.The benefits of this design approach to Boeing was a 50% saving in devel-
opment costs, a 93% reduction in design change and rework rate, and a 50–80% 
reduction in problems compared with traditional manufacturing [56]. The follow-on 
project, known as the Boeing 787 Dreamliner, was developed without physical pro-
totypes. In many applications, the availability of digital design tools, including the 
certification of the control system in realistic computer simulations, represents a 
significant cost reduction in terms of money and time.

Another notable innovation in design is the generative design process coupled 
with artificial intelligence [57]. Generative design is an iterative design process that 
typically utilizes a computer program to generate a (potentially large) number of 
 designs based on a given set of constraints provided by the designer. The designer 
then fine-tunes the feasible solution provided by the computer program by adjust-
ing the constraint space to reduce the number of viable solutions. For example, the 
generative design is revolutionizing aircraft design [58]. The application of the highly 
computer-intensive generative design process in feedback control theory remains an 
open question. However, the generative design process concept can also be applied 
in a more traditional (less computationally intensive) environment to enhance the 
design process in Figure 1.17. For example, once a single design has been found that 
meets the specifications, the process can be repeated by selecting different system 
configurations and controller structures. After a number of controllers are designed 
that meet the specifications, the designer can then begin to narrow the design by ad-
justing the constraints. There are facets of the generative design process that will be 
illuminated in this book as we discuss the control system design process.

In summary, the controller design problem is as follows: Given a model of the 
system to be controlled (including its sensors and actuators) and a set of design 
goals, find a suitable controller, or determine that none exists. As with most of 
engineering design, the design of a feedback control system is an iterative and non-
linear process. A successful designer must consider the underlying physics of the 
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plant under control, the control design strategy, the controller design architecture 
(that is, what type of controller will be employed), and effective controller tuning 
strategies. In addition, once the design is completed, the controller is often imple-
mented in hardware, and hence issues of interfacing with hardware can appear. 
When taken together, these different phases of control system design make the 
task of designing and implementing a control system quite challenging [73].

1.6 MECHATRONIC SYSTEMS

A natural stage in the evolutionary process of modern engineering design is 
 encompassed in the area known as mechatronics [64]. The term mechatronics was 
coined in Japan in the 1970s [65–67]. Mechatronics is the synergistic integration 
of  mechanical, electrical, and computer systems and has evolved over the past 
30  years,  leading to a new breed of intelligent products. Feedback control is an 
 integral  aspect of modern mechatronic systems. One can understand the extent that 
mechatronics reaches into various disciplines by considering the components that 
make up mechatronics [68–71]. The key elements of mechatronics are (1) physical 
systems modeling, (2) sensors and actuators, (3) signals and systems, (4) computers 
and logic systems, and (5) software and data acquisition. Feedback control encom-
passes aspects of all five key elements of mechatronics, but is associated primarily 
with the element of  signals and systems, as illustrated in Figure 1.18.

Advances in computer hardware and software technology coupled with the 
desire to increase the performance-to-cost ratio has revolutionized engineering 
design. New products are being developed at the intersection of traditional disci-
plines of engineering, computer science, and the natural sciences. Advancements in 
traditional disciplines are fueling the growth of mechatronics systems by providing 

Computers and
logic systems

Software and
data acquisition

Control systems

Physical system
modeling

Signals and
systems

Sensors and
actuators

FIGURE 1.18
The key elements of 
mechatronics [64].
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“enabling  technologies.” A  critical enabling technology was the microprocessor 
which has had a profound  effect on the design of consumer products. We should 
expect continued advancements in cost-effective microprocessors and microcon-
trollers, novel sensors and actuators enabled by advancements in applications of 
microelectromechanical systems (MEMS), advanced control methodologies and 
real-time programming methods, networking and wireless technologies, and mature 
computer-aided engineering (CAE) technologies for advanced system modeling, 
virtual prototyping, and testing. The continued rapid development in these areas 
will only accelerate the pace of smart (that is, actively controlled) products.

An exciting area of mechatronic system development in which control systems 
will play a significant role is the area of alternative energy production and con-
sumption. Hybrid fuel automobiles and efficient wind power generation are two 
examples of systems that can benefit from mechatronic design methods. In fact, 
the mechatronic design philosophy can be effectively illustrated by the example of 
the evolution of the modern automobile [64]. Before the 1960s, the radio was the 
only significant electronic device in an automobile. Today, many automobiles have 
many microcontrollers, and a multitude of sensors, and thousands of lines of soft-
ware code. A modern automobile can no longer be classified as a strictly mechan-
ical  machine—it has been transformed into a comprehensive mechatronic system.

EXAMPLE 1.9 Hybrid fuel vehicles

A hybrid fuel automobile, depicted in Figure 1.19, utilizes a conventional internal 
combustion engine in combination with a battery (or other energy storage device 
such as a fuel cell or flywheel) and an electric motor to provide a propulsion system 
capable of doubling the fuel economy over conventional automobiles. Although 
these hybrid vehicles will never be zero-emission vehicles (since they have inter-
nal combustion engines), they can reduce the level of harmful emissions by one-
third to one-half, and with future improvements, these emissions may reduce 
even  further. As stated earlier, the modern automobile requires many advanced 
control  systems to operate. The control systems must regulate the performance of 

FIGURE 1.19
The hybrid fuel 
automobile can 
be viewed as 
a  mechatronic 
 system. 
(Marmaduke St. 
John/Alamy Stock 
Photo.)
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52 Chapter 1  Introduction to Control Systems

the engine, including fuel–air mixtures, valve timing, transmissions, wheel traction 
 control,  antilock brakes, and electronically controlled suspensions, among many 
other functions. On the hybrid fuel vehicle, there are additional control functions 
that must be satisfied. Especially necessary is the control of power between the in-
ternal  combustion engine and the electric motor, determining power storage needs 
and implementing the battery charging, and preparing the vehicle for low-emission 
start-ups. The overall effectiveness of the hybrid fuel vehicle depends on the com-
bination of power units that are selected (e.g., battery versus fuel cell for power 
storage). Ultimately, however, the control strategy that integrates the various 
electrical and mechanical components into a viable transportation system strongly 
 influences the acceptability of the hybrid fuel vehicle concept in the marketplace. ■

The second example of a mechatronic system is the advanced wind power gen-
eration system.

EXAMPLE 1.10 Wind power

Many nations in the world today are faced with unstable energy supplies. 
Additionally, the negative effects of fossil fuel utilization on the quality of our air 
are well documented. Many nations have an imbalance in the supply and demand 
of energy, consuming more than they produce. To address this imbalance, many 
engineers are considering developing advanced systems to access other sources of 
energy, such as wind energy. In fact, wind energy is one of the fastest-growing forms 
of energy generation in the United States and in other locations around the world. 
A wind farm is illustrated in Figure 1.20.

By the end of 2019, the installed global wind energy capacity was over 650.8 GW. 
In the United States, there was enough energy derived from wind to power over 
27.5 million homes, according to the American Wind Energy Association. For the 
past 40 years, researchers have concentrated on developing technologies that work 
well in high wind areas (defined to be areas with a wind speed of at least 6.7 m/s 
at a height of  10  m). Most of the easily accessible high wind sites in the United 
States are now utilized, and improved technology must be developed to make lower 
wind areas more cost effective. New developments are required in materials and 

FIGURE 1.20
Efficient wind 
power generation. 
(Photo courtesy of 
NASA)
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aerodynamics so that longer turbine rotors can operate efficiently in the lower 
winds, and in a related problem, the towers that support the turbine must be made 
taller without  increasing the overall costs. In addition, advanced controls will be 
 required to achieve the level of efficiency required in the wind generation drive 
train. Newer wind turbines can operate in wind speeds less than 1 mph. ■

EXAMPLE 1.11 Wearable computers

Many contemporary control systems are embedded control systems [81]. Embedded 
control systems employ on-board special-purpose digital computers as integral 
components of the feedback loop. Many new wearable products include embed-
ded computers. This includes wristwatches, eyeglasses, sports wristbands, e-textiles, 
and computer garments. Figure 1.21 illustrates the popular computer eyeglasses. 
For example, the glasses devices might enable physicians to access and manage data 
and display the data when they need it during a patient examination. One might 
imagine future applications where the device would monitor and track the doctor’s 
eye movements and use that information in a feedback loop to very precisely control 
a medical instrument during a procedure. The utilization of wearable computers in 
feedback control applications is in its infancy and the possibilities are enormous. ■

Advances in sensors, actuators, and communication devices are leading to a new 
class of embedded control systems that are networked using wireless technology, 
thereby enabling spatially-distributed control. Embedded control system designers 
must be able to understand and work with various network protocols, diverse oper-
ating systems and programming languages. While the theory of systems and controls 
serves as the foundation for the modern control system design, the design process is 
rapidly expanding into a multi-disciplinary enterprise encompassing multiple engi-
neering areas, as well as information technology and computer science.

Advances in alternate energy products, such as the hybrid automobile and the 
generation of efficient wind power generators, provide vivid examples of mecha-
tronics development. There are numerous other examples of intelligent systems 
poised to enter our everyday life, including autonomous rovers, smart home 
 appliances (e.g., dishwashers, vacuum cleaners, and microwave ovens), wireless 
 network- enabled devices, “human-friendly machines” [72] that perform robot- 
assisted surgery, and implantable sensors and actuators.

FIGURE 1.21
Wearable 
 computers can 
assist a physician 
provide better 
healthcare delivery. 
(Wavebreak Media 
Ltd/123RF.)
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1.7 GREEN ENGINEERING

Global issues such as climate change, clean water, sustainability, waste manage-
ment, emissions reduction, and minimizing raw material and energy use have 
caused many engineers to re-think existing approaches to engineering design 
in critical areas. One outcome of the evolving design strategy is to consider an 
approach that has come to be known as “green engineering.” The goal of green 
engineering is to design products that will minimize pollution, reduce the risk to 
human health, and improve the environment. The basic principles of green engi-
neering are [86]:

1. Engineer processes and products holistically, use systems analysis, and integrate envi-
ronmental impact assessment tools.

2. Conserve and improve natural ecosystems while protecting human health and well-being.

3. Use life-cycle thinking in all engineering activities.

4. Ensure that all material and energy inputs and outputs are as inherently safe and 
 benign as possible.

5. Minimize depletion of natural resources.

6. Strive to prevent waste.

7. Develop and apply engineering solutions, while being cognizant of local geography, 
 aspirations, and cultures.

8. Create engineering solutions beyond current or dominant technologies; improve, 
 innovate, and invent technologies to achieve sustainability.

9. Actively engage communities and stakeholders in development of engineering solutions.

Putting the principles of green engineering into practice leads us to a deeper 
understanding of the power of feedback control systems as an enabling technology. 
For example, in Section 1.9, we present a discussion on smart grids. Smart grids 
aim to deliver electrical power more reliably and efficiently in an environmentally 
friendly fashion. This in turn will potentially enable the large-scale use of renewable 
energy sources, such as wind and solar, that are naturally intermittent. Sensing and 
feedback are key technology areas that enable the smart grids [87]. Green engineer-
ing applications can be classified into one of five categories [88]:

1. Environmental Monitoring

2. Energy Storage Systems

3. Power Quality Monitoring

4. Solar Energy

5. Wind Energy

As the field of green engineering matures, it is almost certain that more applica-
tions will evolve, especially as we apply the eighth principle (listed above) of green 
engineering to create engineering solutions beyond current or dominant technolo-
gies and improve, innovate, and invent technologies. In the subsequent chapters, we 
present examples from each of these areas.
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Section 1.8 The Future Evolution of Control Systems 55

There is a global effort underway to reduce greenhouse gases from all sources. 
To accomplish this, it is necessary to improve both the quality and quantity of our 
environmental monitoring systems. An example is using wireless measurements on 
a cabled robotic controlled mobile sensing platform moving along the forest under-
story to measure key environmental parameters in a rain forest.

Energy storage systems are critical technologies for green engineering. There 
are many types of energy storage systems. The energy storage system we are most fa-
miliar with is the battery. Batteries are used to power most of the electronic  devices 
in use today; some batteries are rechargeable and some are single-use throwaways. 
To adhere to green engineering principles, we would favor energy storage systems 
that are renewable. A very important energy storage device for green engineering 
systems is the fuel cell.

The problems associated with power quality monitoring are varied and can 
include leading and lagging power, voltage variations, and waveform harmonics. 
Many of the green engineering systems and components require careful monitoring 
of current and voltages. An interesting example would be the modeling of cur-
rent transformers that are used in various capacities for measuring and monitoring 
within the power grid network of interconnected systems used to deliver electricity.

Efficiently converting solar energy into electricity is an engineering challenge. 
Two technologies for generation of electricity using sunshine are solar photovoltaic 
and solar thermal. With photovoltaic systems the sunlight is converted directly to 
electricity, and with solar thermal the sun heats water to create steam that is used to 
power steam engines. Designing and deploying solar photovoltaic systems for solar 
power generation is one approach employing green engineering principles to utilize 
the sun’s energy to power our homes, offices, and businesses.

Power derived from wind is an important source of renewable energy around 
the world. Wind energy conversion to electric power is achieved by wind energy 
turbines connected to electric generators. The intermittency characteristic of wind 
energy makes the smart grid development essential to bring the energy to the power 
grid when it is available and to provide energy from other sources when the wind 
dies down or is disrupted. The irregular character of wind direction and power also 
results in the need for reliable, steady electric energy by using control systems on 
the wind turbines themselves. The goal of these control  devices is to reduce the 
 effects of wind intermittency and the effect of wind direction change.

The role of control systems in green engineering will continue to expand as the 
global issues facing us require ever increasing levels of automation and precision.

1.8 THE FUTURE EVOLUTION OF CONTROL SYSTEMS

The continuing goal of control systems is to provide extensive flexibility and a high 
level of autonomy. Two system concepts are approaching this goal by  different 
 evolutionary pathways, as illustrated in Figure 1.22. Today’s industrial robot is 
 perceived as quite autonomous—once it is programmed, further intervention is 
not normally required. Because of sensory limitations, these robotic systems have 
 limited flexibility in adapting to work environment changes; improving perception 
is the motivation of computer vision research. The control system is very adaptable, 

M01_DORF2374_14_GE_C01.indd   55M01_DORF2374_14_GE_C01.indd   55 13/09/2021   14:1713/09/2021   14:17



56 Chapter 1  Introduction to Control Systems

but it relies on human supervision. Advanced robotic systems are striving for task 
adaptability through enhanced sensory feedback. Research areas concentrating on 
artificial intelligence, sensor integration, computer vision, and off-line CAD/CAM 
programming will make systems more universal and economical. Control systems 
are moving toward autonomous operation as an enhancement to human control. 
Research in  supervisory control, human–machine interface methods, and computer 
database management are intended to reduce operator burden and improve operator 
efficiency. Many research activities are common to robotics and control systems and 
are aimed at reducing implementation cost and expanding the realm of application. 
These include improved communication methods and advanced programming 
languages.

The easing of human labor by technology, a process that began in prehistory, 
is entering a new stage. The acceleration in the pace of technological innovation 
inaugurated by the Industrial Revolution has until recently resulted mainly in the 
displacement of human muscle power from the tasks of production. The current 
revolution in computer technology is causing an equally momentous social change, 
the expansion of information gathering and information processing as computers 
extend the reach of the human brain [16].

Control systems are used to achieve (1) increased productivity and (2) improved 
performance of a device or system. Automation is used to improve productivity and 
obtain high-quality products. Automation is the automatic operation or control of a 
process, device, or system. We use automatic control of machines and processes to 
produce a product reliably and with high precision [28]. With the demand for flexible, 
custom production, a need for flexible automation and robotics is growing [17, 25].

The theory, practice, and application of automatic control is a large, exciting, 
and extremely useful engineering discipline. One can readily understand the moti-
vation for a study of modern control systems.
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1.9 DESIGN EXAMPLES

In this section we present illustrative design examples. This is a pattern that we will 
follow in all subsequent chapters. Each chapter will contain a number of interesting 
examples in a special section entitled Design Examples meant to highlight the main 
topics of the chapter. At least one example among those presented in the Design 
Example section will be a more detailed problem and solution that demonstrates one 
or more of the steps in the design process shown in Figure 1.17. In the first example, 
we discuss the development of the smart grid as a concept to deliver electrical power 
more reliably and efficiently as part of a strategy to provide a more environmentally 
friendly energy delivery system. The smart grid will enable the large-scale use of re-
newable energy sources that depend on the natural phenomenon to generate power 
and which are intermittent, such as wind and solar. Providing clean energy is an en-
gineering challenge that must necessarily include active feedback control systems, 
sensors, and actuators. In the second example presented here, a rotating disk speed 
control illustrates the concept of open-loop and closed-loop feedback control. The 
third example is an insulin delivery control system in which we determine the design 
goals, the variables to control, and a preliminary closed-loop system configuration.

EXAMPLE 1.12 Smart grid control systems

A smart grid is as much a concept as it is a physical system. In essence, the concept 
is to deliver power more reliably and efficiently while remaining environmentally 
friendly, economical, and safe [89, 90]. A smart grid can be viewed as a system com-
prised of hardware and software that routes power more reliably and efficiently 
to homes, businesses, schools, and other users of power. One view of the smart 
grid is illustrated schematically in Figure 1.23. Smart grids can be national or local 
in scope. One can even consider home smart grids (or microgrids). In fact, smart 
grids encompass a wide and rich field of investigation. As we will find, control sys-
tems play a key role in smart grids at all levels.

One interesting aspect of the smart grid is real-time demand side management 
requiring a two-way flow of information between the user and the power genera-
tion system [91]. For example, smart meters are used to measure electricity use in 
the home and office. These sensors transmit data to utilities and allow the utility to 
transmit control signals back to a home or building. These smart meters can control 
and turn on or off home and office appliances and devices. Smart home-energy de-
vices enable the homeowners to control their usage and respond to price changes at 
peak-use times.

The five key technologies required to implement a successful modern smart grid 
include (i) integrated communications, (ii) sensing and measurements, (iii)  advanced 
components, (iv) advanced control methods, and (v) improved  interfaces and deci-
sion support [87]. Two of the five key technologies fall under the  general category 
of control systems, namely (ii) sensing and measurements and (iii)  advanced control 
methods. It is evident that control systems will play a key role in realizing the mod-
ern smart grid. The potential impact of the smart grid on delivery of power is very 
high. Currently, the total U.S. grid includes 9,200 units generating over 1 million MW 
of capacity over 300,000 miles of transmission lines. A smart grid will use sensors, 
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controllers, the Internet, and communication systems to improve the reliability and 
efficiency of the grid. It is estimated that deployment of smart grids could reduce 
emissions of CO2 by 12 percent by 2030 [91].

One of the elements of the smart grid are the distribution networks that measure 
and control usage. In a smart grid, the power generation depends on the market situ-
ation (supply/demand and cost) and the power source available (wind, coal, nuclear, 
geothermal, biomass, etc.). In fact, smart grid customers with solar panels or wind 
turbines can sell their excess energy to the grid and get paid as microgenerators [92]. 
In the subsequent chapters, we discuss various control problems associated with 
pointing solar panels to the sun and with prescribing the pitch of the wind turbine 
blades to manage the rotor speed thereby controlling the power output.

Transmission of power is called power flow and the improved control of power 
will increase its security and efficiency. Transmission lines have inductive, capaci-
tive, and resistive effects that result in dynamic impacts or disturbances. The smart 
grid must anticipate and respond to system disturbances rapidly. This is referred 
to as self-healing. In other words, a smart grid should be capable of managing sig-
nificant disturbances occurring on very short time scales. To accomplish this, the 
self-healing process is constructed around the idea of a feedback control system 
where self-assessments are used to detect and analyze disturbances so that corrective 
action can be applied to restore the grid. This requires sensing and measurements 

Coal/gas

Wind

Nuclear

Control
central

Wireless
communication

Smart
meter

User

Local
distribution

Inter
net

Step-up substation

Power line grid

Step-down
substation

Solar

Information flow

Market

Control
station

FIGURE 1.23 Smart grids are distribution networks that measure and control usage.

M01_DORF2374_14_GE_C01.indd   58M01_DORF2374_14_GE_C01.indd   58 13/09/2021   14:1713/09/2021   14:17



Section 1.9 Design Examples 59

to provide information to the control systems. One of the benefits of using smart 
grids is that renewable energy sources that depend on intermittent natural phe-
nomena (such as wind and sunshine) can potentially be utilized more efficiently by 
allowing for load shedding when the wind dies out or clouds block the sunshine.

Feedback control systems will play an increasingly important role in the 
 development of smart grids as we move to the target date. It may be interesting to 
recall the various topics discussed in this section in the context of control systems 
as each  chapter in this textbook unfolds new methods of control system design and 
analysis. ■

EXAMPLE 1.13 Rotating disk speed control

Many modern devices employ a rotating disk held at a constant speed. For example, 
spinning disk conformal microscopes enable line-cell imaging in biomedical applications. 
Our goal is to design a system for rotating disk speed control that will ensure that 
the actual speed of rotation is within a specified percentage of the desired speed [40, 43]. 
We will consider a system without feedback and a system with feedback.

To obtain disk rotation, we will select a DC motor as the actuator because it 
provides a speed proportional to the applied motor voltage. For the input voltage to 
the motor, we will select an amplifier that can provide the required power.

The open-loop system (without feedback) is shown in Figure 1.24(a). This system 
uses a battery source to provide a voltage that is proportional to the desired speed. 
This voltage is amplified and applied to the motor. The block diagram of the open-
loop system identifying the controller, actuator, and process is shown in Figure 1.24(b).

To obtain a feedback system, we need to select a sensor. One useful sensor is 
a  tachometer that provides an output voltage proportional to the speed of its shaft. 
Thus the closed-loop feedback system takes the form shown in Figure 1.25(a). 
The block diagram model of the feedback system is shown in Figure 1.25(b). The 
error voltage is generated by the difference between the input voltage and the 
 tachometer voltage.

We expect the feedback system of Figure 1.25 to be superior to the open-loop 
system of Figure 1.24 because the feedback system will respond to errors and act to 

Battery Speed

DC motor
DC

amplifier

Speed
setting

Desired
speed

(voltage)
Amplifier

DC
motor

Rotating
disk

Actual
speed

(a)

(b)

Controller Actuator Process

Rotating disk

FIGURE 1.24
(a) Open-loop 
(without feedback) 
control of the speed 
of a rotating disk. 
(b) Block diagram 
model.
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60 Chapter 1  Introduction to Control Systems

reduce them. With precision components, we could expect to reduce the error of 
the feedback system to one-hundredth of the error of the open-loop system. ■

EXAMPLE 1.14 Insulin delivery control system

Control systems have been utilized in the biomedical field to create implanted auto-
matic drug-delivery systems to patients [29–31]. Automatic systems can be used to 
regulate blood pressure, blood sugar level, and heart rate. A common application 
of control engineering is in the field of drug delivery in which mathematical models 
of the dose–effect relationship of the drugs are used. A drug-delivery system im-
planted in the body uses a closed-loop system since miniaturized glucose sensors are 
now available. The best solutions rely on individually programmable, pocket-sized 
insulin pumps that can deliver insulin.

The blood glucose and insulin concentrations for a healthy person are shown in 
Figure 1.26. The system must provide the insulin from a reservoir implanted within 
the diabetic person. Therefore, the control goal is:

Control Goal
Design a system to regulate the blood sugar concentration of a diabetic by 
controlled dispensing of insulin.

Referring to Figure 1.26, the next step in the design process is to define the vari-
able to be controlled. Associated with the control goal we can define the variable 
to be controlled to be:

Variable to Be Controlled
Blood glucose concentration

In subsequent chapters, we will have the tools to quantitatively describe the 
control design specifications using a variety of steady-state performance 
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DC motor
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amplifier

Speed
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Amplifier
DC

motor
Rotating

disk
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speed
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(b)

Controller Actuator

Sensor

Desired
speed

(voltage)

Process

Rotating disk

+

-

-

+ Error

Measured speed
(voltage)
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FIGURE 1.25
(a) Closed-loop 
control of the 
speed of a rotating 
disk. (b) Block dia-
gram model.
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Section 1.9 Design Examples 61

specifications and transient response specifications, both in the time-domain and 
in the frequency domain. At this point, the control design specifications will be 
qualitative and imprecise. In that regard, for the problem at hand, we can state 
the design specification as:

Control Design Specifications
Provide a blood glucose level for the diabetic that closely approximates 
(tracks) the glucose level of a healthy person.

Given the design goals, variables to be controlled, and control design specifications, 
we can now propose a preliminary system configuration. A closed-loop system uses 
a fully implantable glucose sensor and miniature motor pump to regulate the insulin 
delivery rate as shown in Figure 1.27. The feedback control system uses a sensor to 
measure the actual glucose level and compare that level with the desired level, thus 
turning the motor pump on when it is required. ■
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Time

FIGURE 1.26
The blood  glucose 
and insulin  levels 
for a healthy 
person.
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FIGURE 1.27
(a) Open-loop 
 (without  feedback) 
control and 
(b) closed-loop 
control of blood 
glucose.
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62 Chapter 1  Introduction to Control Systems

1.10 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

We will use the design process of Figure 1.17 in each chapter to identify the steps 
that we are accomplishing. For example, in Chapter 1 we (1) identify the control 
goal, (2) identify the variables to control, (3) write the initial specifications for the 
variables, and (4) establish the preliminary system configuration.

Information can be readily and efficiently stored on magnetic disks. Hard disk 
drives (HDD) are used in notebook computers and larger computers of all sizes 
and are essentially all standardized as defined by ANSI standards. Even with the 
advent of advanced storage technologies, such as cloud storage, flash memory, and 
solid-state drives (SSDs), the HDD remains an important storage media. The role 
of the HDD is changing from fast and primary storage to slow storage with enor-
mous capacity [50]. The installation of SSD units are surpassing HDD units for the 
first time. The SSD units are known to have much better performance than HDD, 
however, the difference in cost per gigabyte ratio is about 6:1, and that is expected 
to remain that way until 2030. Among the many reasons to keep our interest in 
HDD units is that it is anticipated that about 90% of the required capacity for cloud 
computing applications will be realized with HHDs moving into the foreseeable fu-
ture [51, 62]. In the past, disk drive designers have concentrated on increasing data 
density and data access times. Designers are now considering employing disk drives 
to perform tasks historically delegated to central processing units (CPUs), thereby 
leading to improvements in the computing environment [63]. Three areas of “in-
telligence” under investigation include off-line error recovery, disk drive failure 
warnings, and storing data across multiple disk drives. Consider the basic diagram 
of a disk drive shown in Figure 1.28. The goal of the disk drive reader device is to 
position the reader head to read the data stored on a track on the disk. The variable 
to accurately control is the position of the reader head (mounted on a slider  device). 
The disk rotates at a speed between 1800 and 10,000 rpm, and the head “flies” above 
the disk at a distance of less than 100 nm. The initial specification for the position 
accuracy is 1  m.µ  Furthermore, we plan to be able to move the head from track a to 
track b within 50 ms, if possible. Thus, we establish an  initial system configuration 

(a)

FIGURE 1.28
(a) A disk drive 
(Ragnarock/
Shutterstock.) 
(b) Diagram of a 
disk drive. (b)

Head slider

Rotation
of arm

Actuator
motor

Disk

Track b

Spindle

Arm
Track a
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Control
device

Sensor

Actual
head

position-

+ ErrorDesired
head

position

Actuator motor
and read arm

FIGURE 1.29
Closed-loop control 
system for disk 
drive.

as shown in Figure 1.29. This proposed closed-loop system uses a motor to actuate 
(move) the arm to the desired location on the disk. We will consider the design of 
the disk drive further in Chapter 2.

1.11 SUMMARY

In this chapter, we discussed open- and closed-loop feedback control systems. 
Examples of control systems through the course of history were presented to mo-
tivate and connect the subject to the past. In terms of contemporary issues, key 
areas of application were discussed, including humanoid robots, unmanned  aerial 
vehicles, wind energy, hybrid automobiles, and embedded control. The central 
role of controls in mechatronics was discussed. Mechatronics is the synergistic 
integration of mechanical, electrical, and computer systems. Finally, the design 
process was presented in a structured form and included the following steps: the 
establishment of goals and  variables to be controlled, definition of specifications, 
system definition, modeling, and analysis. The iterative nature of design allows us 
to handle the design gap effectively while accomplishing necessary trade-offs in 
complexity, performance, and cost.

In this section, we provide three sets of problems to test your knowledge: True or False, 
Multiple Choice, and Word Match. To obtain direct feedback, check your answers with the 
answer key provided at the conclusion of the end-of-chapter problems.

In the following True or False and Multiple Choice problems, circle the correct answer.

1. The flyball governor is generally agreed to be the first  
automatic feedback controller used in an industrial process. True or False

2. A closed-loop control system uses a measurement of the output  
and feedback of the signal to compare it with the desired input. True or False

3. Engineering synthesis and engineering analysis are the same. True or False

4. The block diagram in Figure 1.30 is an example of a closed-loop  
feedback system. True or False

SKILLS CHECK

Control
device

Actuator ProcessR(s) Y(s)

FIGURE 1.30 System with control device, 
actuator, and process.
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64 Chapter 1  Introduction to Control Systems

5. A multivariable system is a system with more than one input and/or  
more than one output. True or False

6. Early applications of feedback control include which of the following?

a. Water clock of Ktesibios

b. Watt’s flyball governor

c. Drebbel’s temperature regulator

d. All of the above

7. Important modern applications of control systems include which of the following?

a. Safe automobiles

b. Autonomous robots

c. Automated manufacturing

d. All of the above

8. Complete the following sentence:

Control of an industrial process by automatic rather than manual means is often called 
.

a. negative feedback

b. automation

c. a design gap

d. a specification

9. Complete the following sentence:

 are intrinsic in the progression from an initial concept to the final product.

a. Closed-loop feedback systems

b. Flyball governors

c. Design gaps

d. Open-loop control systems

10. Complete the following sentence:

Control engineers are concerned with understanding and controlling segments of their 
environments, often called .

a. systems

b. design synthesis

c. trade-offs

d. risk

11. Early pioneers in the development of systems and control theory include:

a. H. Nyquist

b. H. W. Bode

c. H. S. Black

d. All of the above

12. Complete the following sentence:

An open-loop control system utilizes an actuating device to control a process .

a. without using feedback

b. using feedback

c. in engineering design

d. in engineering synthesis
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13. A system with more than one input variable or more than one output variable is known 
by what name?

a. Closed-loop feedback system

b. Open-loop feedback system

c. Multivariable control system

d. Robust control system

14. Control engineering is applicable to which fields of engineering?

a. Mechanical and aerospace

b. Electrical and biomedical

c. Chemical and environmental

d. All of the above

15. Closed-loop control systems should have which of the following properties:

a. Good regulation against disturbances

b. Desirable responses to commands

c. Low sensitivity to changes in the plant parameters

d. All of the above

In the following Word Match problems, match the term with the definition by writing 
the correct letter in the space provided.

 a. Optimization The output signal is fed back so that it sub-
tracts from the input signal.

 b. Risk A system that uses a measurement of the out-
put and compares it with the desired output.

 c. Complexity of design A set of prescribed performance criteria.
 d. System A measure of the output of the system 

used for feedback to control the system.
 e. Design A system with more than one input vari-

able or more than one output variable.
 f.  Closed-loop feedback 

control system
The result of making a judgment about 
how much compromise must be made be-
tween conflicting criteria.

 g. Flyball governor An interconnection of elements and de-
vices for a desired purpose.

h. Specifications A reprogrammable, multifunctional ma-
nipulator used for a variety of tasks.

 i. Synthesis A gap between the complex physical sys-
tem and the design model intrinsic to the 
progression from the initial concept to the 
final product.

 j.  Open-loop control 
system

The intricate pattern of interwoven parts 
and knowledge required.

 k. Feedback signal The ratio of physical output to physical 
input of an industrial process.

 l. Robot The process of designing a technical 
system.

m.  Multivariable control 
system

A system that utilizes a device to control 
the process without using feedback.
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66 Chapter 1  Introduction to Control Systems

 n. Design gap Uncertainties embodied in the unintended 
consequences of a design.

 o. Positive feedback The process of conceiving or inventing 
the forms, parts, and details of a system to 
achieve a specified purpose.

 p. Negative feedback The device, plant, or system under control.
 q. Trade-off The output signal is fed back so that it adds 

to the input signal.
 r. Productivity An interconnection of components form-

ing a system configuration that will provide 
a desired response.

 s. Engineering design The control of a process by automatic 
means.

 t. Process The adjustment of the parameters to 
achieve the most favorable or advanta-
geous design.

u. Control system The process by which new physical config-
urations are created.

v. Automation A mechanical device for controlling the 
speed of a steam engine.

Exercises are straightforward applications of the concepts 
of the chapter.

The following systems can be described by a block  diagram 
showing the cause–effect relationship and the feedback 
(if present). Identify the function of each block and the 
desired input variable, output variable, and measured 
variable. Use Figure 1.3 as a model where appropriate.

E1.1 Describe typical sensors that can measure each of 
the following [93]:
a. Linear position

b. Velocity (or speed)
c. Nongravitational acceleration
d. Rotational position (or angle)
e. Rotational velocity
f. Temperature
g. Pressure
h. Liquid (or gas) flow rate
i. Torque
j. Force
k. Earth’s magnetic field
p. Heart rate

EXERCISES

i(t)
Current

Input
Error

Output

Measured
variable

Sensor

-

+
Device Laser

FIGURE E1.3 Partial block diagram of an optical source.
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E1.2 Describe typical actuators that can convert the 
 following [93]:
a. Mechanical energy to fluidic energy
b. Mechanical energy to electrical energy
c. Electrical energy to mechanical energy
d. Kinetic energy to electrical energy
e. Electrical energy to heat

E1.3 A CD player laser beam focusing system has an 
array of photodiodes that is used to determine if 
the laser beam is in focus. The laser beam focus 
is controlled by an input current to a lens focusing 
motor. A microprocessor controls the input current 
to the motor by comparing the output from the 
array of photodiodes. Complete the block diagram 
representing this closed-loop control system shown 
in Figure E1.3, identifying the output, input, and 
measured variables, and the control device.

E1.4 A surgeon uses a control system, that is a robot sur-
gical system, to perform surgery remotely. Sketch a 
block diagram to illustrate this feedback system.

E1.5 Fly-fishing is a sport that challenges the person to 
cast a small feathery fly using a light rod and line. 
The goal is to place the fly accurately and lightly on 
the distant surface of the stream [59]. Describe the 
fly-casting process and a model of this process.

E1.6 An autofocus camera will adjust the distance of 
the lens from the film by using a beam of infrared or 
 ultrasound to determine the distance to the subject 
[42]. Sketch a block diagram of this control system, 
and briefly explain its operation.

E1.7 Because a sailboat cannot sail directly into the wind, 
and traveling straight downwind is usually slow, the 
shortest sailing distance is rarely a straight line. Thus 
sailboats tack upwind—the familiar zigzag course—
and jibe downwind. A tactician’s decision of when to 
tack and where to go can determine the outcome of 
a race.

Describe the process of tacking a sailboat as the 
wind shifts direction. Sketch a block diagram depict-
ing this process.

E1.8 An autonomous self-driving vehicle can sense its 
environment and navigate without human input. 
Describe a simplified feedback control system for a 
guidance system that ensures the vehicle navigates its 
surroundings safely.

E1.9 Describe the block diagram of the control system 
of a skateboard with a human rider.

E1.10 Describe the process of human biofeedback used 
to regulate factors such as pain or body temperature. 
Biofeedback is a technique whereby a human can, 

with some success, consciously regulate pulse, reac-
tion to pain, and body temperature.

E1.11 Future advanced commercial aircraft will be 
E-enabled. This will allow the aircraft to take advan-
tage of continuing improvements in computer power 
and network growth. Aircraft can continuously com-
municate their location, speed, and critical health 
 parameters to ground controllers, and gather and 
transmit local meteorological data. Sketch a block 
diagram showing how the meteorological data from 
multiple aircraft can be transmitted to the ground, 
combined using ground-based powerful networked 
computers to create an accurate weather situational 
awareness, and then transmitted back to the aircraft 
for optimal routing.

E1.12 Unmanned aerial vehicles (UAVs) are being de-
veloped to operate in the air autonomously for long 
periods of time. By autonomous, we mean that there 
is no interaction with human ground controllers. 
Sketch a block diagram of an autonomous UAV that 
is tasked for crop monitoring using aerial photogra-
phy. The UAV must photograph and transmit the en-
tire land area by flying a pre-specified trajectory as 
accurately as possible.

E1.13 Consider the inverted pendulum shown in 
Figure E1.13. Sketch the block diagram of a feedback 
control system. Identify the process, sensor, actuator, 
and controller. The objective is keep the pendulum 
in the upright position, that is to keep u = 0, in the 
presence of disturbances.

m, massu

Optical encoder to
measure angle T, torque

FIGURE E1.13 Inverted pendulum control.

E1.14 Sketch a block diagram of a person playing a video 
game. Suppose that the input device is a joystick and 
the game is being played on a desktop computer.
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68 Chapter 1  Introduction to Control Systems

E1.15 For people with diabetes, keeping track of and 
maintaining blood glucose at safe levels is very im-
portant. Continuous blood glucose monitors and 
readers are available that enable a measurement 
of blood glucose with a painless scan rather than a 
fingerprick, as illustrated in Figure E1.15. Sketch 
a block diagram with a continuous blood glucose 
monitor and a reader and their possible control ac-
tions they might implement as they manage a high 
blood glucose reading.

FIGURE E1.15 A continuous blood glucose monitoring 
system

Problems require extending the concepts of this chapter 
to new situations.

The following systems may be described by a block 
diagram showing the cause–effect relationship and 
the feedback (if present). Each block should de-
scribe its function. Use Figure 1.3 as a model where 
appropriate.

P1.1 Automobiles have variable windshield wiper speed 
settings for different rain intensity. Sketch a block 
 diagram of a wiper system where the driver sets the 
wiper speed. Identify the function of each element of the 
variable speed control of the wiper system.

P1.2 Control systems can use a human operator as 
part of a closed-loop control system. Sketch the 
block  diagram of the valve control system shown in 
Figure P1.2.

P1.3 In a chemical process control system, it is valuable 
to control the chemical composition of the product. 
To do so, a measurement of the composition can 
be  obtained by using an infrared stream analyzer, 
as shown in Figure P1.3. The valve on the additive 
stream may be controlled. Complete the control 
feedback loop, and sketch a block diagram describ-
ing the  operation of the control loop.

PROBLEMS

Output

Valve

Human
operator

Fluid
flow

Meter

Process

FIGURE P1.2 Fluid-flow control.

Measurement of
composition

Infrared
analyzer

Additive
Valve

Output

Sample
tube

Main
stream

FIGURE P1.3 Chemical composition control.

P1.4 The accurate control of a nuclear reactor is im-
portant for power system generators. Assuming the 
number of neutrons present is proportional to the 
power level, an ionization chamber is used to mea-
sure the power level. The current io is proportional 
to the power level. The position of the graphite 
control rods moderates the power level. Complete 
the control system of the nuclear reactor shown in 
Figure P1.4 and sketch the block diagram describing 
the operation of the feedback control loop.
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Sergeant, why do you stop every day and check your 
watch?”

The sergeant replied, “I’m the gunner at the 
fort!”

Is the feedback prevalent in this case positive or 
negative? The jeweler’s chronometer loses two min-
utes each 24-hour period and the sergeant’s watch loses 
three minutes during each eight hours. What is the net 
time error of the cannon at the fort after 12 days?

P1.8 In a public address system, when the microphone 
is placed too close to the loudspeaker, a positive 
feedback system is inadvertently created. The audio 
input from the microphone is amplified, which comes 
out through the loudspeaker. This audio output is 
received by the microphone again, which gets ampli-
fied further, and comes out through the loudspeaker 
again. This positive loop gain is known as audio feed-
back or the Larsen effect, and causes the system to 
overload, resulting in a high-pitched sound. Construct 
the corresponding feedback model, and identify each 
block of the model.

P1.9 Models of physiological control systems are 
valuable aids to the medical profession. A model 
of the heart-rate control system is shown in Figure 
P1.9 [23, 48]. This model includes the processing 
of the nerve signals by the brain. The heart-rate 
control system is, in fact, a multivariable system, 
and the variables x, y, w, v, z, and u are vector 

Control rod

Ionization chamber
io

FIGURE P1.4 Nuclear reactor control.

Light
source

Gears

Photocell
tubes

Motor

FIGURE P1.5 A photocell is mounted in each tube. The light 
reaching each cell is the same in both only when the light source is 
exactly in the middle as shown.

+

+

Initial
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Process
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Wage 
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Automatic
cost of living

increase
K1

Actual
wages

Cost of
living

FIGURE P1.6 Positive feedback.
P1.5 A light-seeking control system, used to track 

the sun, is shown in Figure P1.5. The output shaft, 
driven by the motor through a worm reduction gear, 
has a bracket attached on which are mounted two 
photocells. Complete the closed-loop system so that 
the system follows the light source.

P1.6 Feedback systems do not always involve negative 
feedback. Economic inflation, which is evidenced by 
continually rising prices, is a positive feedback system. 
A positive feedback control system, as shown in Figure 
P1.6, adds the feedback signal to the input signal, and the 
resulting signal is used as the input to the process. A sim-
ple model of the price–wage inflationary spiral is shown 
in Figure P1.6. Add additional feedback loops, such as 
legislative control or control of the tax rate, to stabilize 
the system. It is assumed that an increase in workers’ 
salaries, after some time delay, results in an increase in 
prices. Under what conditions could prices be stabilized 
by falsifying or delaying the availability of cost-of-living 
data? How would a national wage and price economic 
guideline program affect the feedback system?

P1.7 The story is told about the sergeant who stopped at 
the jewelry store every morning at nine o’clock and 
compared and reset his watch with the chronometer 
in the window. Finally, one day the sergeant went into 
the store and complimented the owner on the accu-
racy of the chronometer.

“Is it set according to time signals from 
Arlington?” asked the sergeant.

“No,” said the owner, “I set it by the five o’clock 
cannon fired from the fort each afternoon. Tell me, 
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70 Chapter 1  Introduction to Control Systems

variables. In other words, the variable x represents 
many heart variables x x xn,   , ,   .1 2 …  Examine the 
model of the heart-rate control system and add 
or delete blocks, if necessary. Determine a control 
system model of one of the following physiologi-
cal control systems:
1. Respiratory control system
2. Adrenaline control system
3. Human arm control system
4. Eye control system
5. Pancreas and the blood-sugar-level control 

system
6. Circulatory system

P1.10 The role of air traffic control systems is increas-
ing as airplane traffic increases at busy airports. 
Engineers are developing air traffic control systems 
and collision avoidance systems using the Global 
Positioning System (GPS) navigation satellites [34, 
55]. GPS allows each aircraft to know its position in 
the airspace landing corridor very precisely. Sketch a 
block diagram depicting how an air traffic controller 
might use GPS for aircraft collision avoidance.

P1.11 Automatic control of water level using a float 
level was used in the Middle East for a water clock 
[1, 11]. The water clock (Figure P1.11) was used 
from sometime before Christ until the 17th century. 
Discuss the operation of the water clock, and estab-
lish how the float provides a feedback control that 
maintains  the accuracy of the clock. Sketch a block 
diagram of the feedback system.

P1.12 An automatic turning gear for windmills was in-
vented by Meikle in about 1750 [1, 11]. The  fantail 
gear shown in Figure P1.12 automatically turns 
the windmill into the wind. The fantail windmill at 
right angle to the mainsail is used to turn the turret. 
The gear ratio is of the order of 3000 to 1. Discuss the 
operation of the windmill, and establish the feedback 
operation that maintains the main sails into the wind.

P1.13 A common example of a two-input control system 
is an automobile power transmission system, with a 
gear shifter and an accelerator pedal. The objective is 
to obtain (1) a desired speed and (2) a desired torque. 
Sketch a block diagram of the closed-loop control 
system.

P1.14 Adam Smith (1723–1790) discussed the issue of 
free competition between the participants of an econ-
omy in his book Wealth of Nations. It may be said 
that Smith employed social feedback mechanisms 
to explain his theories [41]. Smith suggests that (1) 
the available workers as a whole compare the  various 
possible employments and enter that one offering 
the greatest rewards, and (2) in any employment the 
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FIGURE P1.9 Heart-rate control.
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FIGURE P1.11 Water clock. (From Newton, Gould, 
and Kaiser, Analytical Design of Linear Feedback Controls. 
Wiley, New York, 1957, with permission.)
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rewards diminish as the number of competing work-
ers rises. Let r total=  of rewards averaged over all 
trades, c total=  of rewards in a particular trade, and 
q in�ux=  of workers into the specific trade. Sketch a 
feedback system to represent this system.

P1.15 Small computers are used as part of a start-stop 
system in automobiles to control emissions and ob-
tain improved gas mileage. A computer-controlled 
start-stop system that automatically stops and re-
starts an engine to reduce the time the engine idles 
could improve gas mileage and reduce unwanted pol-
luting emissions significantly. Sketch a block diagram 
for such a system for an automobile.

P1.16 All humans have experienced a fever associated 
with an illness. A fever is related to the changing 
of the control input in the body’s thermostat. This 
thermostat, within the brain, normally regulates 
temperature near 98°F in spite of external tem-
peratures ranging from 0°F to 100°F or more. For 
a fever, the input, or desired, temperature is in-
creased. Even to many scientists, it often comes 
as a surprise to learn that fever does not indicate 
something wrong with body temperature control 
but rather well-contrived regulation at an elevated 
level of desired input. Sketch a block diagram of 
the temperature control system and explain how 
aspirin will lower a fever.

P1.17 Baseball players use feedback to judge a fly ball 
and to hit a pitch [35]. Describe a method used by a 

Fantail
Main
sail

FIGURE P1.12 Automatic turning gear for windmills. 
(From Newton, Gould, and Kaiser, Analytical Design of 
Linear Feedback Controls. Wiley, New York, 1957, with 
permission.)
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FIGURE P1.18 Pressure regulator.

batter to judge the location of a pitch so that he can 
have the bat in the proper position to hit the ball.

P1.18 A cutaway view of a commonly used pressure 
regulator is shown in Figure P1.18. The desired 
 pressure is set by turning a calibrated screw. This 
compresses the spring and sets up a force that 
 opposes the upward motion of the diaphragm. 
The bottom side of the diaphragm is exposed 
to the  water pressure that is to be controlled. 
Thus  the motion of the diaphragm is an indication 
of the pressure difference between the desired and 
the actual pressures. It acts like a comparator. The 
valve is connected to the diaphragm and moves 
according to the pressure difference until it reaches 
a position in which the difference is zero. Sketch a 
block diagram showing the control system with the 
output pressure as the regulated variable.

P1.19 Ichiro Masaki of General Motors has patented 
a system that automatically adjusts a car’s speed to 
keep a safe distance from vehicles in front. Using a 
video camera, the system detects and stores a ref-
erence image of the car in front. It then compares 
this image with a stream of incoming live images 
as the two cars move down the highway and calcu-
lates the distance. Masaki suggests that the system 
could control steering as well as speed, allowing 
drivers to lock on to the car ahead and get a “com-
puterized tow.” Sketch a block diagram for the 
control system.
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72 Chapter 1  Introduction to Control Systems

P1.20 A high-performance race car with an adjustable 
wing (airfoil) is shown in Figure P1.20. Develop a 
block diagram describing the ability of the airfoil 
to keep a constant road adhesion between the car’s 
tires and the race track surface. Why is it important 
to maintain good road adhesion?

robot can display facial expressions, so that it can 
work cooperatively with human workers. Sketch a 
block diagram for a facial expression control system 
of your own design.

P1.24 An innovation for an intermittent automobile 
windshield wiper is the concept of adjusting its 
wiping cycle according to the intensity of the rain 
[54]. Sketch a block diagram of the wiper control 
system.

P1.25 In the past 50 years, over 20,000 metric tons of 
hardware have been placed in Earth’s orbit. During 
the same time span, over 15,000 metric tons of hard-
ware returned to Earth. The objects remaining in 
Earth’s orbit range in size from large operational 
spacecraft to tiny flecks of paint. There are over 
500,000 objects in Earth’s orbit 1 cm or larger in 
size. About 20,000 of the space objects are currently 
tracked from groundstations on the Earth. Space 
traffic control [61] is becoming an important issue, 
especially for commercial satellite companies that 
plan to “fly” their satellites through orbit altitudes 
where other satellites are operating, and through 
areas where high concentrations of space debris 
may exist. Sketch a block diagram of a space  traffic 
control system that commercial companies might 
use to keep their satellites safe from collisions while 
operating in space.

P1.26 NASA is developing a compact rover designed 
to transmit data from the surface of an asteroid 
back to Earth, as illustrated in Figure P1.26. The 
rover will use a camera to take panoramic shots of 
the asteroid surface. The rover can position itself 
so that the camera can be pointed straight down 

Adjustable wing

FIGURE P1.20 A high-performance race car with an 
adjustable wing.

Helicopter 1 Helicopter 2

Load

Attachment
point Tether

FIGURE P1.21 Two helicopters used to lift and move a 
large load.

P1.21 The potential of employing two or more helicop-
ters for transporting payloads that are too heavy 
for a single helicopter is a well-addressed issue in 
the civil and military rotorcraft design arenas [37]. 
Overall requirements can be satisfied more effi-
ciently with a smaller aircraft by using multilift 
for infrequent peak demands. Hence the principal 
motivation for using multilift can be attributed to 
the promise of obtaining increased productivity 
without having to manufacture larger and more 
expensive helicopters. A specific case of a multilift 
arrangement where two helicopters jointly trans-
port  payloads has been named twin lift. Figure P1.21 
shows a typical “two-point pendant” twin lift config-
uration in the lateral/vertical plane.

Develop the block diagram describing the pi-
lots’ action, the position of each helicopter, and the 
position of the load.

P1.22 Engineers want to design a control system that 
will allow a building or other structure to react to 
the force of an earthquake much as a human would. 
The structure would yield to the force, but only so 
much, before developing strength to push back [47]. 
Develop a block diagram of a control system to re-
duce the effect of an earthquake force.

P1.23 Engineers at the Science University of Tokyo are 
developing a robot with a humanlike face [52]. The 
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at the surface or straight up at the sky. Sketch a 
block diagram illustrating how the microrover can 
be positioned to point the camera in the desired 
direction. Assume that the pointing commands are 
relayed from the Earth to the microrover and that 
the position of the camera is measured and relayed 
back to Earth.

P1.27 A direct methanol fuel cell is an electrochemical 
device that converts a methanol water solution to 
electricity [75]. Like rechargeable batteries, fuel cells 
directly convert chemicals to energy; they are very 
often compared to batteries, specifically recharge-
able batteries. However, one significant difference 
between rechargeable batteries and direct methanol 
fuel cells is that, by adding more methanol water 
solution, the fuel cells recharge instantly. Sketch a 
block diagram of the direct methanol fuel cell re-
charging system that uses feedback to continuously 
monitor and recharge the fuel cell.

FIGURE P1.26 Microrover designed to explore an 
asteroid. (Photo courtesy of NASA.)

Advanced problems represent problems of increasing 
complexity.

AP1.1 The development of robotic microsurgery de-
vices will have major implications on delicate eye and 
brain surgical procedures. One such device is shown 
in Figure AP1.1. Haptic (force and tactile) feedback 
can greatly help a surgeon by mimicking the physical 
interaction that takes place between the microsurgery 
robotic manipulator and human tissue. Sketch a block 
diagram for a haptic and tactile subsystem with a mi-
crosurgical device in the loop being operated by a sur-
geon. Assume that the force of the end-effector on the 
microsurgical device can be measured and is available 
for feedback.

AP1.2 Advanced wind energy systems are being installed 
in many locations throughout the world as a way 
for nations to deal with rising fuel prices and energy 
shortages, and to reduce the negative effects of fossil 
fuel utilization on the quality of the air. The modern 
windmill can be viewed as a mechatronic system. Think 
about how an advanced wind energy system would 
be designed as a mechatronic system. List the various 
components of the wind energy system and associate 
each component with one of the five elements of a 
mechatronic system: physical system modeling, signals 
and systems, computers and logic systems, software and 
data acquisition, and sensors and actuators.

AP1.3 Many modern luxury automobiles have an ad-
vanced driver-assistance systems (ADAS) option. 
The collision avoidance feature of an ADAS system 
uses radars to detect nearby obstacles to notify driv-
ers of potential collisions. Figure AP1.3 illustrates the 

collision avoidance feature of an ADAS system. Sketch 
a block diagram of this ADAS feedback control sys-
tem. In your own words, describe the control problem 
and the challenges facing the designers of the control 
system.

AP1.4 Adaptive optics has applications to a wide variety of 
key control problems, including imaging of the human 
retina and large-scale, ground-based astronomical 

ADVANCED PROBLEMS

FIGURE AP1.1 Microsurgery robotic manipulator. 
(Photo courtesy of NASA.)
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74 Chapter 1  Introduction to Control Systems

observations [98]. In both cases, the approach is to use a 
wavefront sensor to measure distortions in the incom-
ing light and to actively control and compensate to the 
errors induced by the distortions. Consider the case of 
an extremely large ground-based optical telescope, pos-
sibly an optical telescope up to 100 meters in diameter. 
The telescope components include deformable mir-
rors actuated by micro-electro-mechanical (MEMS) 
devices and sensors to measure the distortion of the 
incoming light as it passes through the  turbulent and 
uncertain atmosphere of Earth.

There is at least one major technological bar-
rier to  constructing a 100-m optical telescope. The 
 numerical computations associated with the  control 
and  compensation of the extremely large optical 
 telescope can be on the order of 1010 calculations each 

1.5 ms. If we assume that the computational  capability 
is available, then one can consider the  design of 
a feedback control system that uses the available 
 computational power. We can consider many control 
issues  associated with the large-scale optical telescope. 
Some of the controls problems that might be con-
sidered include controlling the pointing of the main 
dish, controlling the individual deformable mirrors, 
and  attenuating the deformation of the dish due to 
changes in outside temperature.

Describe a closed-loop feedback control sys-
tem to control one of the deformable mirrors to 
compensate for the distortions in the incoming light. 
Figure AP1.4 shows a diagram of the telescope with 
a single deformable mirror. Suppose that the mirror 
has an associated MEMS actuator that can be used to 

Blind spot
detection

Blind spot
detection

Cross tra�c alert Rear collision warning

FIGURE AP1.3 A collision avoidance feature of an ADAS system.

Controller
Wavefront sensor
and algorithms

Deformable
mirror

MEMS actuator
(not to scale)

Light from 
celestial object

FIGURE AP1.4 Extremely large optical telescope with deformable mirrors 
for atmosphere compensation.
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vary the orientation. Also, assume that the wavefront 
sensor and associated algorithms provide the desired 
configuration of the deformable mirror to the feed-
back control system.

AP1.5 The Burj Dubai is the tallest building in the world 
[94]. The building, shown in Figure AP1.5, stands at 
over 800 m with more than 160 stories. There are 57 
elevators servicing this tallest free-standing structure 
in the world. Traveling at up to 10 m/s, the elevators 
have the world’s longest travel distance from low-
est to highest stop. Describe a closed-loop feedback 
control system that guides an elevator of a high-
rise building to a desired floor while maintaining a 
 reasonable transit time [95]. Remember that high ac-
celerations will make the passengers uncomfortable.

FIGURE AP1.5 The world’s tallest building in 
Dubai. (Photo courtesy of Obstando Images/Alamy.)

FIGURE AP1.6 A robotic vacuum cleaner 
communicates with the base station as it maneuvers 
around the room. (Photo  courtesy of Hugh  
Threlfall/Alamy.)

AP1.6 The robotic vacuum cleaner depicted in Figure 
AP1.6 is an example of a mechatronic system that 
aids humans in maintaining their homes. A dirt de-
tection control system would enable the robotic 
vacuum cleaner to vacuum the same area more than 
once if the dirt level is unsatisfactory, since a single 
pass may not be enough to adequately remove a high 
level of dirt. If the robotic vacuum cleaner detects 
more dirt than usual, it should vacuum the same 
area until the sensors detect lesser dirt in that area. 
Describe a closed-loop feedback control system to 

detect an acceptable level of dirt, so that the robotic 
vacuum cleaner will vacuum the same area again.

AP1.7 Space X has developed a very important system 
to allow for recovery of the first stage of their Falcon 
rocket at sea, as depicted in Figure AP1.7. The landing 
ship is an autonomous drone ship. Sketch a block di-
agram describing a control system that would control 
the pitch and roll of the landing ship on the sea.

Design problems emphasize the design task. Continuous 
design problems (CDP) build upon a design problem 
from chapter to chapter.

CDP1.1 Increasingly stringent requirements of mod-
ern, high-precision machinery are placing increasing 

DESIGN PROBLEMS

demands on slide systems [53]. The typical goal is 
to accurately control the desired path of the table 
shown in Figure CDP1.1. Sketch a block diagram 
model of a feedback system to achieve the desired 
goal. The table can move in the x direction as shown.

FIGURE AP1.7 Space X return landing on sea- based 
drone ship.

Design Problems 75
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76 Chapter 1  Introduction to Control Systems

variable because of its strong influence on the tractive 
force between the tire and the road [19]. The adhesion 
coefficient between the wheel and the road reaches 
a maximum at a low slip. Develop a block diagram 
model of one wheel of a traction control system.

DP1.7 The Hubble space telescope was repaired and mod-
ified in space on several occasions [44, 46, 49]. One 

Cutting
tool

Table

x

FIGURE CDP1.1 Machine tool with table.

DP1.1 Background noise affects the audio output qual-
ity of a headphone. Noise-cancelling headphones use 
active noise control to reduce this unwanted ambient 
noise. Sketch a block diagram of an “active noise con-
trol” feedback system that will reduce the effect of un-
wanted noise. Indicate the device within each block.

DP1.2 Aircraft are fitted with autopilot control that, at 
the press of a button, automatically controls the flight 
path of an aircraft, without manual control by a pilot. 
In this way, the pilot can focus on monitoring the flight 
path, weather, and onboard systems. Design a feedback 
 control in block diagram form for an autopilot system.

DP1.3 Describe a feedback control system in which a 
user utilizes a smart phone to remotely monitor and 
 control a washing machine as illustrated in Figure 
DP1.3. The control system should be able to start and 
stop the wash cycle, control the amount of detergent 
and the water temperature, and provide notifications 
on the status of the cycle.

DP1.4 As part of the automation of a dairy farm, the au-
tomation of cow milking is under study [36]. Design a 
milking machine that can milk cows four or five times 
a day at the cow’s demand. Sketch a block diagram 
and indicate the devices in each block.

DP1.5 A large, braced robot arm for welding large struc-
tures is shown in Figure DP1.5. Sketch the block 
 diagram of a closed-loop feedback control system for 
accurately controlling the location of the weld tip.

DP1.6 Vehicle traction control, which includes antiskid 
braking and antispin acceleration, can enhance vehi-
cle performance and handling. The objective of this 
control is to maximize tire traction by preventing 
locked brakes as well as tire spinning during acceler-
ation. Wheel slip, the difference between the vehicle 
speed and the wheel speed, is chosen as the controlled 

Weld tip

Workpiece

FIGURE DP1.5 Robot welder.

FIGURE DP1.3 Using a smart phone to 
remotely monitor and control a washing machine.
(Photo courtesy of Mikkel William/E+/Getty Images.)
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challenging problem with controlling the Hubble is 
damping the jitter that vibrates the spacecraft each time 
it passes into or out of the Earth’s shadow. The worst vi-
bration has a period of about 20 seconds, or a frequency 
of 0.05 hertz. Design a feedback system that will reduce 
the vibrations of the Hubble space telescope.

DP1.8 A challenging application of control design is 
the use of nanorobots in medicine. Nanorobots will 
require onboard computing capability, and very tiny 
sensors and actuators. Fortunately, advances in bio-
molecular computing, bio-sensors, and actuators are 
promising to enable medical nanorobots to emerge 
within the next decade [99]. Many interesting med-
ical applications will benefit from nanorobotics. For 
 example, one use might be to use the robotic devices 
to precisely deliver anti-HIV drugs or to combat 
 cancer by targeted delivering of chemotherapy as 
 illustrated in Figure DP1.8.

At the present time, we cannot construct practi-
cal nanorobots, but we can consider the control design 
process that would enable the eventual development 
and installation of these tiny devices in the medical 
field. Consider the problem of designing a nanorobot 
to deliver a cancer drug to a specific location within the 
human body. The target site might be the location of a 
tumor, for example. Suggest one or more control goals 
that might guide the design process. Recommend the 
variables that should be controlled and provide a list of 
reasonable specifications for those variables.

transportation of a single person [97]. Describe a 
closed-loop feedback control system to assist the 
rider of the HTV in balancing and maneuvering the 
vehicle.

FIGURE DP1.8 An artist illustration of a 
nanorobot interacting with human blood cells.

FIGURE DP1.9 Personal transportation vehicle. 
(Photo courtesy of Sergiy Kuzmin/Shutterstock.)

DR

FIGURE DP1.10 Maintaining cruise speed at a 
prescribed distance.

DP1.10 In addition to maintaining automobile speed, 
many vehicles can also maintain a prescribed dis-
tance to an automobile in front, as illustrated in 
Figure  DP1.10. Design a feedback control sysytem 
that can maintain cruise speed at a prescribed distance 
to the vehicle in front. What happens if the leading 
vehicle slows down below the desired cruise speed? 

DP1.9 Consider the human transportation vehicle 
(HTV) depicted in Figure DP1.9. The self-balancing 
HTV is actively controlled to allow safe and easy 
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Actuator A device employed by the control system to 
alter or adjust the environment.

Analysis The process of examining a system in order to 
gain a better understanding, provide insight, and find 
directions for improvement.

Automation The control of a process by automatic means.

Closed-loop feedback control system A system that uses 
a measurement of the output and compares it with 
the desired output to control the process.

Complexity of design The intricate pattern of interwo-
ven parts and knowledge required.

Control system An interconnection of components 
forming a system configuration that will provide a 
desired response.

Control system engineering An engineering discipline 
that focuses on the modeling of a wide assortment 
of physical systems and using those models to design 
 controllers that will cause the closed-loop systems to 
possess desired performance characteristics.

Design The process of conceiving or inventing the forms, parts, 
and details of a system to achieve a specified purpose.

Design gap A gap between the complex physical system 
and the design model intrinsic to the progression 
from the initial concept to the final product.

Disturbance An unwanted input signal that affects the 
output signal.

Embedded control Feedback control system that em-
ploys on-board special-purpose digital computers as 
integral components of the feedback loop.

Engineering design The process of designing a technical 
system.

Feedback signal A measure of the output of the system 
used for feedback to control the system.

Flyball governor A mechanical device for controlling 
the speed of a steam engine.

Hybrid fuel automobile An automobile that uses a conven-
tional internal combustion engine in combination with 
an energy storage device to provide a propulsion system.

Internet of Things (IoT) Network of physical objects embed-
ded with electronics, software, sensors, and connectivity.

Measurement noise An unwanted input signal that 
 affects the measured output signal.

Mechatronics The synergistic integration of mechanical, 
electrical, and computer systems.

Multiloop feedback control system A feedback control 
system with more than one feedback control loop.

Multivariable control system A system with more than 
one input variable or more than one output variable.

Negative feedback An output signal fed back so that it 
subtracts from the input signal.

Open-loop control system A system that uses a device to 
control the process without using feedback. Thus the 
output has no effect upon the signal to the process.

Optimization The adjustment of the parameters to 
achieve the most favorable or advantageous design.

Plant See Process.

Positive feedback An output signal fed back so that it 
adds to the input signal.

Process The device, plant, or system under control.

Productivity The ratio of physical output to physical 
input of an industrial process.

Risk Uncertainties embodied in the unintended conse-
quences of a design.

Robot Programmable computers integrated with a 
manipulator. A reprogrammable, multifunctional 
manipulator used for a variety of tasks.

Sensor A device that provides a measurement of a de-
sired external signal.

Specifications Statements that explicitly state what the 
device or product is to be and to do. A set of pre-
scribed performance criteria.

Synthesis The process by which new physical 
 configurations are created. The combining of  separate 
elements or devices to form a coherent whole.

System An interconnection of elements and devices for 
a desired purpose.

Trade-off The result of making a judgment about how 
to compromise between conflicting criteria.

Ubiquitous computing A concept in which computing 
is made available everywhere at any time and can 
occur on any device.

Ubiquitous positioning A concept in which positioning sys-
tems identify the location and position of people, vehicles 
and objects in time at any location indoors and outdoors.

TERMS AND CONCEPTS

ANSWERS TO SKILLS CHECK

True or False: (1) True; (2) True; (3) False; (4)  False; 
(5) True

Multiple Choice: (6) d; (7) d; (8) b; (9) c; (10) a; (11) d; 
(12) a; (13) c; (14) d; (15) d

Word Match (in order, top to bottom): p, f, h, k, m, q, d, 
l, n, c, r, s, j, b, e, t, o, u, v, a, i, g
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PREVIEW

Mathematical models of physical systems are key elements in the design and 
 analysis of control systems. The dynamic behavior is generally described by ordi-
nary differential equations. We will consider a wide range of systems. Since most 
physical  systems are nonlinear, we will discuss linearization approximations which 
allow us to use Laplace transform methods. We will then proceed to obtain the 
input–output relationship in the form of transfer functions. The transfer functions 
can be organized into block diagrams or signal-flow graphs to graphically depict 
the interconnections. Block diagrams and signal-flow graphs are very convenient 
and natural tools for designing and analyzing complicated control systems. We 
conclude the chapter by developing transfer function models for the various com-
ponents of the Sequential Design Example: Disk Drive Read System.

DESIRED OUTCOMES

Upon completion of Chapter 2, students should be able to:

	❏ Recognize that differential equations can describe the dynamic behavior of physical 
systems.

	❏ Utilize linearization approximations through Taylor series.

	❏ Understand the application of Laplace transforms and their role in obtaining transfer 
functions.

	❏ Interpret block diagrams and signal-flow graphs and explain their role in analyzing 
control systems.

	❏ Describe the important role of modeling in the control system design process.
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80 Chapter 2  Mathematical Models of Systems

2.1 INTRODUCTION

To understand and control complex systems, one must obtain quantitative 
 mathematical models of these systems. It is necessary therefore to analyze the 
relationships between the system variables and to obtain a mathematical model. 
Because the systems under consideration are dynamic in nature, the descriptive 
equations are usually differential equations. Furthermore, if these equations can 
be linearized, then the Laplace transform can be used to simplify the method of 
solution. In practice, the complexity of systems and our ignorance of all the relevant 
factors necessitate the introduction of assumptions concerning the system opera-
tion. Therefore we will often find it useful to consider the physical system, express 
any necessary assumptions, and linearize the system. Then, by using the physical 
laws describing the linear equivalent system, we can obtain a set of time-invariant, 
ordinary linear differential equations. Finally, using mathematical tools, such as the 
Laplace transform, we obtain a solution describing the operation of the system. In 
summary, the approach to dynamic system modeling can be listed as follows:

1. Define the system and its components.

2. Formulate the mathematical model and fundamental necessary assumptions based on 
basic principles.

3. Obtain the differential equations representing the mathematical model.

4. Solve the equations for the desired output variables.

5. Examine the solutions and the assumptions.

6. If necessary, reanalyze or redesign the system.

2.2 DIFFERENTIAL EQUATIONS OF PHYSICAL SYSTEMS

The differential equations describing the dynamic performance of a physical  system 
are obtained by utilizing the physical laws of the process [1–4]. Consider the tor-
sional spring–mass system in Figure 2.1 with applied torque ( )T ta . Assume the 
 torsional spring element is massless. Suppose we want to measure the torque ( )T ts  
transmitted to the mass m. Since the spring is massless, the sum of the torques act-
ing on the spring itself must be zero, or

( ) ( )− =T t T ta s 0,

which implies that ( ) ( )=T t T ts a .  We see immediately that the external torque 
( )T ta  applied at the end of the spring is transmitted through the torsional spring. 

Because of this, we refer to the torque as a through-variable. In a similar manner, 
the angular rate difference associated with the torsional spring element is

ω ω ω( ) ( ) ( )= −t t ts a .
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Section 2.2  Differential Equations of Physical Systems 81

Thus, the angular rate difference is measured across the torsional spring element 
and is referred to as an across-variable. These same types of arguments can be 
made for most common physical variables (such as force, current, volume, flow 
rate, etc.). A more complete discussion on through- and across-variables can be 
found in [26, 27]. A summary of the through- and across-variables of dynamic 
systems is given in Table 2.1 [5]. Information concerning the International System 
(SI) of units associated with the various variables discussed in this section can be 
found online, as well in many handy references, such as the MCS website.† For 
example, variables that measure temperature are degrees Kelvin in SI units, and 
variables that measure length are meters. A summary of the describing equations 
for lumped, linear, dynamic elements is given in Table 2.2 [5]. The equations in 

Ta

m

(a) (b)

Ta

va

Ts

vs

FIGURE 2.1
(a) Torsional 
spring–mass 
system. (b) Spring 
element.

Table 2.1 Summary of Through- and Across-Variables for Physical Systems

System

Variable  
Through  
Element

Integrated 
Through- 
Variable

Variable  
Across  
Element

Integrated 
Across- 
Variable

Electrical Current, i Charge, q Voltage  
 difference, v21

Flux linkage, λ21

Mechanical  
 translational

Force, F Translational  
 momentum, P

Velocity  
 difference, v21

Displacement  
 difference, y21

Mechanical  
 rotational

Torque, T Angular  
 momentum, h

Angular velocity  
 difference, ω21

Angular  
 displacement  
 difference, θ21

Fluid Fluid  
 volumetric rate  
 of flow, Q

Volume, V Pressure  
 difference, P21

Pressure  
 momentum, γ21

Thermal Heat flow  
 rate, q

Heat energy,  
 H

Temperature  
 difference, t21

†The companion website is available at www.pearsonglobaleditions.com.
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82 Chapter 2  Mathematical Models of Systems

Table 2.2 are idealized descriptions and only approximate the actual conditions 
(for example, when a linear, lumped approximation is used for a distributed 
element).

Table 2.2 Summary of Governing Differential Equations for Ideal Elements

Type of  
Element

Physical  
Element

Governing 
Equation

Energy E or 
Power p Symbol

Inductive storage

Electrical inductance υ = L
di
dt

21 =E Li
1
2

  2
v2 v1

iL

Translational spring υ =
k

dF
dt

1
 21 =E

F
k

1
2

 
2

v1
Fv2

k

Rotational spring ω =
k

dT
dt

1
 21 =E

T
k

1
2

 
2 v1

Tv2

k
 

Fluid inertia =P I
dQ
dt

21 =E IQ
1
2

  2  
QI

P2 P1 

Capacitive storage

Electrical capacitance υ
=i C

d
dt

21 υ=E C
1
2

  21
2

v2 v1
i C

Translational mass υ
=F M

d
dt

2 υ=E M
1
2

  2
2

v1 =
constant

v2
MF

Rotational mass ω
=T J

d
dt

2 ω=E J
1
2

  2
2 v1 =

constant     
v2

T J
 

Fluid capacitance =Q C
dP

dt
f

21 =E C Pf
1
2

  21
2 Q Cf

P2

P1

Thermal capacitance =
t

q C
d
dt

t
2 tE Ct= 2

Ctq
t1 =

constant
t2

Energy dissipators

Electrical resistance υ=i
R
1

  21 υ=p
R
1

  21
2

v2 v1

R i

Translational damper υ=F b 21 υ=p b 21
2

v2
v1F

b

Rotational damper ω=T b 21 ω=p b 21
2

v2
v1T

b  

Fluid resistance =Q
R

P
f

1
  21 =p

R
P

f

1
  21

2  
Rf Q

P2 P1

Thermal resistance = tq
Rt

1
21 =p t

Rt

1
21  

Rt q
t2 t1

('''')++++*
('

'
'
)

+
+
+
+
*

('
'

'
)
+
+
+
+
*
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Section 2.2  Differential Equations of Physical Systems 83

Nomenclature

	❏ Through-variable: = = = =F T i Qforce,  torque,  current,  fluid  volumetric flow 
rate, =q heat  flow rate.

	❏ Across-variable: υ = translational  velocity, ω = angular  velocity, υ = voltage,  
tP = =pressure,  temperature.

	❏ Inductive storage: L k= / =inductance, 1 reciprocal  translational or rotational stiff-
ness, =I fluid  inertance.

	❏ Capacitive storage: = = =C M Jcapacitance,  mass,  moment  of inertia, =Cf fluid  
 capacitance, =Ct thermal  capacitance.

	❏ Energy dissipators: = =R bresistance,  viscous  friction, =Rf fluid  resistance, 
=Rt thermal  resistance.

The symbol v is used for both voltage in electrical circuits and velocity in 
 translational mechanical systems and is distinguished within the context of each 
differential equation. For mechanical systems, one uses Newton’s laws; for electri-
cal systems, Kirchhoff’s voltage laws. For example, the simple spring-mass-damper 
mechanical system shown in Figure 2.2(a) is described by Newton’s second law of 
motion. The free-body diagram of the mass M is shown in Figure 2.2(b). In this 
spring-mass-damper example, we model the wall friction as a viscous damper, that 
is, the friction force is linearly proportional to the velocity of the mass. In reality 
the friction force may behave in a more complicated fashion. For example, the wall 
friction may behave as a Coulomb damper. Coulomb friction, also known as dry 
friction, is a nonlinear function of the mass velocity and possesses a discontinuity 
around zero velocity. For a well-lubricated, sliding surface, the viscous friction is 
appropriate and will be used here and in subsequent spring-mass-damper examples. 
Summing the forces acting on M and utilizing Newton’s second law yields

 M
d y t

dt
b

dy t
dt

ky t r t ,
2

2
( ) ( ) ( ) ( )+ + =  (2.1)

where k is the spring constant of the ideal spring and b is the friction constant. 
Equation (2.1) is a second-order linear constant-coefficient (time-invariant) 
 differential equation.

by(t) ky(t)

(a) (b)

r(t)

y(t)

My(t)

kWall
friction, b

Mass
M

r(t)
Force

FIGURE 2.2
(a) Spring-mass-
damper system. 
(b) Free-body 
diagram.
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84 Chapter 2  Mathematical Models of Systems

Alternatively, one may describe the electrical RLC circuit of Figure 2.3 by utiliz-
ing Kirchhoff’s current law. Then we obtain the following integrodifferential equation:

 ∫
υ υ

υ
( ) ( )

( ) ( )+ + =
t

R
C

d t
dt L

t dt r t
t1

  .
0

 (2.2)

The solution of the differential equation describing the process may be obtained by 
classical methods such as the use of integrating factors and the method of undeter-
mined coefficients [1]. For example, when the mass is initially displaced a distance 
y y0 0( ) =  and released, the dynamic response of the system can be represented by 
an equation of the form

 y t K e tt  sin .1 1 11 β θ( ) ( )= +α−  (2.3)

A similar solution is obtained for the voltage of the RLC circuit when the circuit is 
subjected to a constant current r t I( ) .=  Then the voltage is

 t K e tt  cos .2 2 22υ β θ( ) ( )= +α−  (2.4)

A voltage curve typical of an RLC circuit is shown in Figure 2.4.
To reveal further the close similarity between the differential equations for the 

mechanical and electrical systems, we shall rewrite Equation (2.1) in terms of velocity:

t
dy t

dt
.υ( ) ( )

=

Then we have

 ∫
υ

υ υ
( )

( ) ( ) ( )+ + =M
d t

dt
b t k t dt r t

t

  .
0

 (2.5)

y(t)R L C
+

-

r (t)
Current
sourceFIGURE 2.3

RLC circuit.

Voltage
v(t)

0
Time

e-a2t

2p/b2

FIGURE 2.4
Typical voltage 
response for 
an RLC circuit.
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Section 2.3  Linear Approximations of Physical Systems 85

One immediately notes the equivalence of Equations (2.5) and (2.2) where  velocity 
υ(t) and voltage υ(t) are equivalent variables, usually called analogous  variables, and 
the systems are analogous systems. Therefore the solution for  velocity is similar to 
Equation (2.4), and the response for an underdamped system is shown in Figure 2.4. 
The concept of analogous systems is a very useful and powerful technique for system 
modeling. The voltage–velocity analogy, often called the force–current analogy, is a 
natural one because it relates the analogous through- and across- variables of the elec-
trical and mechanical systems. Another analogy that  relates the velocity and current 
variables is often used and is called the force– voltage analogy [21, 23].

Analogous systems with similar solutions exist for electrical, mechanical, ther-
mal, and fluid systems. The existence of analogous systems and solutions provides 
the analyst with the ability to extend the solution of one system to all analogous 
systems with the same describing differential equations. Therefore what one learns 
about the analysis and design of electrical systems is immediately extended to an 
understanding of fluid, thermal, and mechanical systems.

2.3 LINEAR APPROXIMATIONS OF PHYSICAL SYSTEMS

A great majority of physical systems are linear within some range of the variables. 
In general, systems ultimately become nonlinear as the variables are increased with-
out limit. For example, the spring-mass-damper system of Figure 2.2 is linear and 
described by Equation (2.1) as long as the mass is subjected to small deflections y(t). 
However, if y(t) were continually increased, eventually the spring would be overex-
tended and break. Therefore the question of linearity and the range of applicability 
must be considered for each system.

A system is defined as linear in terms of the system excitation and response. In 
the case of the electrical network, the excitation is the input current r(t) and the re-
sponse is the voltage υ(t). In general, a necessary condition for a linear system can be 
determined in terms of an excitation x t( ) and a response y t( ). When the system at rest 
is subjected to an excitation x t ,1( )  it provides a response y t1( ). Furthermore, when 
the system is subjected to an excitation x t ,2 ( )  it provides a corresponding response 
y t .2 ( )  For a linear system, it is necessary that the excitation x t x t1 2( ) ( )+   result in a 
response y t y t .1 2( ) ( )+  This is the principle of superposition.

Furthermore, the magnitude scale factor must be preserved in a linear system. 
Again, consider a system with an input x t( ) that results in an output y t( ). Then the 
response of a linear system to a constant multiple β  of an input x must be equal to 
the response to the input multiplied by the same constant so that the output is equal 
to y t .β ( )  This is the property of homogeneity.

A linear system satisfies the properties of superposition and homogeneity.

A system characterized by the relation y t x t2( ) ( )=  is not linear,  because 
the  superposition property is not satisfied. A system represented by the  relation 
y t mx t b( ) ( )= +  is not linear, because it does not satisfy the homogene-
ity property. However, this second system may be considered linear about an 
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86 Chapter 2  Mathematical Models of Systems

operating point x y,  0 0  for small changes x∆  and y∆ .  When x t x x t0( ) ( )= + ∆  and 
y t y y t ,0( ) ( )= + ∆  we have

y t mx t b( ) ( )= +

or
y y t mx m x t b( ) ( )+ ∆ = + ∆ + .0 0

Therefore, y t m x t( ) ( )∆ = ∆ , which satisfies the necessary conditions.
The linearity of many mechanical and electrical elements can be assumed over a 

reasonably large range of the variables [7]. This is not usually the case for thermal and 
fluid elements, which are more frequently nonlinear in character. Fortunately, how-
ever, one can often linearize nonlinear elements assuming small-signal conditions. 
This is the normal approach used to obtain a linear equivalent circuit for electronic 
circuits and transistors. Consider a general element with an excitation (through-) vari-
able x t( ) and a response (across-) variable y t( ). Several examples of dynamic system 
variables are given in Table 2.1. The relationship of the two variables is written as

 y t g x t( )( ) ( )= ,  (2.6)

where g(x(t)) indicates y t( ) is a function of x t( ). The normal operating point is 
 designated by x .0  Because the curve (function) is continuous over the range of 
 interest, a Taylor series expansion about the operating point may be utilized [7]. 
Then we have

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
= = +

−
+

−
+

( ) ( )= =1! 2!
. . . .0

0 2

2
0

2

0 0

y t g x t g x
dg
dx

x t x d g
dx

x t x

x t x x t x

(2.7)
The slope at the operating point,

=
=

m
dg
dx x t x

,
( ) 0

is a good approximation to the curve over a small range of x t x ,0( ) −  the deviation from 
the operating point. Then, as a reasonable approximation, Equation (2.7) becomes

 ( ) ( )( ) ( ) ( ) ( )= + − = + −
( )=

.0 0 0 0
0

y t g x
dg
dx

x t x y m x t x
x t x  (2.8)

Finally, Equation (2.8) can be rewritten as the linear equation

y t y m x t x( )( ) ( )− = −0 0

or
 y t m x t .( ) ( )∆ = ∆  (2.9)

Consider the case of a mass, M, sitting on a nonlinear spring, as shown in 
Figure 2.5(a). The normal operating point is the equilibrium position that occurs when the 
spring force balances the gravitational force Mg, where g is the gravitational  constant. 
Thus, we obtain f Mg,0 =  as shown. For the nonlinear spring with f t y t  ,2( ) ( )=  the 
equilibrium position is y Mg .0

1/2( )=  The linear model for small deviation is

f t m y t ,( ) ( )∆ = ∆
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Section 2.3  Linear Approximations of Physical Systems 87

where

=
( )=

m
df
dy y t y

,
0

as shown in Figure 2.5(b). Thus, m y2 .0=  A linear approximation is as accurate as 
the assumption of small signals is applicable to the specific problem.

If the dependent variable y t( ) depends upon several excitation variables, 
x t x t x tn,   ,   ,   ,1 2( ) ( ) ( )…  then the functional relationship is written as

 ( )( ) ( ) ( ) ( )= …y t g x t x t x tn,   ,   ,   .1 2  (2.10)

The Taylor series expansion about the operating point x x xn,   ,   ,  1 20 0 0…  is useful for 
a linear approximation to the nonlinear function. When the higher-order terms are 
neglected, the linear approximation is written as

( ) ( ) ( )( ) ( ) ( )= … +
∂
∂

− +
∂
∂

−
( ) ( )= =

,   ,    ,  1 2
1

1 1
2

2 20 0 0
0

0

0

0y t g x x x
g
x

x t x
g
x

x t xn
x t x x t x 

(2.11)( )( )+ +
∂
∂

−
( )=

g
x

x t x
n x t x

n n ,
0

0�

where x0 is the operating point. Example 2.1 will clearly illustrate the utility of this 
method.

EXAMPLE 2.1 Pendulum oscillator model

Consider the pendulum oscillator shown in Figure 2.6(a). The torque on the mass is

 T t MgL t sin  ,θ( ) ( )=  (2.12)

where g is the gravity constant. The equilibrium condition for the mass is 0°.0θ =  
The nonlinear relation between T t( ) and tθ( ) is shown graphically in Figure 2.6(b).  
The first derivative evaluated at equilibrium provides the linear approximation, 
which is

θ
θ

θ θ( )( ) ( )− ≅
∂

∂
−

θ θ( )=
T t T MgL t

t

 sin 
,0 0

0

Mass
M

(a) (b)

Sp
ri

ng
 f

or
ce

Equilibrium
(operating point)

y0 = (Mg)1/2
y(t)

Nonlinear
spring

y(t)

f (t)

f0 = Mg

df
dy y = y0

m = k   

FIGURE 2.5
(a) A mass sitting on 
a nonlinear spring. 
(b) The spring force 
versus y (t).
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88 Chapter 2  Mathematical Models of Systems

where T 0.0 =  Then, we have

 T t MgL t .θ( ) ( )=  (2.13)

This approximation is reasonably accurate for π θ π− / ≤ ≤ /4 4.  For example, the 
response of the linear model for the swing through +−30° is within 5% of the actual 
nonlinear pendulum response. ■

2.4 THE LAPLACE TRANSFORM

The ability to obtain linear time-invariant approximations of physical systems  allows 
the analyst to consider the use of the Laplace transformation. The Laplace trans-
form method substitutes relatively easily solved algebraic equations for the more 
difficult differential equations [1, 3]. The time-response solution is obtained by the 
following operations:

1. Obtain the linearized differential equations.

2. Obtain the Laplace transformation of the differential equations.

3. Solve the resulting algebraic equation for the transform of the variable of interest.

The Laplace transform exists for linear differential equations for which the trans-
formation integral converges. Therefore, for f t( ) to be transformable, it is sufficient that

f t e dtt∫ ( ) < ∞σ
∞

−

−

  ,
0

1

for some real, positive 1σ  [1]. The 0− indicates that the integral should include any dis-
continuity, such as a delta function at t 0.=  If the magnitude of f(t) is f t Me t( ) < α  
for all positive t, the integral will converge for .1σ α>  The region of convergence is 
therefore given by ,1σ α∞ > >  and 1σ  is known as the abscissa of absolute conver-
gence. Signals that are physically realizable always have a Laplace transform. The 
Laplace transformation for a function of time, f (t), is

 lF s f t e dt f tst∫ { }( ) ( ) ( )= =
∞

−

−

    .
0

 (2.14)

The inverse Laplace transform is written as

 f t
j

F s e ds
j

j
st∫π

( ) ( )=
σ

σ

− ∞

+ ∞
+1

2
    .  (2.15)

(a) (b)

p
2

p
2

- p

p

T

-

Length L

Mass M

u(t)

(t)

u(t)

(a)

Length L

Mass M

u(t)

FIGURE 2.6  
Pendulum oscillator.
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Section 2.4  The Laplace Transform 89

The transformation integrals have been employed to derive tables of Laplace 
 transforms that are used for the great majority of problems. A table of important 
Laplace transform pairs is given in Table 2.3. A more complete list of Laplace trans-
form pairs can be found in many references, including at the MCS website.

Table 2.3 Important Laplace Transform Pairs

 f t( )  F s( )
Step function, ( )u t

s
1

−e at

+s a
1

ωtsin  ω
ω+s2 2

ωtcos 

ω+
s

s2 2

t n

+
n

sn
!
1

 

( )
( )

=( )f t
d f t

dt
k

k

k
s F s s f s fk k k( ) ( )( ) − − ′− − − −0 01 2

 ( )−…− ( )− −f k 01

∫ ( )
−∞

f t dt
t

    ∫
( )

( )+
−∞

F s

s s
f t dt

1
     

0

Impulse function δ( )t 1

ω−e tat  sin 

s a

ω

ω( )+ +2 2

ω−e tat  cos  s a

s a ω( )

+

+ +2 2

ω
α ω ω φ( ) ( )− +





+−a e tat1
   sin ,2 2

1/2 α

ω( )
+

+ +

s

s a 2 2

φ
ω

α
=

−
−

a
tan 1

ω

ζ
ω ζ ζ

−
− <ζω−e tn t

nn

1
   sin  1 ,   1

2
2 ω

ζω ω+ +s s
n

n n2

2

2 2

ω ω ω
ω φ( )

+
+

+
−−

a a
e tat1 1

   sin ,
2 2 2 2 ω( )+ +





s s a

1
2 2

φ
ω

=
−

−
a

tan 1

ζ
ω ζ φ( )−

−
− +ζω−e tt

nn1
1

1
   sin 1 ,

2
2 ω

ζω ω( )+ +s s s
n

n n2

2

2 2

φ ζ ζ= <−cos ,   11

α
ω ω

α ω
ω

ω φ
( )

( )
+

+
− +

+

















+−
a

a

a
e tat1

   sin .
2 2

2 2

2 2

1/2 α

ω( )

+

+ +





s

s s a 2 2

φ
ω

α
ω

=
−

−
−

− −
a a

tan tan1 1
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90 Chapter 2  Mathematical Models of Systems

Alternatively, the Laplace variable s can be considered to be the differential 
operator so that

 s
d
dt

.≡  (2.16)

Then we also have the integral operator

 ∫≡
−s
dt

t1
  .

0

 (2.17)

The inverse Laplace transformation is usually obtained by using the Heaviside 
partial fraction expansion. This approach is particularly useful for systems analy-
sis and design because the effect of each characteristic root or eigenvalue can be 
clearly observed.

To illustrate the usefulness of the Laplace transformation and the steps  involved 
in the system analysis, reconsider the spring-mass-damper system described by 
Equation (2.1), which is

 M
d y t

dt
b

dy t
dt

ky t r t .
2

2
( ) ( ) ( ) ( )+ + =  (2.18)

We wish to obtain the response, y t( ), as a function of time. The Laplace transform 
of Equation (2.18) is

 ) )( ( ) ( ) ( )( ) ( ( ) ( ) ( )− − + − + =− − −M s Y s sy
dy
dt

b sY s y kY s R s0   0 0 .2  (2.19)

When

( )( ) = = =−

= −
r t y y

dy
dt t

0, and 0 , and 0,0
0

we have

 Ms Y s Msy bsY s by kY s 0.2
0 0( ) ( ) ( )− + − + =  (2.20)

Solving for Y s( ), we obtain

 Y s
Ms b y

Ms bs k
p s
q s

.0
2( ) ( ) ( )

( )
=

+
+ +

=  (2.21)

The denominator polynomial q s( ), when set equal to zero, is called the characteristic 
equation because the roots of this equation determine the character of the time 
 response. The roots of this characteristic equation are also called the poles of the 
 system. The roots of the numerator polynomial p(s) are called the zeros of the sys-
tem; for example, = −s b M/  is a zero of Equation (2.21). Poles and zeros are critical 
frequencies. At the poles, the function Y s( ) becomes infinite, whereas at the zeros, 
the function becomes zero. The complex frequency s-plane plot of the poles and zeros 
graphically portrays the character of the natural transient response of the system.

For a specific case, consider the system when =k M/ 2  and =b M/ 3.  Then 
Equation (2.21) becomes

 Y s
s y

s s
=

+
+ +

( )
( 3)

( 1)( 2)
.0  (2.22)
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-3 -2 -1 0
s

jv

= pole
= zero

FIGURE 2.7
An s-plane pole and 
zero plot.

- 3 - 2 0
s

s1 = -1

(s1 + 2)

s1 + 3

jv

FIGURE 2.8
Graphical 
 evaluation of the 
residues.

The poles and zeros of Y s( ) are shown on the s-plane in Figure 2.7.
Expanding Equation (2.22) in a partial fraction expansion, we obtain

 Y s
k

s
k

s
( )

1 2
,1 2=

+
+

+
 (2.23)

where k1 and k2 are the coefficients of the expansion. The coefficients ki  are called 
residues and are evaluated by multiplying through by the denominator factor of 
Equation (2.22) corresponding to ki  and setting s equal to the root. Evaluating k1 
when y 1,0 =  we have

 
( ) ( )

( )
=

−

=
k

s s p s
q s s s

1
1

1

 (2.24)

( )( )
( )( )

=
+ +
+ +

=
=−

1 3
1 2

2
1 1

s s
s s s

and k 1.2 = −  Alternatively, the residues of Y s( ) at the respective poles may be 
evaluated graphically on the s-plane plot, since Equation (2.24) may be written as

 =
+
+ = = −

k
s
s s s

3
2

1
11

 (2.25)

=
+
+

=
=−

3
2

2.1

1 11

s
s s

The graphical representation of Equation (2.25) is shown in Figure 2.8. The graphi-
cal method of evaluating the residues is particularly valuable when the order of the 
characteristic equation is high and several poles are complex conjugate pairs.
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92 Chapter 2  Mathematical Models of Systems

The inverse Laplace transform of Equation (2.22) is then

 { } { }=
+

+
−
+

− −l ly t
s s

( )
2

1
1
2

.1 1  (2.26)

Using Table 2.3, we find that

 y t e et t( ) = −− −2 1 .2  (2.27)

Finally, it is usually desired to determine the steady-state or final value of the  
response of y t( ). For example, the final or steady-state rest position of the spring-
mass-damper system may be calculated. The final value theorem states that

 y t sY s
t s
lim lim ,

0
( ) ( )=

→∞ →
 (2.28)

where a simple pole of Y s( )  at the origin is permitted, but poles on the imagi-
nary axis and in the right half-plane and repeated poles at the origin are excluded. 
Therefore, for the specific case of the spring-mass-damper, we find that

 y t sY s
t s

( ) ( )= =
→∞ →
lim lim 0.

0
 (2.29)

Hence the final position for the mass is the normal equilibrium position y 0.=
Reconsider the spring-mass-damper system. The equation for Y s( ) may be 

 written as

 Y s
s b M y

s b M s k M
s y

s s
n

n n

ζω
ζω ω

( )
( )

( )
( )

=
+ /

+ / + /
=

+
+ +

2
2

,0
2

0
2 2  (2.30)

where ζ  is the dimensionless damping ratio, and nω  is the natural frequency of the 
system. The roots of the characteristic equation are

 ζω ω ζ= − +− −s s n n,   1,1 2
2  (2.31)

where, in this case, k Mnω = /  and ζ ( )= b kM/ 2 .  When ζ > 1, the roots are 
real and the system is overdamped; when 1,ζ <  the roots are complex and the 
 system is underdamped. When ζ = 1,  the roots are repeated and real, and the con-
dition is called critical damping.

When ζ < 1, the response is underdamped, and

 ζω ω ζ= − +− −s jn n 1 .1,2
2  (2.32)

The s-plane plot of the poles and zeros of Y s( ) is shown in Figure 2.9, where 
θ ζ= −cos   .1  As ζ  varies with nω  constant, the complex conjugate roots follow a 

jv

0

s1

s2

u = cos-1z

-2zvn -zvn

- jvn  1 - z2

jvn   1 - z2

vn

s

FIGURE 2.9
An s-plane plot of the 
poles and zeros of  

( )Y s .
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Section 2.4  The Laplace Transform 93

circular locus, as shown in Figure 2.10. The transient response is increasingly oscilla-
tory as the roots approach the imaginary axis when ζ  approaches zero.

The inverse Laplace transform can be evaluated using the graphical residue 
evaluation. The partial fraction expansion of Equation (2.30) is

 Y s
k

s s
k

s s
( ) =

−
+

−
.1

1

2

2
 (2.33)

Since s2  is the complex conjugate of s ,1  the residue k2 is the complex conjugate of 
k1 so that we obtain

Y s
k

s s
k

s s
( ) =

−
+

−

ˆ

ˆ
1

1

1

1

where the hat indicates the conjugate relation. The residue k1 is evaluated from 
Figure 2.11 as

 
2
ˆ

,1
0 1

1 1

0 1

2
2

ζω( )
=

+
−

=
θ

π/
k

y s

s s
y M e

M e
n

j

j
 (2.34)

where M1 is the magnitude of s nζω+ 2 ,1  and M2  is the magnitude of s s− ˆ .1 1  A 
review of complex numbers can be found in many online references, as well as on 
the MCS website. In this case, we obtain

 
( )

2 1 2 1
,1

0

2 2

0

2 ( 2 )

ω

ω ζ ζ
=

−
=

−

θ

π π θ−/ /
k

y e

e

y

e

n
j

n
j j

 (2.35)

jvn

z increasing

z 7 1z 7 1

z 6 1

z = 1

z = 0 jv

0
s

vn

=
FIGURE 2.10
The locus of roots 
as ζ  varies with nω  
constant.

jv

0
s

-2zvn

s1

s1 + 2zvn

S2 = S1

S1 - S2

jvn   1 - z2

!FIGURE 2.11
Evaluation of the residue k .1
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94 Chapter 2  Mathematical Models of Systems

where θ ζ= −cos   .1  Therefore,

 
ζ

=
−

π θ( )−k
y

e j

2 1
  .2

0

2
/2  (2.36)

Finally, letting β ζ= −1 ,2  we find that

y t k e k es t s t( ) = +1 21 2

ζ
=

−
+θ π ζω ω β π θ ζω ω β( ) ( )− − − − −y

e e e e e ej t j t j t j tn n n n

2 1
 ( )0

2
/2 /2

 
ζ

ω ζ θ( )=
−

− +ζω−y
e tt

nn

1
   sin 1 .0

2
2  (2.37)

The solution, Equation (2.37), can also be obtained using item 11 of Table 2.3. The 
transient responses of the overdamped ( 1)ζ >  and underdamped ( 1)ζ <  cases 
are shown in Figure 2.12. The transient response that occurs when 1ζ <  exhibits 
an oscillation in which the amplitude decreases with time, and it is called a damped 
oscillation.

The relationship between the s-plane location of the poles and zeros and the 
form of the transient response can be interpreted from the s-plane pole–zero plots. 
For example, as seen in Equation (2.37), adjusting the value of nζω  varies the e tnζω−  
envelope, hence the response y t( ) shown in Figure 2.12. The larger the value of n,ζω  
the faster the damping of the response, y t( ). In Figure 2.9, we see that the location 
of the complex pole s1 is given by s jn n 1 .1

2ζω ω ζ= − + −  So, making nζω  larger 
moves the pole further to the left in the s-plane. Thus, the connection between the 
location of the pole in the s-plane and the step response is apparent—moving the 
pole s1 farther in the left half-plane leads to a faster damping of the transient step 
response. Of course, most control systems will have more than one complex pair of 
poles, so the transient response will be the result of the contributions of all the poles. 
In fact, the magnitude of the response of each pole, represented by the residue, can 
be visualized by examining the graphical residues on the s-plane. We will discuss the 

y(t)

e-Zvnt envelope

y0 Overdamped case

Underdamped case

Time
0

FIGURE 2.12
Response of the 
spring-mass-
damper system.
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Section 2.5  The Transfer Function of Linear Systems 95

connection between the pole and zero locations and the transient and steady-state 
response more in subsequent chapters. We will find that the Laplace transformation 
and the s-plane approach are very useful techniques for system analysis and design 
where emphasis is placed on the transient and steady-state performance. In fact, 
because the study of control systems is concerned primarily with the transient and 
steady-state performance of dynamic systems, we have real cause to appreciate the 
value of the Laplace transform techniques.

2.5 THE TRANSFER FUNCTION OF LINEAR SYSTEMS

The transfer function of a linear system is defined as the ratio of the Laplace transform 
of the output variable to the Laplace transform of the input variable, with all initial 
conditions assumed to be zero. The transfer function of a system (or element) rep-
resents the relationship describing the dynamics of the system under consideration.

A transfer function may be defined only for a linear, stationary (constant 
 parameter) system. A nonstationary system, often called a time-varying system, 
has one or more time-varying parameters, and the Laplace transformation may not 
be utilized. Furthermore, a transfer function is an input–output description of the 
 behavior of a system. Thus, the transfer function description does not include any 
information concerning the internal structure of the system and its behavior.

The transfer function of the spring-mass-damper system is obtained from the 
original Equation (2.19), rewritten with zero initial conditions as follows:

 Ms Y s bsY s kY s R s .2 ( ) ( ) ( ) ( )+ + =  (2.38)

Then the transfer function is the ratio of the output to the input, or

 ( ) ( )
( )

= =
+ +

G s
Y s
R s Ms bs k

1
.

2
 (2.39)

The transfer function of the RC network shown in Figure 2.13 is obtained by 
writing the Kirchhoff voltage equation, yielding

 V s R
Cs

I s
1

,1( ) ( )= +






  (2.40)

expressed in terms of transform variables. We shall frequently refer to variables and 
their transforms interchangeably. The transform variable will be distinguishable by 
the use of an uppercase letter or the argument (s).

The output voltage is

 V s I s
Cs
1

.2 ( ) ( )=






  (2.41)

C

R

i(t)
+

-

+

-

v1(t) v2(t)
FIGURE 2.13
An RC network.
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96 Chapter 2  Mathematical Models of Systems

Therefore, solving Equation (2.40) for I s( ) and substituting in Equation (2.41), we 
have

V s
Cs V s

R Cs
( )

( )
( )

=
/

+ /
1

1
.2

1

Then the transfer function is obtained as the ratio V s V s( ) ( )/ ,2 1

 G s
V s
V s RCs s sτ

τ
τ

( )
( )
( )

= =
+

=
+

=
/

+ /
1

1
1

1
1

1
,2

1
 (2.42)

where RC,τ =  the time constant of the network. The single pole of G s( ) is 
s τ= − /1 .  Equation (2.42) could be immediately obtained if one observes that the 
circuit is a voltage divider, where

 
V s
V s

Z s
Z s Z s

,2

1

2

1 2

( )
( )

( )
( ) ( )

=
+

 (2.43)

and ,   1 .1 2( ) = = /Z s R Z Cs
A multiloop electrical circuit or an analogous multiple-mass mechanical 

 system results in a set of simultaneous equations in the Laplace variable. It is usu-
ally more convenient to solve the simultaneous equations by using matrices and 
determinants [1, 3, 15]. An introduction to matrices and determinants can be found 
in many references online, as well as on the MCS website.

Let us consider the long-term behavior of a system and determine the response 
to certain inputs that remain after the transients fade away. Consider the dynamic 
system represented by the differential equation

 

d y t
dt

q
d y t

dt
q y t

p
d r t

dt
p

d r t
dt

p r t

n

n n

n

n

n

n

n n

n

n

( ) ( )
( )

( ) ( )
( )

+ + +

= + + +

−

−

−

−

−

− −

−

−

. . .  

. . .   ,

1

1

1 0

1

1

1 2

2

2 0  (2.44)

where y t( ) is the response, and r t( ) is the input or forcing function. If the initial con-
ditions are all zero, then the transfer function is the coefficient of R s( ) in

 ( ) ( )
( )
( )

  ( )
. . .  

. . .  
  .1

1
2

2
0

1
1

0
( ) ( )= = =

+ + +
+ + +

−
−

−
−

−
−Y s G s R s

p s
q s

R s
p s p s p

s q s q
R sn

n
n

n

n
n

n
 (2.45)

The output response consists of a natural response (determined by the initial 
conditions) plus a forced response determined by the input. We now have

Y s
m s
q s

p s
q s

R s  ,( ) ( )
( )

( )
( )

( )= +

where q s 0( ) =  is the characteristic equation. If the input has the rational form

R s
n s
d s

,( ) ( )
( )

=

then

 ( )
( )
( )

( )
( )

( )
( )

( ) ( ) ( )= + = + +Y s
m s
q s

p s
q s

n s
d s

Y s Y s Y s  ,1 2 3  (2.46)
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Section 2.5  The Transfer Function of Linear Systems 97

where Y s1( ) is the partial fraction expansion of the natural response, Y s2 ( ) is the  
 partial fraction expansion of the terms involving factors of q s( ), and Y s3( ) is  
the partial fraction expansion of terms involving factors of d s( ).

Taking the inverse Laplace transform yields

y t y t y t y t .1 2 3( ) ( ) ( ) ( )= + +

The transient response consists of y t y t ,1 2( ) ( )+  and the steady-state response is 
y t .3( )

EXAMPLE 2.2 Solution of a differential equation

Consider a system represented by the differential equation

d y t
dt

dy t
dt

y t r t4 3 2 ,
2

2
( ) ( ) ( ) ( )+ + =

where the initial conditions are ( ) ( )= =y
dy
dt

0 1,   0 0,  and r t t1,   0.( ) = ≥
The Laplace transform yields

[ ]( ) ( ) ( ) ( ) ( ) ( )−



 + − + =s Y s sy sY s y Y s R s0 4 0 3 2 .2

Since R s s= /( ) 1  and y(0) 1,=  we obtain

( )
( ) =

+
+ +

+
+ +

Y s
s

s s s s s

4
4 3

2

4 3
,

2 2

where q s s s s s4 3 1 3 02( ) ( )( )= + + = + + =  is the characteristic equation, and 
d s s.( ) =  Then the partial fraction expansion yields

Y s
s s s s s

Y s Y s Y s( ) ( ) ( ) ( )=
/
+

+
− /

+











+

−
+

+
/
+












+

/
= + +

3 2
1

1 2
3

1
1

1 3
3

2 3
.1 2 3

Hence, the response is

y t e e e et t t t3
2

 
1
2

  1
1
3

 
2
3

,3 3( ) = −











+ − +












+− − − −

and the steady-state response is

y t
t
lim  

2
3

.( ) =
→∞

EXAMPLE 2.3 Transfer function of an op-amp circuit

The operational amplifier (op-amp) belongs to an important class of analog inte-
grated circuits commonly used as building blocks in the implementation of control 
systems and in many other important applications. Op-amps are active elements 
(that is, they have external power sources) with a high gain when operating in their 
linear regions. A model of an ideal op-amp is shown in Figure 2.14.
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98 Chapter 2  Mathematical Models of Systems

The operating conditions for the ideal op-amp are (1) i 01 =  and i 0,2 =  thus 
implying that the input impedance is infinite, and (2) 02 1υ υ− =  (or 1 2υ υ= ). The 
input–output relationship for an ideal op-amp is

K K( ) ( ),0 2 1 1 2υ υ υ υ υ= − = − −

where the gain K approaches infinity. In our analysis, we will assume that the linear 
op-amps are operating with high gain and under idealized conditions.

Consider the inverting amplifier shown in Figure 2.15. Under ideal conditions, 
we have i 0,1 =  so that writing the node equation at 1υ  yields

R R
0.1 in

1

1 0

2

υ υ υ υ−
+

−
=

Since 2 1υ υ=  (under ideal conditions) and 02υ =  (see Figure 2.15 and compare it 
with Figure 2.14), it follows that 0.1υ =  Therefore,

R R
    0,in

1

0

2

υ υ
− − =

and rearranging terms, we obtain

R
R

.0

in

2

1

υ
υ

= −

We see that when R R ,2 1=  the ideal op-amp circuit inverts the sign of the input, 
that is, 0 inυ υ= −  when R R .2 1=  ■

EXAMPLE 2.4 Transfer function of a system

Consider the mechanical system shown in Figure 2.16 and its electrical circuit ana-
log shown in Figure 2.17. The electrical circuit analog is a force–current analog as 
outlined in Table 2.1. The velocities t1υ ( ) and t2υ ( ) of the mechanical system are 

v1
vo

v2

+
+
- --

+

-
+

i1 = 0

i2 = 0

i0
Noninverting

input node

Inverting
input node Output node

FIGURE 2.14
The ideal op-amp.

vin

v1

v2
vo

R2

R1

+
+

--

+

-
i1 = 0

FIGURE 2.15
An Inverting 
 amplifier  operating 
with ideal 
conditions.
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Section 2.5  The Transfer Function of Linear Systems 99

directly analogous to the node voltages t1υ ( ) and t2υ ( ) of the electrical circuit. The 
simultaneous equations, assuming that the initial conditions are zero, are

 M sV s b b V s b V s R s ,1 1 1 2 1 1 2( ) ( ) ( ) ( ) ( )+ + − =  (2.47)

and

 ( )( ) ( ) ( )
( )

+ − + =M sV s b V s V s k
V s

s
0.2 2 1 2 1

2  (2.48)

These equations are obtained using the force equations for the mechanical system 
of Figure 2.16. Rearranging Equations (2.47) and (2.48), we obtain

( )( ) ( ) ( ) ( ) ( )+ + + − =M s b b V s b V s R s ,1 1 2 1 1 2

b V s M s b
k
s

V s  0,1 1 2 1 2( ) ( ) ( )− + + +






 =

or, in matrix form,

 
0

.
1 1 2 1

1 2 1

1

2

( )

( )
( )

+ + −

− + +





































=
















M s b b b

b M s b
k
s

V s

V s

R s
 (2.49)

Friction b2

Friction b1

k

Velocity
v2(t)

Velocity
v1(t)

Force r(t)

M2

M1
FIGURE 2.16
Two-mass 
 mechanical system.

Current
r(t)

v1(t) v2(t)R1

C1 R2 C2 L
FIGURE 2.17
Two-node elec-
tric circuit analog 

= =
= =

=

C M C M
L k R b
R b

,   ,
1/ ,   1/ ,

1/ .

1 1 2 2
1 1

2 2
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100 Chapter 2  Mathematical Models of Systems

Assuming that the velocity of M1 is the output variable, we solve for V s1( ) by  
matrix inversion or Cramer’s rule to obtain [1, 3]

 V s
M s b k s R s

M s b b M s b k s b
.1

2 1

1 1 2 2 1 1
2

( )
( )

( )
( )

( )
=

+ + /

+ + + + / −
 (2.50)

Then the transfer function of the mechanical (or electrical) system is

G s
V s
R s

M s b k s

M s b b M s b k s b
1 2 1

1 1 2 2 1 1
2

( )
( )

( )
( )
( ) ( )

= =
+ + /

+ + + + / −

 
M s b s k

M s b b M s b s k b s
.

2
2

1

1 1 2 2
2

1 1
2

( )
( )( )

=
+ +

+ + + + −
 (2.51)

If the transfer function in terms of the position x t1( ) is desired, then we have

 
X s
R s

V s
sR s

G s
s

.1 1( )
( )

( )
( )

( )
= =  (2.52) ■

As an example, let us obtain the transfer function of an important electrical 
control component, the DC motor [8]. A DC motor is used to move loads and is 
called an actuator.

An actuator is a device that provides the motive power to the process.

EXAMPLE 2.5 Transfer function of the DC motor

The DC motor is a power actuator device that delivers energy to a load, as shown 
in Figure 2.18(a); a sketch of a DC motor is shown in Figure 2.18(b). The DC motor 
converts direct current (DC) electrical energy into rotational mechanical energy. 
A major fraction of the torque generated in the rotor (armature) of the motor is 
available to drive an external load. Because of features such as high torque, speed 
controllability over a wide range, portability, well-behaved speed–torque char-
acteristics, and adaptability to various types of control methods, DC motors are 
widely used in numerous control applications, including robotic manipulators, tape 
transport mechanisms, disk drives, machine tools, and servovalve actuators.

The transfer function of the DC motor will be developed for a linear approx-
imation to an actual motor, and second-order effects, such as hysteresis and the 
voltage drop across the brushes, will be neglected. The input voltage may be applied 
to the field or armature terminals. The air-gap flux tφ( ) of the motor is proportional 
to the field current, provided the field is unsaturated, so that

 t K i tf f .φ( ) ( )=  (2.53)

The torque developed by the motor is assumed to be related linearly to tφ( ) and the 
armature current as follows:

 T t K t i t K K i t i tm a f f a .1 1φ( ) ( ) ( ) ( ) ( )= =  (2.54)
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Section 2.5  The Transfer Function of Linear Systems 101

It is clear from Equation (2.54) that, to have a linear system, one current must 
be maintained constant while the other current becomes the input current. First, 
we shall consider the field current controlled motor, which provides a substantial 
power amplification. Then we have, in Laplace transform notation,

 T s K K I I s K I sm f a f m f ,1( )( ) ( ) ( )= =  (2.55)

where i Ia a=  is a constant armature current, and Km  is defined as the motor con-
stant. The field current is related to the field voltage as

 V s R L s I sf f f f .( )( ) ( )= +  (2.56)

The motor torque T sm ( ) is equal to the torque delivered to the load. This relation 
may be expressed as

 T s T s T sm L d ,( ) ( ) ( )= +  (2.57)

where T sL ( ) is the load torque and T sd ( ) is the disturbance torque, which is often 
negligible. However, the disturbance torque often must be considered in systems 
subjected to external forces such as antenna wind-gust forces. The load torque for 
rotating inertia, as shown in Figure 2.18, is written as

 T s Js s bs sL .2θ θ( ) ( ) ( )= +  (2.58)

Rearranging Equations (2.55)–(2.57), we have

 T s T s T sL m d ,( ) ( ) ( )= −  (2.59)

                                                          T s K I sm m f ,( ) ( )=  (2.60)

   I s
V s

R L s
f

f

f f
.( )

( )
=

+
 (2.61)

(a) (b)

+

Armature
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Vf (t)
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Lf

ia(t)

if (t)
Field

v(t), u(t)
Inertia = J
Friction = b

Load

-

ia

Stator
winding

Rotor windings

Brush

Bearings

Shaft

Brush

Commutator

Inertia
load

N

S

Angle
u(t)

FIGURE 2.18
A DC motor 
(a) electrical 
 diagram and 
(b) sketch.
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102 Chapter 2  Mathematical Models of Systems

Therefore, the transfer function of the motor–load combination, with T sd 0,( ) =  is

 
s

V s
K

s Js b L s R

K JL

s s b J s R Lf

m

f f

m f

f f
.

θ
( )

( )
( )( )

( )
( ) ( )

=
+ +

=
/

+ / + /
 (2.62)

The block diagram model of the field-controlled DC motor is shown in Figure 
2.19. Alternatively, the transfer function may be written in terms of the time con-
stants of the motor as

 
s

V s
G s

K bR

s s sf

m f

f L1 1
,

θ
τ τ

( )
( )

( )
( )

( )
( )

= =
/

+ +
 (2.63)

where τ = /L Rf f f  and .τ = /J bL  Typically, one finds that L fτ τ>  and often the 
field time constant may be neglected.

The armature-controlled DC motor uses the armature current ia  as the control 
variable. The stator field can be established by a field coil and current or a perma-
nent magnet. When a constant field current is established in a field coil, the motor 
torque is

 T s K K I I s K I sm f f a m a .1( )( ) ( ) ( )= =  (2.64)

When a permanent magnet is used, we have

T s K I sm m a ,( ) ( )=

where Km  is a function of the permeability of the magnetic material.
The armature current is related to the input voltage applied to the armature by

 V s R L s I s V sa a a a b ,( ) ( ) ( ) ( )= + +  (2.65)

where V sb( ) is the back electromotive-force voltage proportional to the motor 
speed. Therefore, we have

 V s K sb b ,ω( ) ( )=  (2.66)

where s s sω θ( ) ( )=  is the transform of the angular speed and the armature current is

 I s
V s K s

R L s
a

a b

a a
.

ω
( ) ( ) ( )

=
−
+

 (2.67)

Equations (2.58) and (2.59) represent the load torque, so that

 T s Js s bs s T s T sL m d .2θ θ( ) ( ) ( ) ( ) ( )= + = −  (2.68)

-

+

Tm(s)If (s)
Vf (s)

s
11

R f + L f s

Disturbance
Td (s)

TL(s)
Speed
v(s) Position

u(s)
Output

Field

1
Js + b

Load

Km

FIGURE 2.19
Block diagram 
model of field- 
controlled DC 
motor.
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Section 2.5  The Transfer Function of Linear Systems 103

The relations for the armature-controlled DC motor are shown schematically in 
Figure 2.20. Using Equations (2.64), (2.67), and (2.68) or the block diagram, and 
letting T sd 0,( ) =  we solve to obtain the transfer function

G s
s

V s
K

s R L s Js b K Ka

m

a a b m[ ]
θ

( ) ( )
( ) ( )( )

= =
+ + +

 
K

s s s
m

n n2
.

2 2ζω ω( )
=

+ +
 (2.69)

However, for many DC motors, the time constant of the armature, τ = L Ra a a/ ,  is 
negligible; therefore,

 G s
s

V s
K

s R Js b K K
K R b K K

s sa

m

a b m

m a b mθ
τ

( )
( )
( ) ( )

( )
( )

= =
+ +

=
/ +

+[ ] 1
,

1
 (2.70)

where the equivalent time constant .1τ ( )= / +R J R b K Ka a b m
Note that Km  is equal to Kb. This equality may be shown by considering the 

steady-state motor operation and the power balance when the rotor resistance is 
neglected. The power input to the rotor is K t i tb a ,ω( ) ( )  and the power delivered to 
the shaft is T t t .ω( ) ( )  In the steady-state condition, the power input is equal to the 
power delivered to the shaft so that K t i t T t tb a ;ω ω( ) ( ) ( ) ( )=  since T t K i tm a( ) ( )=  
(Equation 2.64), we find that K Kb m.=  ■

The transfer function concept and approach is very important because it pro-
vides the analyst and designer with a useful mathematical model of the system 
 elements. We shall find the transfer function to be a continually valuable aid in the 
attempt to model dynamic systems. The approach is particularly useful because the 
s-plane poles and zeros of the transfer function represent the transient response of 
the  system. The transfer functions of several dynamic elements are given in Table 2.4.

In many situations in engineering, the transmission of rotary motion from one 
shaft to another is a fundamental requirement. For example, the output power of an 
automobile engine is transferred to the driving wheels by means of the gearbox and 
differential. The gearbox allows the driver to select different gear ratios depending on 
the traffic situation, whereas the differential has a fixed ratio. The speed of the engine 
in this case is not constant, since it is under the control of the driver. Another exam-
ple is a set of gears that transfer the power at the shaft of an electric motor to the shaft 
of a rotating antenna. Examples of mechanical converters are gears, chain drives, and 
belt drives. A commonly used electric converter is the electric transformer. An exam-
ple of a device that converts rotational motion to linear motion is the rack-and-pinion 
gear shown in Table 2.4, item 17.

+

-

Tm(s)
Va(s)

Km

Ra + Las Js + b
1

s
1

Kb

-

Disturbance
Td (s)

TL(s)
Speed
v(s) Position

u(s)

Back electromotive force

Armature

+

FIGURE 2.20
Armature-controlled 
DC motor.

M02_DORF2374_14_GE_C02.indd   103M02_DORF2374_14_GE_C02.indd   103 13/09/21   8:10 PM13/09/21   8:10 PM



104 Chapter 2  Mathematical Models of Systems

Table 2.4 Transfer Functions of Dynamic Elements and Networks

Element or System  ( )G s

1. Integrating circuit, filter

R

C

V2(s)V1(s)

+

--

+

-
1

 

V s

V s RCs
( )
( )

= −
12

1

2. Differentiating circuit

C

R

V2(s)V1(s)

+

--

+

-
+

 

V s

V s
RCs

( )
( )

= −2

1

3. Differentiating circuit

C

R1 R2

V2(s)V1(s)
+

--

+

-
+

 

V s

V s

R R Cs

R

( )( )
( )

= −
+ 12

1

2 1

1

4. Integrating filter

C1

R1 R2

V2(s)V1(s)
+

--

+

-
+

C2

V s

V s

R C s R C s

R C s

( )( )( )
( )

= −
+ +1 12

1

1 1 2 2

1 2

(continued)
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Section 2.5  The Transfer Function of Linear Systems 105

Element or System  ( )G s

5. DC motor, field-controlled, rotational actuator

Vf (s)

Rf

Lf

Ia

If u(t), v(t)

J, b

-

+

 

s

V s
K

s Js b L s Rf

m

f f

θ

( )
( )
( ) ( )

=
+ +

6. DC motor, armature-controlled, rotational actuator

Va(s)

Ra

La

Ia

If

u(t), v(t)J, b
Vb

-
-

+
+

 

s

V s
K

s R L s Js b K Ka

m

a a b m

θ

( )
( )
( ) ( )

=
+ + + 

7. AC motor, two-phase control field, rotational actuator

Vc(s)

J, b

Reference
field

-

+

u(t), v(t)

 

s

V s
K

s sc

mθ
τ

( )
( ) ( )

=
+ 1

τ ( )= −J b m/

m = slope  of linearized torque-speed 
   curve (normally negative)

8. Rotary Amplifier (Amplidyne)

Vo(s)Vc(s)

ic

Lc

Rc

Lq

Rq

Rdid
Ld

-

+

1 3

2
4

iq
-

+

 

τ τ

( )
( )( )

( )
( )

=
+ +

V s

V s

K R R

s sc

c q

c q

/

1 1
o

τ τ= =L R L Rc c c q q q/ , /

for the unloaded case, id ≈ 0,  c qτ τ≈ ,  
cτ< <0.05 s 0.5 s

    Vq ,  V Vd=34

9. Hydraulic actuator [9, 10]

y(t)

x(t), Control valve
        displacement

Return

Return

Pressure
source

Piston

M, b

Load  

Y s

X s
K

s Ms B
( )
( ) ( )

=
+

K
Ak
k

b
A
k

x

p p
= = +











, B

2

k
g
x

k
g
P

x
x P

p
x P

=
∂
∂

=
∂
∂

, ,
,  , 0 0 0 0

g g x P( )= =,   flow

A = area of piston

M = load mass

b = load friction

Table 2.4 (continued)

(continued)
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106 Chapter 2  Mathematical Models of Systems

Element or System  ( )G s

10. Gear train, rotational transformer

Gear 1

Gear 2

r1

r2

N2

N1

um(t), vm(t) uL(t), vL(t)

 

n
N
N

= =Gear ratio 1

2
N t N t t n tL m L mθ θ θ θ( ) ( ) ( ) ( )= =,2 1

t n tL mω ω( ) ( )=

11. Potentiometer, voltage control

+

+

- -

V1(s)

V1(s)

V2(s)V2(s)
R

R1

R2

R2

u

 

V s

V s
R
R

R
R R

( )
( )

= =
+

2

1

2 2

1 2

R
R

θ
θ

=2

max

12. Potentiometer, error detector bridge

VBatteryu1(s)

u2(s)

+
V2(s)

Error
voltage

θ θ( )( ) ( ) ( )= −V s k s ss2 1 2

V s k ss θ( ) ( )=2 error

k
V

s θ
= Battery

max

13. Tachometer, velocity sensor

V2(s)

Shaft

u(s), v(s)
-

+

V s K s K s st tω θ( ) ( ) ( )= =2

Kt = constant

14. DC amplifier

++

- -
V1(s) V2(s)

V s

V s
k

s
a

τ
( )
( )

=
+ 1

2

1

R output resistance=  o

C output capacitance=  o

R Cτ τ= =,   1so o

  and is often negligible for  
controller amplifier

Table 2.4 (continued)

(continued)
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Section 2.6  Block Diagram Models 107

Element or System  ( )G s

15. Accelerometer, acceleration sensor

Frame

Mass
M

k
b

x in(t)

y(t)

 

x t y t x t( ) ( ) ( )= − ,o in

X s

X s
s

s b M s k M( )
( )
( )

=
−

+ / + /
o

in

2

2

For low-frequency oscillations, where

nω ω< ,
X j

X j k M

ω
ω

ω( )
( )

∼− /
o

in

2

16. Thermal heating system

Heater

te
te

t0

t0

Fluid in

Fluid
out

 

T s

q s C s QS Rt t( )
( )
( )

=
+ + /

1
1

,  where

T T T temperature differencee= − =  o   
 due to thermal process

Ct = thermal capacitance
Q constant= =fluid flow rate
S = specific heat of water

Rt = thermal resistance of insulation
q s( ) = transform of rate of heat flow of   
 heating element

17. Rack and pinion

u(t)

x(t)

r

 

x t r tθ( ) ( )=

converts radial motion  
to linear motion

Table 2.4 (continued)

2.6 BLOCK DIAGRAM MODELS

The dynamic systems that comprise feedback control systems are typically repre-
sented mathematically by a set of simultaneous differential equations. As we have 
noted in the previous sections, the Laplace transformation reduces the problem to 
the solution of a set of linear algebraic equations. Since control systems are concerned 
with the control of specific variables, the controlled variables must relate to the con-
trolling variables. This relationship is typically represented by the transfer function of 
the subsystem relating the input and output variables. Therefore, one can correctly 
assume that the transfer function is an important relation for control engineering.

M02_DORF2374_14_GE_C02.indd   107M02_DORF2374_14_GE_C02.indd   107 13/09/21   8:10 PM13/09/21   8:10 PM



108 Chapter 2  Mathematical Models of Systems

The importance of this cause-and-effect relationship is evidenced by the facility 
to represent the relationship of system variables graphically using block diagrams. 
Block diagrams consist of unidirectional, operational blocks that represent the 
transfer function of the systems of interest. A block diagram of a field-controlled 
DC motor and load is shown in Figure 2.21. The relationship between the displace-
ment sθ( ) and the input voltage V sf ( ) is represented in the block diagram.

To represent a system with several variables under control, an interconnection 
of blocks is utilized. For example, the system shown in Figure 2.22 has two input 
variables and two output variables [6]. Using transfer function relations, we can 
write the simultaneous equations for the output variables as

 Y s G s R s G s R s ,1 11 1 12 2( ) ( ) ( ) ( ) ( )= +  (2.71)

and

 Y s G s R s G s R s ,2 21 1 22 2( ) ( ) ( ) ( ) ( )= +  (2.72)

where G sij ( ) is the transfer function relating the ith output variable to the jth input vari-
able. The block diagram representing this set of equations is shown in Figure 2.23. In 
general, for J inputs and I outputs, we write the simultaneous equation in matrix form as

 

Y s

Y s

Y s

G s G s

G s G s

G s G s

R s

R s

R sI

J

J

I IJ J

























=

















































( )

( )
...
( )

( ) ... ( )

( ) ... ( )
...

...
( ) ... ( )

( )

( )
...
( )

1

2

11 1

21 2

1

1

2

 (2.73)
or

 s s s( ) ( ) ( )= .Y G R  (2.74)

Vf (s)
Output

u(s)
Km

s(Js + b)(Lf s + Rf )

Process, G(s)

FIGURE 2.21
Block diagram of a 
DC motor.

Y1(s)

Y2(s)

R1(s)

R2(s)
System

Inputs Outputs
FIGURE 2.22
General block 
representation of 
two-input, two- 
output system.

Y1(s)R1(s) G11(s)
+

+

G 12
(s)

G
21 (s)

Y2(s)R2(s) G22(s)
+

+

FIGURE 2.23
Block diagram of 
a two-input, two- 
output intercon-
nected system.
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Section 2.6  Block Diagram Models 109

Here the ( )sY  and ( )sR  matrices are column matrices containing the I output and 
the J input variables, respectively, and ( )sG  is an I by J transfer function matrix. 
The matrix representation of the interrelationship of many variables is particularly 
valuable for complex multi-variable control systems. Background information on 
matrix algebra can be found on-line and in many references, for example in [21].

The block diagram representation of a given system often can be reduced to 
a simplified block diagram with fewer blocks than the original diagram. Since the 
transfer functions represent linear systems, the multiplication is commutative. Thus, 
in Table 2.5, item 1, we have

X s G s X s G s G s X s .3 2 2 2 1 1( ) ( ) ( ) ( ) ( ) ( )= =

Table 2.5 Block Diagram Transformations

Transformation Original Diagram Equivalent Diagram

1. Combining blocks in cascade X1
G1(s)

X2 X3
G2(s)

 

X1
G1G2

X3

X1
G2G1

X3

or

 

2.  Moving a summing point 
 behind a block

+ X3

X2

X1
G

+-

+ X3

X2

X1
G

G

+-

3.  Moving a pickoff point 
ahead of a block

X2

X2

X1
G

X2

X2

X1
G

G

4.  Moving a pickoff point 
 behind a block

X2X1

X1

G

 

X2X1
G

X1 1
G  

5.  Moving a summing point 
ahead of a block

+ X3

X2

X1
G

+-

+ X3

X2

X1
G

1
G

+-

6. Eliminating a feedback loop + X2X1
G

H

-+

G
1    GH

X2X1

+-
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110 Chapter 2  Mathematical Models of Systems

When two blocks are connected in cascade, as in Table 2.5, item 1, we assume that

X s G s G s X s3 2 1 1( ) ( ) ( ) ( )=

holds true. This assumes that when the first block is connected to the second block, 
the effect of loading of the first block is negligible. Loading and interaction between 
interconnected components or systems may occur. If the loading of interconnected 
devices does occur, the engineer must account for this change in the transfer func-
tion and use the corrected transfer function in subsequent calculations.

Block diagram transformations and reduction techniques are derived by 
 considering the algebra of the diagram variables. For example, consider the block 
diagram shown in Figure 2.24. This negative feedback control system is described 
by the equation for the actuating signal, which is

 E s R s B s R s H s Y sa .( ) ( ) ( ) ( ) ( ) ( )= − = −  (2.75)

Because the output is related to the actuating signal by G s( ), we have

 Y s G s U s G s G s Z s G s G s G s E sa a c a ;( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= = =  (2.76)

thus,

 Y s G s G s G s R s H s Y sa c [ ].( ) ( ) ( ) ( ) ( ) ( ) ( )= −  (2.77)

Combining the Y s( ) terms, we obtain

 Y s G s G s G s H s G s G s G s R sa c a c( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).[ ]+ =  (2.78)

Therefore, the closed-loop transfer function relating the output Y s( ) to the input 
R s( ) is

 
Y s
R s

G s G s G s
G s G s G s H s

a c

a c1
.

( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( )

=
+

 (2.79)

The reduction of the block diagram shown in Figure 2.24 to a single block 
 representation is one example of several useful techniques. These diagram trans-
formations are given in Table 2.5. All the transformations in Table 2.5 can be 
 derived by algebraic manipulation of the equations representing the blocks. System 
analysis by the method of block diagram reduction affords a better understanding 
of the contribution of each component element than possible by the manipulation 
of equations. The utility of the block diagram transformations will be illustrated by 
an example using block diagram reduction.

Y(s)G(s)

Actuator

R(s)

Process

Gc(s)

Controller

-

Z(s)

Sensor

U(s)

B(s)

Ga(s)

H(s)

Ea(s)

FIGURE 2.24
Negative feedback 
control system.
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Section 2.6  Block Diagram Models 111

EXAMPLE 2.6 Block diagram reduction

The block diagram of a multiple-loop feedback control system is shown in 
Figure 2.25. It is interesting to note that the feedback signal H s Y s1( ) ( ) is a positive 
feedback signal, and the loop G s G s H s3 4 1( ) ( ) ( ) is a positive feedback loop. The 
block diagram reduction procedure is based on the use of Table 2.5, transformation 
6, which eliminates feedback loops. Therefore the other transformations are used 
to transform the diagram to a form ready for eliminating feedback loops. First, to 
eliminate the loop G s G s H s ,3 4 1( ) ( ) ( )  we move H s2 ( ) behind block G s4 ( ) by using 
transformation 4, and obtain Figure 2.26(a). Eliminating the loop G s G s H s3 4 1( ) ( ) ( ) 
by using transformation 6, we obtain Figure 2.26(b). Then, eliminating the inner 
loop containing H s G s( ) ( )/ ,2 4  we obtain Figure 2.26(c). Finally, by reducing the 
loop containing H s ,3( )  we obtain the closed-loop system transfer function as shown 
in Figure 2.26(d). It is worthwhile to examine the form of the numerator and de-
nominator of this closed-loop transfer function. We note that the numerator is 
composed of the cascade transfer function of the feedforward elements connecting 
the input R s( ) and the output Y s( ). The denominator is composed of 1 minus the 
sum of each loop transfer function. The loop G s G s H s3 4 1( ) ( ) ( ) has a plus sign in 
the sum to be subtracted because it is a positive feedback loop, whereas the loops 
G s G s G s G s H s1 2 3 4 3( ) ( ) ( ) ( ) ( ) and G s G s H s2 3 2( ) ( ) ( ) are negative feedback loops. 
To illustrate this point, the denominator can be rewritten as

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= − + − −q s G s G s H s G s G s H s G s G s G s G s H s1 .3 4 1 2 3 2 1 2 3 4 3  

(2.80)

This form of the numerator and denominator is quite close to the general form for 
multiple-loop feedback systems, as we shall find in the following section. ■

The block diagram representation of feedback control systems is a valuable 
and widely used approach. The block diagram provides the analyst with a graph-
ical representation of the system interrelationships. Furthermore, the  designer 
can readily visualize the possibilities for adding blocks to the existing system 
block diagram to alter and improve the system performance. The transition 
from the block diagram method to a method utilizing a line path representation 
 instead of a block representation is readily accomplished and is presented in the   
following section.

+

+

+ -+

-
R(s) Y(s)

H2(s)

H1(s)

H3(s)

G1(s) G2(s) G3(s) G4(s)

FIGURE 2.25
Multiple-loop 
feedback control 
system.
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112 Chapter 2  Mathematical Models of Systems

2.7 SIGNAL-FLOW GRAPH MODELS

Block diagrams are adequate for the representation of the interrelationships of con-
trolled and input variables. An alternative method for determining the relationship 
between system variables has been developed by Mason and is based on a represen-
tation of the system by line segments [4, 25]. The advantage of the line path method, 
called the signal-flow graph method, is the availability of a flow graph gain formula, 
which provides the relation between system variables without requiring any reduc-
tion procedure or manipulation of the flow graph.

The transition from a block diagram representation to a directed line segment 
representation is easy to accomplish by reconsidering the systems of the previous 
section. A signal-flow graph is a diagram consisting of nodes that are connected by 
several directed branches and is a graphical representation of a set of linear rela-
tions. Signal-flow graphs are particularly useful for feedback control systems be-
cause feedback theory is primarily concerned with the flow and processing of signals 
in systems. The basic element of a signal-flow graph is a unidirectional path segment 
called a branch, which relates the dependency of an input and an output variable in a 
manner equivalent to a block of a block diagram. Therefore, the branch relating the 
output sθ( ) of a DC motor to the field voltage ( )V sf  is similar to the block diagram 

(a)

(b)

(c) (d)

+

-
R(s) Y(s)

H3(s)

G1(s)
G2(s)G3(s)G4(s)

1 - G3(s)G4(s)H1(s) + G2(s)G3(s)H2(s) 

R(s) Y(s)G1(s)G2(s)G3(s)G4(s)
1 - G3(s)G4(s)H1(s) + G2(s)G3(s)H2(s) + G1(s)G2(s)2G3(s)G4(s)H3(s)

+ -+

-
R(s) Y(s)

H3(s)

G1(s) G2(s)
G3(s)G4(s)

1 - G3(s)G4(s)H1(s)

H2(s)
G4(s) 

+

+

+ -+

-
R(s) Y(s)

H1(s)

H3(s)

G1(s) G2(s) G3(s) G4(s)

H2(s)
G4(s) 

FIGURE 2.26 Block diagram reduction of the system of Figure 2.25.
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Section 2.7  Signal-Flow Graph Models 113

of Figure 2.21 and is shown in Figure 2.27. The input and output points or junctions 
are called nodes. Similarly, the signal-flow graph representing Equations (2.71) and 
(2.72), as well as Figure 2.23, is shown in Figure 2.28. The relation between each 
variable is written next to the directional arrow. All branches leaving a node will pass 
the nodal signal to the output node of each branch (unidirectionally). The summa-
tion of all signals entering a node is equal to the node variable. A path is a branch or 
a continuous sequence of branches that can be traversed from one signal (node) to 
another signal (node). A loop is a closed path that originates and terminates on the 
same node, with no node being met twice along the path. Two loops are said to be 
nontouching if they do not have a common node. Two touching loops share one or 
more common nodes. Therefore, considering Figure 2.28 again, we obtain

 Y s G s R s G s R s ,1 11 1 12 2( ) ( ) ( ) ( ) ( )= +  (2.81)

and

 Y s G s R s G s R s .2 21 1 22 2( ) ( ) ( ) ( ) ( )= +  (2.82)

The flow graph is a graphical method of writing a system of algebraic equations 
that indicates the interdependencies of the variables. As another example, consider 
the following set of simultaneous algebraic equations:

 + + =a x a x r x11 1 12 2 1 1  (2.83)

 + + =a x a x r x .21 1 22 2 2 2  (2.84)

The two input variables are r1 and r2, and the output variables are x1 and x2. A 
signal-flow graph representing Equations (2.83) and (2.84) is shown in Figure 2.29. 
Equations (2.83) and (2.84) may be rewritten as

 ( ) ( )− + − =x a x a r1 ,1 11 2 12 1  (2.85)

and

 ( ) ( )− + − =x a x a r1 .1 21 2 22 2  (2.86)

The simultaneous solution of Equations (2.85) and (2.86) using Cramer’s rule 
 results in the solutions

 
( )

( )( )
=

− +
− − −

=
−
∆

+
∆

x
a r a r

a a a a
a

r
a

r
1

1 1
1

    ,1
22 1 12 2

11 22 12 21

22
1

12
2  (2.87)

Vf (s)
G(s)

u(s)
FIGURE 2.27
Signal-flow graph  
of the DC motor.

R1(s) Y1(s)
G11(s)

G12(s)

G21(s)

G22(s)
R2(s) Y2(s)

FIGURE 2.28
Signal-flow graph 
of a two- input, 
two-output 
 interconnected 
system.
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and

 
( )

( )( )
=

− +
− − −

=
−
∆

+
∆

x
a r a r

a a a a
a

r
a

r
1

1 1
1

    .2
11 2 21 1

11 22 12 21

11
2

21
1  (2.88)

The denominator of the solution is the determinant ∆  of the set of equations and 
is rewritten as

 a a a a a a a a a a1 1 1 .11 22 12 21 11 22 11 22 12 21( )( )∆ = − − − = − − + −  (2.89)

In this case, the denominator is equal to 1 minus each self-loop a11, a22, and a12a21, 
plus the product of the two nontouching loops a11 and a22. The loops a22 and a21a12 
are touching, as are a11 and a21a12.

The numerator for x1 with the input r1 is 1 times a1 ,22−  which is the value of ∆  
excluding terms that touch the path 1 from r1 to x1. Therefore the numerator from 
r2 to x1 is simply a12 because the path through a12 touches all the loops. The numer-
ator for x2 is symmetrical to that of x1.

In general, the linear dependence T sij ( ) between the independent variable xi 
(often called the input variable) and a dependent variable xj is given by Mason’s 
signal-flow gain formula [11, 12],

 ( )
( ) ( )

( )
=

∑ ∆

∆
T s

P s s

s
ij

k ijk ijk 
, (2.90)

P sijk gain of kth( ) =  path from variable xi to variable xj,

s determinant( )∆ =  of the graph,

sijk cofactor( )∆ =  of the path P sijk ( ),

and the summation is taken over all possible k paths from xi to xj. The path gain or 
transmittance P sijk ( ) is defined as the product of the gains of the branches of the 
path, traversed in the direction of the arrows with no node encountered more than 
once. The cofactor sijk ( )∆  is the determinant with the loops touching the kth path 
removed. The determinant s( )∆  is

s L s L s L s L s L s L s
n

N

n
n m

n m
n m

p

n m p1 . . . ,
1 ,  

nontouching
,  , 

nontouching

∑ ∑ ∑( ) ( ) ( ) ( ) ( ) ( ) ( )∆ = − + − +
=

 

(2.91)

where L sq ( ) equals the value of the qth loop transmittance. Therefore the rule for 
evaluating s( )∆  in terms of loops L s L s L s L sN( ) ( ) ( ) ( ),   ,   , . . .,  1 2 3  is

r1 x1

a11

a22

a12a21

r2 x2

1

1FIGURE 2.29
Signal-flow graph 
of two algebraic 
equations.
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Section 2.7  Signal-Flow Graph Models 115

1 (sum of all different loop gains)∆ = −
(sum of the gain products of all combinations of two nontouching loops)+
(sum of the gain products of all combinations of three nontouching loops)−
. . ..+

The gain formula is often used to relate the output variable ( )Y s  to the input 
variable R s( ) and is given in somewhat simplified form as

 T s
P s s

s
k k k ,( ) ( ) ( )

( )
=

Σ ∆
∆

 (2.92)

where .( ) ( ) ( )= /T s Y s R s
Several examples will illustrate the utility and ease of this method. Although 

the gain Equation (2.90) appears to be formidable, one must remember that it rep-
resents a summation process, not a complicated solution process.

EXAMPLE 2.7 Transfer function of an interacting system

A two-path signal-flow graph is shown in Figure 2.30(a) and the corresponding block 
diagram is shown in Figure 2.30(b). An example of a control system with multiple signal 
paths is a multilegged robot. The paths connecting the input R s( ) and output Y s( ) are

P s G s G s G s G s

P s G s G s G s G s

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

=

=

 (path 1) and

   (path 2).
1 1 2 3 4

2 5 6 7 8

H2(s)

Y(s)R(s)

H3(s)

L1(s) L2(s)

L3(s) L4(s)

G2(s) G3(s)

G6(s)

G1(s)

G5(s)

G4(s)

G8(s)G7(s)

H6(s) H7(s)

(a)

+

+ +

R(s)

G1(s) G2(s)

H2(s)

+
G3(s) G4(s)

H3(s)

+

+ +
G5(s) G6(s)

H6(s)

+
G7(s) G8(s)

H7(s)

Y(s)
+

+

(b)

FIGURE 2.30
Two-path 
 interacting system. 
(a) Signal-flow 
graph. (b) Block 
diagram.
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There are four self-loops:

L s G s H s L s H s G s

L s G s H s L s G s H s

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

= =

= =

, ,  

, and .
1 2 2 2 3 3

3 6 6 4 7 7

Loops L1 and L2 do not touch L3 and L4. Therefore, the determinant is

 

s L s L s L s L s

L s L s L s L s L s L s L s L s

( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

∆ = − + + + +

+ + +

1  

.

1 2 3 4

1 3 1 4 2 3 2 4  (2.93)

The cofactor of the determinant along path 1 is evaluated by removing the loops 
that touch path 1 from s .( )∆  Hence, we have

( )( ) ( ) ( ) ( ) ( )= = ∆ = − +L s L s s L s L s0 and 1 .1 2 1 3 4

Similarly, the cofactor for path 2 is

s L s L s( )( ) ( ) ( )∆ = − +1 .2 1 2

Therefore, the transfer function of the system is

 
( )
( )

( )
( ) ( ) ( ) ( )

( )
= =

∆ + ∆
∆

Y s
R s

T s
P s s P s s

s
1 1 2 2  (2.94)

( )( ) ( ) ( ) ( ) ( ) ( )
( )

=
− −

∆
G s G s G s G s L s L s

s

11 2 3 4 3 4

( )( ) ( ) ( ) ( ) ( ) ( )
( )

+
− −

∆
G s G s G s G s L s L s

s

15 6 7 8 1 2

where s( )∆  in given in Equation (2.93).
A similar analysis can be accomplished using block diagram reduction 

 techniques. The block diagram shown in Figure 2.30(b) has four inner feedback 
loops within the overall block diagram. The block diagram reduction is simplified 
by first reducing the four inner feedback loops and then placing the resulting sys-
tems in series. Along the top path, the transfer function is

Y s G s
G s

G s H s
G s

G s H s
G s R s

1 1
1 1

2

2 2

3

3 3
4( ) ( ) ( )

( ) ( )
( )

( ) ( )
( ) ( )=

−











 −













G s G s G s G s
G s H s G s H s

R s
1 1

.1 2 3 4

2 2 3 3( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )=

− −













Similarly across the bottom path, the transfer function is

Y s G s
G s

G s H s
G s

G s H s
G s R s

1 1
2 5

6

6 6

7

7 7
8( ) ( ) ( )

( ) ( )
( )

( ) ( )
( ) ( )=

−











 −













G s G s G s G s
G s H s G s H s

R s
1 1

.5 6 7 8

6 6 7 7( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )=

− −
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The total transfer function is then given by

( )( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

= + =
− −







Y s Y s Y s
G s G s G s G s

G s H s G s H s1 1
1 2

1 2 3 4

2 2 3 3

 
( )( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )+
− −







G s G s G s G s
G s H s G s H s

R s
1 1

.5 6 7 8

6 6 7 7
  ■

EXAMPLE 2.8 Armature-controlled motor

The block diagram of the armature-controlled DC motor is shown in Figure 2.20. 
This diagram was obtained from Equations (2.64)–(2.68). The signal-flow diagram 
is shown in Figure 2.31. Using Mason’s signal-flow gain formula, let us obtain the 
transfer function for θ( ) ( )/s V sa  with T sd 0.( ) =  The forward path is P s ,1( )  which 
touches the one loop, L s ,1( )  where

P s
s

G s G s L s K G s G sb
1

  and .1 1 2 1 1 2( ) ( ) ( ) ( ) ( ) ( )= = −

Therefore, the transfer function is

T s
P s

L s

s G s G s

K G s G s
K

s R L s Js b K Kb

m

a a b m1

1

1 [ ]
.1

1

1 2

1 2

( )
( )

( )
( )

( ) ( )
( ) ( ) ( )( )

=
−

=
/

+
=

+ + +
 ■

The signal-flow graph gain formula provides a reasonably straightforward ap-
proach for the evaluation of complicated systems. To compare the method with 
block diagram reduction, let us reconsider the complex system of Example 2.6.

EXAMPLE 2.9 Transfer function of a multiple-loop system

A multiple-loop feedback system is shown in Figure 2.25 in block diagram form. 
There is no need to redraw the diagram in signal-flow graph form, and we shall 
proceed using Mason’s signal-flow gain formula. There is one forward path 
P s G s G s G s G s  .1 1 2 3 4( ) ( ) ( ) ( ) ( )=  The feedback loops are

 

L s G s G s H s L s G s G s H s

L s G s G s G s G s H s

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

= − =

= −

, ,  

and .
1 2 3 2 2 3 4 1

3 1 2 3 4 3
 

(2.95)

Va(s)
Tm(s)

Td (s)

-Kb

G1(s) G2(s)TL(s)
u(s)

1 1 1
1
s

1
Js + b

G2(s) =
Km

Ra + Las
G1(s) =

-1

FIGURE 2.31
The signal-flow 
graph of the 
 armature-controlled 
DC motor.
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118 Chapter 2  Mathematical Models of Systems

All the loops have common nodes and therefore are all touching. Furthermore, 
the path P s1( ) touches all the loops, so s 1.1( )∆ =  Thus, the closed-loop transfer 
 function is

 T s
Y s
R s

P s s
L s L s L s

G s G s G s G s
s1

1 1

1 2 3

1 2 3 4( ) ( )
( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( )

= =
∆

− − −
=

∆
 (2.96)

where

s G s G s H s G s G s H s G s G s G s G s H s1 .2 3 2 3 4 1 1 2 3 4 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∆ = + − +  ■

EXAMPLE 2.10 Transfer function of a complex system

Consider the system with several feedback loops and feedforward paths shown in 
Figure 2.32. The forward paths are

P s G s G s G s G s G s G s P s G s G s G s G s

P s G s G s G s G s G s

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

= =

=

, , and

.
1 1 2 3 4 5 6 2 1 2 7 6

3 1 2 3 4 8

The feedback loops are

L s G s G s G s G s H s L s G s G s H s

L s G s H s L s G s H s G s

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

= − = −

= − = −

. ,

, ,
1 2 3 4 5 3 2 5 6 1

3 8 1 4 7 2 2

L s G s H s L s G s G s G s G s G s G s H s

L s G s G s G s G s H s

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

= − = −

= −

, ,

, and
5 4 4 6 1 2 3 4 5 6 3

7 1 2 7 6 3

L s G s G s G s G s G s H s .8 1 2 3 4 8 3( ) ( ) ( ) ( ) ( ) ( ) ( )= −

Loop L5  does not touch loop L4  or loop L ,7  and loop L3 does not touch loop L ;4  
but all other loops touch. Therefore, the determinant is

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∆ = − + + + + + + +s L s L s L s L s L s L s L s L s1 1 2 3 4 5 6 7 8

 ( )( ) ( ) ( ) ( ) ( ) ( )+ + +L s L s L s L s L s L s .5 7 5 4 3 4  (2.97)

The cofactors are

s s s L s G s H s( ) ( ) 1 and ( ) 1 ( ) 1 ( ) ( ).1 3 2 5 4 4∆ = ∆ = ∆ = − = +

R(s)

-H3(s)

-H2(s)

-H1(s)

G1(s) G2(s) G3(s) G4(s)

G7(s)

G5(s) G6(s)
Y(s)

1

G8(s)

-H4(s)

FIGURE 2.32
Signal-flow graph 
of a multiple-loop 
system.
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Finally, the transfer function is

 T s
Y s
R s

P s P s s P s
s

.1 2 2 3( ) ( )
( )

( ) ( ) ( ) ( )
( )

= =
+ ∆ +

∆
 (2.98)

2.8 DESIGN EXAMPLES

In this section, we present four illustrative design examples. The first example 
 describes modeling of a photovoltaic generator in a manner amenable to feedback 
control to achieve maximum power delivery as the sunlight varies over time. Using 
feedback  control to improve the efficiency of producing electricity using solar energy 
in areas of abundant sunlight is a valuable contribution to green engineering. In the 
second  example, we present a detailed look at modeling of the fluid level in a reser-
voir. The modeling is presented in a very detailed manner to emphasize the effort 
required to obtain a linear model in the form of a transfer function. The remaining 
two examples include an electric traction motor model development and the design 
of a low-pass filter.

EXAMPLE 2.11 Photovoltaic generators

Photovoltaic cells were developed at Bell Laboratories in 1954. Solar cells are one 
 example of photovoltaic cells and convert solar light to electricity. Other types of pho-
tovoltaic cells can detect radiation and measure light intensity. The use of solar cells to 
produce energy supports the principles of green engineering by minimizing  pollution. 
Solar panels minimize the depletion of natural resources and are effective in areas 
where sunlight is abundant. Photovoltaic generators are systems that provide electricity 
using an assortment of photovoltaic modules comprised of interconnected solar cells. 
Photovoltaic generators can be used to recharge batteries, they can be  directly con-
nected to an electrical grid, or they can drive electric motors without a battery [34–42].

The power output of a solar cell varies with available solar light, temperature, 
and external loads. To increase the overall efficiency of the photovoltaic generator, 
feedback control strategies can be employed to seek to maximize the power output. 
This is known as maximum power point tracking (MPPT) [34–36]. There are certain 
values of current and voltage associated with the solar cells corresponding to the 
maximum power output. The MPPT uses closed-loop feedback control to seek the 
optimal point to allow the power converter circuit to extract the maximum power 
from the photovoltaic generator system. We will discuss the control design in later 
chapters, but here we focus on the modeling of the system.

The solar cell can be modeled as an equivalent circuit shown in Figure 2.33 
composed of a current generator, IPH, a light sensitive diode, a resistance series, Rs, 
and a shunt resistance, RP [34, 36–38].

RP

RS

IPV

+

-
IPH

VPV
FIGURE 2.33
Equivalent circuit 
of the photovoltaic 
generator.

■
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The output voltage, VPV, is given by

 V
N I I MI

MI
N
M

R IPV
PH PV

S PV ln    ,0

0λ
=

− +







 −  (2.99)

where the photovoltaic generator is comprised of M parallel strings with N series 
cells per string, I0  is the reverse saturation current of the diode, IPH represents 
the insolation level, and λ is a known constant that depends on the cell material 
[34–36]. The insolation level is a measure of the amount of incident solar radiation 
on the solar cells.

Suppose that we have a single silicon solar panel M 1( )=  with 10 series cells 
N 10( )=  and the parameters given by λ/ =1 0.05 V, 0.025 Rs = Ω, IPH 3 A= , and 

I 0.001 A.0 =  The voltage versus current relationship in Equation (2.99) and the 
power versus voltage are shown in Figure 2.34 for one particular insolation level 
where IPH 3 A= . In Figure 2.34, we see that when dP dIPV/ 0=  we are at the 
 maximum power level with an associated V VPV mp=  and I IPV mp= , the values of 
voltage and current at the maximum power, respectively. As the sunlight varies, the 
insolation level, IPH , varies resulting in different power curves.

The goal of the power point tracking is to seek the voltage and current condition 
that maximizes the power output as conditions vary. This is accomplished by vary-
ing the reference voltage as a function of the insolation level. The reference voltage 
is the voltage at the maximum power point as shown in Figure 2.35. The feedback 
control system should track the reference voltage in a rapid and accurate fashion.

Figure 2.36 illustrates a simplified block diagram of the controlled system. The 
main components are a power circuit (e.g., a phase control IC and a thyristor 
bridge), photovoltaic generator, and current transducer. The plant including the 

0 0.5 1 1.5 2 2.5 3
0

5

10

15

IPV (A)

V
P

V
 (

V
)

P
P

V
 (

W
)

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

IPV (A)

Vmp

Imp

= 0
dIPV

dP

Maximum power
FIGURE 2.34
Voltage versus 
 current and power 
versus current 
for an example 
 photovoltaic 
 generator 
at a  specific 
insolation level.
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power  circuit, photovoltaic generator, and current transducer is modeled as a 
 second-order transfer function given by

 G s
K

s s p
,

( )
( ) =

+
 (2.100)

where K and p depend on the photovoltaic generator and associated electronics [35]. 
The controller, G sc ( ), in Figure 2.36 is designed such that as the insolation levels 
varies (that is, as IPH varies), the voltage output will approach the reference input 
voltage, V sref ( ), which has been set to the voltage associated with the maximum 
power point resulting in maximum power transfer. If, for example, the controller is 
the  proportional plus integral controller

G s K
K
s

c P
I ,( ) = +

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40

IPV (A)

P
P

V
 (

W
)

IPH = 1A IPH = 2A

Vref1

Vref2

Vref3

Vref4

Vref5

IPH = 3A

IPH = 4A

IPH = 5A

Maximum power

FIGURE 2.35 Maximum power point for varying values of IPH  specifies Vref.

Power circuit
Current

transducer
Photovoltaic 

generator

Plant

V(s)Vref (s) Gc(s)

Controller

-

+

FIGURE 2.36 Block diagram of feedback control system for maximum power transfer.
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the closed-loop transfer function is

 T s
K K s K

s ps KK s KK
P I

P I
.

3 2
( )

( )
=

+
+ + +

 (2.101)

We can select the controller gains in Equation (2.101) to place the poles of T s( ) in 
the desired locations to meet the desired performance specifications. ■

EXAMPLE 2.12 Fluid flow modeling

A fluid flow system is shown in Figure 2.37. The reservoir (or tank) contains water 
that evacuates through an output port. Water is fed to the reservoir through a pipe 
controlled by an input valve. The variables of interest are the fluid velocity V(m/s), 
fluid height in the reservoir H (m), and p ressure p (N/m ).2  The pressure is defined 
as the force per unit area exerted by the fluid on a surface immersed (and at rest 
with respect to) the fluid. Fluid pressure acts normal to the surface. For further 
reading on fluid flow modeling, see [28–30].

The elements of the control system design process emphasized in this example 
are shown in Figure 2.38. The strategy is to establish the system configuration and 
then obtain the appropriate mathematical models describing the fluid flow reser-
voir from an input–output perspective.

The general equations of motion and energy describing fluid flow are quite 
complicated. The governing equations are coupled nonlinear partial differential 
equations. We must make some selective assumptions that reduce the complexity of 
the mathematical model. Although the control engineer is not required to be a fluid 
dynamicist, and a deep understanding of fluid dynamics is not necessarily acquired 
during the control system design process, it makes good engineering sense to gain at 
least a rudimentary understanding of the important simplifying assumptions. For a 
more complete discussion of fluid motion, see [31–33].

To obtain a realistic, yet tractable, mathematical model for the fluid flow reser-
voir, we first make several key assumptions. We assume that the water in the tank 
is incompressible and that the flow is inviscid, irrotational and steady. An incom-
pressible fluid has a constant density  (kg/m ).3ρ  In fact, all fluids are compressible 
to some extent. The compressibility factor, k, is a measure of the compressibility of 

Input
valve

A2

Q2(t)

Q1(t)

H(t)

A1

FIGURE 2.37
The fluid flow 
 reservoir 
configuration.
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a fluid. A smaller value of k indicates less compressibility. Air (which is a compress-
ible fluid) has a compressibility factor of k 0.98 m N,air

2= /  while water has a com-
pressibility factor of k = × / = ×− − −4.9 10  m N 50 10  atm .H O

10 2 6 1
2  In other words, 

a given  volume of water decreases by 50 one-millionths of the original volume for 
each atmosphere (atm) increase in pressure. Thus the assumption that the water is 
incompressible is valid for our application.

Consider a fluid in motion. Suppose that initially the flow velocities are differ-
ent for adjacent layers of fluid. Then an exchange of molecules between the two 
layers tends to equalize the velocities in the layers. This is internal friction, and 
the exchange of momentum is known as viscosity. Solids are more viscous than 
fluids, and fluids are more viscous than gases. A measure of viscosity is the co-
efficient of viscosity μ / (N s m ).2  A larger coefficient of viscosity implies higher 
viscosity. The coefficient of viscosity (under standard conditions, 20°C) for air is 

0.178 10  N s m ,air
4 2μ = × /−  and for water we have μ = × /−H O 1.054 10  N s m .2

3 2

Therefore water is about 60 times more viscous than air. Viscosity depends pri-
marily on temperature, not pressure. For comparison, water at 0°C is about 2 times 

See Figure 2.37 for
water tank with input and

output ports.

See Equations (2.105) and (2.106) for 
the nonlinear model.

See Equations (2.111) and (2.113) for
the linear models.

Establish the system configuration

Obtain a model of the process, the
actuator, and the sensor

If the performance meets the specifications,
then finalize the design.

If the performance does not meet the
specifications, then iterate the configuration. 

Identify the variables to be controlled

Establish the control goals

Topics emphasized in this example

Write the specifications

Optimize the parameters and
analyze the performance

Describe a controller and select key
parameters to be adjusted

FIGURE 2.38 Elements of the control system design process emphasized in the fluid flow 
reservoir example.
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124 Chapter 2  Mathematical Models of Systems

more viscous than water at 20°C. With fluids of low viscosity, such as air and water, 
the effects of friction are important only in the boundary layer, a thin layer adjacent 
to the wall of the reservoir and output pipe. We can neglect viscosity in our model 
development. We say our fluid is inviscid.

If each fluid element at each point in the flow has no net angular velocity about 
that point, the flow is termed irrotational. Imagine a small paddle wheel immersed 
in the fluid (say in the output port). If the paddle wheel translates without rotating, 
the flow is irrotational. We will assume the water in the tank is irrotational. For an 
inviscid fluid, an initially irrotational flow remains irrotational.

The water flow in the tank and output port can be either steady or unsteady. 
The flow is steady if the velocity at each point is constant in time. This does not 
necessarily imply that the velocity is the same at every point but rather that at any 
given point the velocity does not change with time. Steady-state conditions can be 
achieved at low fluid speeds. We will assume steady flow conditions. If the output 
port area is too large, then the flow through the reservoir may not be slow enough 
to establish the steady-state condition that we are assuming exists and our model 
will not accurately predict the fluid flow motion.

To obtain a mathematical model of the flow within the reservoir, we employ 
basic principles of science and engineering, such as the principle of conservation of 
mass. The mass of water in the tank at any given time is

 m t A H t ,1ρ( ) ( )=  (2.102)

where A1 is the area of the tank, ρ  is the water density, and H t( ) is the height of the 
water in the reservoir. The constants for the reservoir system are given in Table 2.6.

In the following formulas, a subscript 1 denotes quantities at the input, and a 
subscript 2 refers to quantities at the output. Taking the time derivative of m t( ) in 
Equation (2.102) yields

� �m t A H t ,1ρ( ) ( )=

where we have used the fact that our fluid is incompressible �(that is,  0)ρ =  and that 
the area of the tank, A ,1  does not change with time. The change in mass in the reser-
voir is equal to the mass that enters the tank minus the mass that leaves the tank, or

 � �m t A H t Q t A t ,1 1 2 2ρ ρ υ( ) ( ) ( ) ( )= = −  (2.103)

where Q t1( ) is the input mass flow rate, v t2 ( ) is the exit velocity, and A2 is the 
output port area. The exit velocity, v t ,2 ( )  is a function of the water height. From 
Bernoulli’s equation [39] we have

ρυ ρ ρυ( ) ( ) ( )+ + = +t P gH t t P
1
2

 
1
2

  ,1
2

1 2
2

2

Table 2.6 Water Tank Physical Constants

 ρ
(kg/m )3

 g

 (m/s )2
 A1

 (m )2
 A2

 (m )2
 *H
(m)

 *Q
(kg/s)

1000 9.8 π/4 π/400 1 34.77
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Section 2.8  Design Examples 125

where 1υ  is the water velocity at the mouth of the reservoir, and P1 and P2  are 
the atmospheric pressures at the input and output, respectively. But P1 and P2  are 
equal, and A2 is sufficiently small A A( )= /100 ,2 1  so the water flows out slowly and 
the velocity t1υ ( ) is negligible. Thus Bernoulli’s equation reduces to

 t gH t2 .2υ ( ) ( )=  (2.104)

Substituting Equation (2.104) into Equation (2.103) and solving for �H t( ) yields

 �H t
A
A

g H t
A

Q t  2
1

  .2

1 1
1ρ

( ) ( ) ( )= −












+  (2.105)

Using Equation (2.104), we obtain the exit mass flow rate

 Q t A t g A H t2 .2 2 2 2ρ υ ρ( )( ) ( ) ( )= =  (2.106)

To keep the equations manageable, define

:  
2

, :
1

, and : 2 .1
2

1
2

1
3 2ρ

ρ= − = =k
A g

A
k

A
k g A

Then, it follows that

 �H t k H t k Q t ,  1 2 1( ) ( ) ( )= +

 Q t k H t .2 3( ) ( )=  (2.107)

Equation (2.107) represents our model of the water tank system, where the input is 
Q t1( ) and the output is Q t .2 ( )  Equation (2.107) is a nonlinear, first-order, ordinary 
differential equation model. The model in Equation (2.107) has the functional form

�H t f H t Q t,   ,  1( )( ) ( ) ( )=

Q t h H t Q t,   ,  2 1( )( ) ( ) ( )=

where

f H t Q t k H t k Q t h H t Q t k H t( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )= + =,   and ,   .1 1 2 1 1 3

A set of linearized equations describing the height of the water in the reser-
voir is obtained using Taylor series expansions about an equilibrium flow condition. 
When the tank system is in equilibrium, we have �H t 0.( ) =  We can define Q* and 
H*  as the equilibrium input mass flow rate and water level, respectively. The rela-
tionship between Q* and H* is given by

 Q
k
k

H g A H* * 2 * .1

2
2ρ= − =  (2.108)

This condition occurs when just enough water enters the tank in A1 to make up for the 
amount leaving through A .2  We can write the water level and input mass flow rate as

 H t H H t* ,  ( ) ( )= +∆  (2.109)

Q t Q Q t* ,  1 1( ) ( )= +∆
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126 Chapter 2  Mathematical Models of Systems

where H t( )∆  and Q t1( )∆  are small deviations from the equilibrium (steady-state) 
values. The Taylor series expansion about the equilibrium conditions is given by

 �H t f H t Q t f H Q
f
H

H t HH H
Q Q

,   *,   * *1 *
1 *

( ) ( )( ) ( ) ( ) ( ) ( )= = +
∂
∂

−=
=

 (2.110)

f
Q

Q t QH H
Q Q

* . . . ,
1

*
1 *

1( )( )+
∂

∂
− +=

=

where

f
H

k H k Q

H
k
H

H H
Q Q

H H
Q Q

1
2

 
*

,*
1 *

1 2 1
*

1 *

1( )∂
∂

=
∂ +

∂
==

=
=
=

and

( )∂
∂

=
∂ +

∂
==

=
=
=

f
Q

k H k Q

Q
kH H

Q Q
H H
Q Q

.
1

*
1 *

1 2 1

1
*

1 *
2

Using Equation (2.108), we have

H
Q

g A
*

*

2
,

2ρ
=

so that

f
H

A

A
g

Q
H H
Q Q

 
*

.*
1 *

2
2

1

ρ∂
∂

= −=
=

It follows from Equation (2.109) that

� �H t H t ,( ) ( )= ∆

since H* is constant. Also, the term f H Q*,   *( ) is identically zero, by definition of 
the equilibrium condition. Neglecting the higher order terms in the Taylor series 
expansion yields

 �H t
A

A
g
Q

H t
A

Q t 
*

 
1

  .2
2

1 1
1

ρ
ρ

( ) ( ) ( )∆ = − ∆ + ∆  (2.111)

Equation (2.111) is a linear model describing the deviation in water level H t( )∆  
from the steady state due to a deviation from the nominal input mass flow rate 

Q t .1( )∆
Similarly, for the output variable Q t2 ( ) we have

 Q t Q Q t h H t Q t,  2 2
*

2 1( )( ) ( ) ( ) ( )= + ∆ =  (2.112)

h H Q
h
H

H t
h

Q
Q tH H

Q Q
H H
Q Q

*,   * ,*
1 * 1

*
1 *

1( ) ( ) ( )≈ +
∂
∂

∆ +
∂

∂
∆=

=
=
=

where Q t2 ( )∆  is a small deviation in the output mass flow rate and

h
H

g A

Q
H H
Q Q *

,*
1 *

2
2
2ρ∂

∂
==

=
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and
∂

∂
==

=
0.

1
*

1 *

h
Q

H H
Q Q

Therefore, the linearized equation for the output variable Q t2 ( ) is

 Q t
g A

Q
H t

*
  .2

2
2
2ρ

( ) ( )∆ = ∆  (2.113)

For control system design and analysis, it is convenient to obtain the input– output 
relationship in the form of a transfer function. The tool to accomplish this is the 
Laplace transform. Taking the time-derivative of Equation (2.113) and substituting 
into Equation (2.111) yields the input–output relationship

�Q t
A

A
g

Q
Q t

A g

A Q
Q t 

*
 

*
  .2

2
2

1
2

2
2

1
1

ρ ρ
( ) ( ) ( )∆ + ∆ = ∆

If we define

 
A

A
g

Q
:  

*
,2

2

1

ρ
Ω =  (2.114)

then we have

 �Q t Q t Q t( ) ( ) ( ).2 2 1∆ + Ω∆ = Ω∆  (2.115)

Taking the Laplace transform (with zero initial conditions) yields the transfer 
function

 .2 1( ) ( )∆ /∆ =
Ω
+ Ω

Q s Q s
s

 (2.116)

Equation (2.116) describes the relationship between the change in the output mass 
flow rate Q s2 ( )∆  due to a change in the input mass flow rate Q s .1( )∆  We can also 
obtain a transfer function relationship between the change in the input mass flow 
rate and the change in the water level in the tank, H s .( )∆  Taking the Laplace trans-
form (with zero initial conditions) of Eq. (2.111) yields

 .1
2( ) ( )∆ /∆ =

+ Ω
H s Q s

k
s

 (2.117)

Given the linear time-invariant model of the water tank system in Equation 
(2.115), we can obtain solutions for step and sinusoidal inputs. Remember that our 
input Q s1( )∆  is actually a change in the input mass flow rate from the steady-state  
value Q * .

Consider the step input

,1 ( )∆ = /Q s q so

where qo  is the magnitude of the step input, and the initial condition is Q 0 0.2 ( )∆ =  
Then we can use the transfer function form given in Eq. (2.116) to obtain

Q s
q

s s
o .2 ( )

( )
∆ =

Ω
+ Ω

M02_DORF2374_14_GE_C02.indd   127M02_DORF2374_14_GE_C02.indd   127 13/09/21   8:12 PM13/09/21   8:12 PM



128 Chapter 2  Mathematical Models of Systems

The partial fraction expansion yields

Q s
q

s
q
s

o o .2 ( )∆ =
−
+ Ω

+

Taking the inverse Laplace transform yields

Q t q e qo
t

o.2 ( )∆ = − +−Ω

Note that 0Ω >  (see Equation (2.114)), so the term e t−Ω  approaches zero as t 
 approaches .∞  Therefore, the steady-state output due to the step input of magni-
tude qo  is

Q qo.2ss∆ =

We see that in the steady state, the deviation of the output mass flow rate from 
the equilibrium value is equal to the deviation of the input mass flow rate from the 
equilibrium value. By examining the variable Ω  in Equation (2.114), we find that 
the larger the output port opening A ,2  the faster the system reaches steady state. In 
other words, as Ω  gets larger, the exponential term e t−Ω  vanishes more quickly, and 
steady state is reached faster.

Similarly for the water level we have

H s
q k

s s
o  

1 1
.2( )∆ =

−
Ω + Ω

−








Taking the inverse Laplace transform yields

H t
q k

eo t  1 .2 ( )( )∆ =
−

Ω
−−Ω

The steady-state change in water level due to the step input of magnitude qo  is

H
q ko .ss

2∆ =
Ω

Consider the sinusoidal input

Q t q to  sin  ,1 ω( )∆ =

which has Laplace transform

Q s
q

s
o .1 2 2
ω
ω

( )∆ =
+

Suppose the system has zero initial conditions, that is, Q 0 0.2 ( )∆ =  Then from 
Equation (2.116) we have

Q s
q

s s
o .2 2 2
ω

ω( )
( )

( )
∆ =

Ω
+ Ω +

Expanding in a partial fraction expansion and taking the inverse Laplace transform 
yields

ω
ω

ω φ

ω ω( )
( )∆ = Ω

Ω +
+

−

Ω +













−Ω sin( )
,2 2 2 2 2 1/2

Q t q
e t

o

t
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where tan .1φ ω( )= /Ω−  So, as t ,→ ∞  we have

ω
ω φ( ) ( )∆ →

Ω

Ω +
−Q t

q
to  sin .2

2 2

The maximum change in output flow rate is

 
ω

( )∆ =
Ω

Ω +
Q t

qo| | .2 max
2 2

 (2.118)

The above analytic analysis of the linear system model to step and sinusoidal 
inputs is a valuable way to gain insight into the system response to test signals. 
Analytic analysis is limited, however, in the sense that a more complete represen-
tation can be obtained with carefully constructed numerical investigations using 
computer simulations of both the linear and nonlinear mathematical models. A 
computer simulation uses a model and the actual conditions of the system being 
modeled, as well as actual input commands to which the system will be subjected.

Various levels of simulation fidelity (that is, accuracy) are available to the con-
trol engineer. In the early stages of the design process, highly interactive design 
software packages are effective. At this stage, computer speed is not as important as 
the time it takes to obtain an initial valid solution and to iterate and fine tune that 
solution. Good graphics output capability is crucial. The analysis simulations are 
generally low fidelity in the sense that many of the simplifications (such as lineariza-
tion) made in the design process are retained in the simulation.

As the design matures usually it is necessary to conduct numerical experiments 
in a more realistic simulation environment. At this point in the design process, the 
computer processing speed becomes more important, since long simulation times 
necessarily reduce the number of computer experiments that can be obtained and 
correspondingly raise costs. Usually these high-fidelity simulations are programmed 
in FORTRAN, C, C++, MATLAB, LabVIEW or similar languages.

Assuming that a model and the simulation are reliably accurate, computer sim-
ulation has the following advantages [13]:

1. System performance can be observed under all conceivable conditions.

2. Results of field-system performance can be extrapolated with a simulation model 
for prediction purposes.

3. Decisions concerning future systems presently in a conceptual stage can be 
examined.

4. Trials of systems under test can be accomplished in a much-reduced period of time.

5. Simulation results can be obtained at lower cost than real experimentation.

6. Study of hypothetical situations can be achieved even when the hypothetical situa-
tion would be unrealizable at present.

7. Computer modeling and simulation is often the only feasible or safe technique to 
analyze and evaluate a system.

The nonlinear model describing the water level flow rate is as follows (using the 
constants given in Table 2.6):

 � ( ) ( ) ( )= − + × −H t H t Q t0.0443 1.2732 10   ,3
1  (2.119)

Q t H t34.77 .2 ( ) ( )=
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130 Chapter 2  Mathematical Models of Systems

With H m0 0.5 ( ) =  and Q t 34.77 kg/s,1( ) =  we can numerically integrate the non-
linear model given by Equation (2.119) to obtain the time history of H t .( )  and Q t .2 ( )  
The response of the system is shown in Figure 2.39. As expected from Equation 
(2.108), the system steady-state water level is H* 1 m=  when Q* 34.77 kg/m .3=

It takes about 250 seconds to reach steady-state. Suppose that the system is at 
steady state and we want to evaluate the response to a step change in the input mass 
flow rate. Consider

1 kg .1 ( )∆ = /Q t s

Then we can use the transfer function model to obtain the unit step response. The 
step response is shown in Figure 2.40 for both the linear and nonlinear  models. 
Using the linear model, we find that the steady-state change in water level is 

H 5.75 cm.∆ =  Using the nonlinear model, we find that the steady-state change in 
water level is H 5.84 cm.∆ =  So we see a small difference in the results obtained 
from the linear model and the more accurate nonlinear model.

As the final step, we consider the system response to a sinusoidal change in the 
input flow rate. Let

Q s
q

s
o ,1 2 2
ω
ω

( )∆ =
+

where 0.05 rad sω = /  and qo 1.=  The total water input flow rate is

Q t Q Q t* ,1 1( ) ( )= +∆

where * 34.77 kg s.= /Q  The output flow rate is shown in Figure 2.41.
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m
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FIGURE 2.39
The tank water level 
time history obtained 
by integrating the 
nonlinear equa-
tions of motion in 
Equation (2.119) with 
H =(0) 0.5 m  and 
Q t Q= =( ) * 34.77 kg /s.1
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The response of the water level is shown in Figure 2.42. The water level is 
 sinusoidal, with an average value of H H* 1 m.av = =  As shown in Equation (2.118),  
the output flow rate is sinusoidal in the steady state, with

Q t
qo

ω
( )∆ =

Ω

Ω +
=| | 0.4 kg/s.2 max

2 2
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Nonlinear step response

Linear step response

FIGURE 2.40
The response 
showing the linear 
versus nonlinear 
response to a step 
input.
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FIGURE 2.41
The output flow 
rate response to a 
 sinusoidal variation 
in the input flow.
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132 Chapter 2  Mathematical Models of Systems

Thus in the steady state (see Figure 2.41) we expect that the output flow rate will 
oscillate at a frequency of 0.05 rad/s,ω =  with a maximum value of

Q Q Q t* | | 35.18 kg/s.2 2 maxmax ( )= + ∆ =  ■

EXAMPLE 2.13 Electric traction motor control

The electric motor drive is shown in block diagram form in Figure 2.43(a), incor-
porating the necessary control. The goal of the design is to obtain a system model 
and the closed-loop transfer function of the system, ,ω ω( ) ( )/s sd  select appropriate 
resistors R R R,   ,   ,1 2 3  and R ,4  and then predict the system response.

The first step is to describe the transfer function of each block. We propose 
the use of a tachometer to generate a voltage proportional to velocity and to con-
nect that voltage, t ,υ  to one input of a difference amplifier, as shown in Figure 
2.43(b). The power amplifier is nonlinear and can be approximately represented by 

t e t g2 ( ),2
3

1 1υ υ υ( ) ( )= =  an exponential function with a normal operating point, 
1.5 V.10υ =  We then obtain a linear model

 υ
υ

υ
υ υ υ( ) ( ) ( ) ( )∆ = ∆ = ∆ = ∆

υ

υt
dg

d
t e t t

( )
6 540  .2

1

1
1

3
1 1

10

10  (2.120)

Taking the Laplace transform, yields

V s V s540 .2 1( ) ( )∆ = ∆
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FIGURE 2.42
The water level 
response to a 
 sinusoidal variation 
in the input flow.
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Also, for the differential amplifier, we have

 
R R
R R

R
R

tυ υ υ=
+ /
+ /

−
1
1

    .1
2 1

3 4
in

2

1
 (2.121)

We wish to obtain an input control that sets td ,inω υ( ) =  where the units of dω  are 
rad/s and the units of inυ  are volts. Then, when V10  ,inυ =  the steady-state speed 
is ω = 10 rad/s.  We note that Kt t dυ ω=  in steady state, and we expect, in balance, 
the steady-state output to be

 
R R
R R

R
R

Ktυ υ υ=
+ /
+ /

−
1
1

    .1
2 1

3 4
in

2

1
in  (2.122)
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FIGURE 2.43
Speed control of 
an electric traction 
motor.
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When the system is in balance, 0,1υ =  and when Kt 0.1,=  we have

R R
R R

R
R

Kt
+ /
+ /

=
1
1

  .2 1

3 4

2

1

This relation can be achieved when

10 and 10.2 1 3 4/ = / =R R R R

The parameters of the motor and load are given in Table 2.7. The overall sys-
tem is shown in Figure 2.43(b). Reducing the block diagram in Figure 2.43(c) or the 
signal-flow graph in Figure 2.43(d) yields the transfer function

 
s
s

G s G s
G s G s G s G s

G s G s
G s G sd

540
1 0.1 540

540
1 540.1

1 2

1 2 1 2

1 2

1 2

ω
ω

( )
( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

=
+ +

=
+

 
( )( )

=
+ + +

=
+ +s s s s

5400
1 2 0.5 5401

5400
2 2.5 5401.52

 =
+ +s s

2700
1.25 2700.75

.
2

 (2.123)

Since the characteristic equation is second order, we note that n 52ω =  and 
0.012,ζ =  and we expect the response of the system to be highly oscillatory 

(underdamped). ■

EXAMPLE 2.14 Design of a low-pass filter

Our goal is to design a first-order low-pass filter that passes signals at a frequency 
below 106.1 Hz and attenuates signals with a frequency above 106.1 Hz. In addition, 
the DC gain should be /1

2 .
A ladder network with one energy storage element, as shown in Figure 2.44(a), 

will act as a first-order low-pass network. Note that the DC gain will be equal to /1
2  

(open-circuit the capacitor). The current and voltage equations are

I V V G,  1 1 2( )= −

I V V G,  2 2 3( )= −

V I I R,2 1 2( )= −

V I Z,3 2=

where G R= /1  and Z s Cs( ) = /1 .  The signal-flow graph constructed for the four 
equations is shown in Figure 2.44(b), and the corresponding block diagram is shown 
in Figure 2.44(c). The three loops are L s GR L s GR1,   1,1 2( ) ( )= − = − = − = −  and 

Table 2.7 Parameters of a Large DC Motor

Km 10= J 2=

Ra 1= b 0.5=

La 1= Kb 0.1=
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L s GZ s .3( ) ( )= −  All loops touch the forward path. Loops L s1( ) and L s3( ) are non-
touching. Therefore, the transfer function is

( )
( )

( )
( )

( )
( ) ( ) ( ) ( ) ( )

( )
( )

= =
− + + +

=
+

T s
V s
V s

P s
L s L s L s L s L s

GZ s
GZ s1 3 2

3

1

1

1 2 3 1 3

1
3 2

1 3
2 3

.
( )

( )
=

+
=

/
+ /RCs

RC
s RC

If one prefers to utilize block diagram reduction techniques, one can start at the 
output with

V s Z s I s .3 2( ) ( ) ( )=

But the block diagram shows that

( )( ) ( ) ( )= −I s G V s V s .2 2 3

Therefore,

V s Z s GV s Z s GV s3 2 3( ) ( ) ( ) ( ) ( )= −

V2(s)

L1(s)

I1(s) I2(s)

L3(s)

L2(s)

V3(s)V1(s)
G G Z(s)1 11 R

-1 -1

-1

L1(s) = - GR = -1

L2(s) = - GR = -1

L3(s)  = - GZ(s)

(b)

(a)

V1(s) V3(s)
I1(s) I2(s)

R

R R

CV2(s)

-

+

-

+

-

+ 

+ - +
V1(s) V3(s)

V2(s)I1(s)

I2(s)

-
G

+
R

-
G Z(s)

(c)

FIGURE 2.44
(a) Ladder network, 
(b) its signal-flow 
graph, and (c) its 
block diagram.
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136 Chapter 2  Mathematical Models of Systems

so

V s
Z s G

Z s G
V s

1
  .2 3( ) ( )

( )
( )=

+

We will use this relationship between V s3( ) and V s2 ( ) in the subsequent 
 development. Continuing with the block diagram reduction, we have

( )( ) ( ) ( ) ( ) ( ) ( )= − + −V s Z s GV s Z s GR I s I s ,3 3 1 2

but from the block diagram, we see that

( )( ) ( ) ( ) ( )
( )
( )

= − =I s G V s V s I s
V s
Z s

, .1 1 2 2
3

Therefore,

( )( ) ( ) ( ) ( ) ( ) ( ) ( )= − + − −V s Z s GV s Z s G R V s V s GRV s .3 3
2

1 2 3

Substituting for V s2 ( ) yields

V s
GR GZ s

GR GZ s GR GZ s
V s

( )
( )

( )
( ) ( )

( ) ( ) ( )
( )=

+ + +1 2
  .3 1

But we know that GR 1;=  hence, we obtain

V s
GZ s

GZ s
V s

RC
s RC

( )
( )

( )
( )

( )
( )

=
+

=
/

+ /3 2
 

1 3
2 3

.3 1

Note that the DC gain is /1
2  as expected. The pole is desired at 

π( )= = =p 2 106.1 666.7  2000/3.  Therefore, we require RC 0.001.=  Select 
R 1 k= Ω and C 1  F.μ=  Hence, we achieve the filter

T s
s

333.3
666.7

.( ) =
+

 ■

2.9 THE SIMULATION OF SYSTEMS USING CONTROL DESIGN SOFTWARE

Application of the many classical and modern control system design and analy-
sis tools is based on mathematical models. Most popular control design  software 
packages can be used with systems given in the form of transfer function 
 descriptions. In this book, we will focus on m-file scripts containing commands 
and functions to analyze and design control systems. Various commercial con-
trol system packages are available for student use. The m-files described here 
are compatible with the MATLAB† Control System Toolbox and the LabVIEW 
MathScript RT Module.‡

†See Appendix A for an introduction to MATLAB.
‡See Appendix B for an introduction to LabVIEW MathScipt RT Module.
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Section 2.9  The Simulation of Systems Using Control Design Software 137

We begin this section by analyzing a typical spring-mass-damper mathematical 
model of a mechanical system. Using an m-file script, we will develop an interactive 
analysis capability to analyze the effects of natural frequency and damping on the 
unforced response of the mass displacement. This analysis will use the fact that we 
have an analytic solution that describes the unforced time response of the mass 
displacement.

Later, we will discuss transfer functions and block diagrams. In particular, we 
are interested in manipulating polynomials, computing poles and zeros of transfer 
functions, computing closed-loop transfer functions, computing block diagram re-
ductions, and computing the response of a system to a unit step input. The section 
concludes with the electric traction motor control design of Example 2.13.

The functions covered in this section are roots, poly, conv, polyval, tf, pzmap, 
pole, zero, series, parallel, feedback, minreal, and step.

A spring-mass-damper mechanical system is shown in Figure 2.2. The motion of 
the mass, denoted by y t( ), is described by the differential equation

� �My t by t ky t r t .( ) ( ) ( ) ( )+ + =

The unforced dynamic response y t( ) of the spring-mass-damper mechanical system is

y t
y

e tt
nn

ζ
ω ζ θ( )( ) =

−
− +ζω−(0)

1
   sin 1   ,

2
2

where k M b kMnω ζ ( )= / = /,   2 ,  and cos   .1θ ζ= −  The initial displacement 
is y 0( ). The transient system response is underdamped when 1,ζ <  overdamped 
when 1,ζ >  and critically damped when 1.ζ =  We can visualize the unforced 
time response of the mass displacement following an initial displacement of y 0( ).  
Consider the underdamped case:

	❏ y
k
M

b
M

nω ζ( ) = = = = =






0 0.15 m, 2

rad
s

,
1

2 2
2, 1 .

The commands to generate the plot of the unforced response are shown in 
Figure 2.45. In the setup, the variables y 0( ), n,ω  t, and ζ  are input at the command 
level. Then the script unforced.m is executed to generate the desired plots. This 
creates an interactive analysis capability to analyze the effects of natural frequency 
and damping on the unforced response of the mass displacement. One can investi-
gate the effects of the natural frequency and the damping on the time response by 
simply entering new values of nω  and ζ  at the command prompt and running the 
script unforced.m again. The time-response plot is shown in Figure 2.46. Notice 
that the script automatically labels the plot with the values of the damping coeffi-
cient and natural frequency. This avoids confusion when making many interactive 
 simulations. Using scripts is an important aspect of developing an effective interac-
tive design and analysis capability.

For the spring-mass-damper problem, the unforced solution to the differential 
equation was readily available. In general, when simulating closed-loop feedback 

M02_DORF2374_14_GE_C02.indd   137M02_DORF2374_14_GE_C02.indd   137 13/09/21   8:12 PM13/09/21   8:12 PM



138 Chapter 2  Mathematical Models of Systems

control systems subject to a variety of inputs and initial conditions, it is difficult to 
obtain the solution analytically. In these cases, we can compute the solutions nu-
merically and to display the solution graphically.

Most systems considered in this book can be described by transfer functions. 
Since the transfer function is a ratio of polynomials, we begin by investigating how to 
manipulate polynomials, remembering that working with transfer functions means 
that both a numerator polynomial and a denominator polynomial must be specified.

%Compute Unforced Response to an Initial Condition
%
c=(y0/sqrt(1-zeta^2));
y=c*exp(-zeta*wn*t).*sin(wn*sqrt(1-zeta^2)*t+acos(zeta));
%
bu=c*exp(-zeta*wn*t);bl=-bu;
%
plot(t,y,t,bu,'--',t,bl,'--'), grid
xlabel('Time (s)'), ylabel('y(t) (m)')
legend(['\omega_n=',num2str(wn),'     \zeta=',num2str(zeta)])

>>y0=0.15; 
>>wn=sqrt(2);
>>zeta=1/(2*sqrt(2));
>>t=[0:0.1:10];
>>unforced

unforced.m

e- Zvnt envelope

Z

vn

y (0)/ 1 - Z2

FIGURE 2.45
Script to analyze 
the spring-mass-
damper.

0 1 2 3 4 5 6 7 8 9 10
Time (s)

0.20

0.15

0.10

0.05

0

- 0.05

- 0.10

- 0.15

- 0.20

y(
t)

 (
m

)

y(0)

-

e-Zvnt

y(0)
e-Zvnt

   vn = 1.4142, Z = 0.3535

1 - Z2

1 - Z2

FIGURE 2.46
Spring-mass-
damper unforced 
response.
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Section 2.9 The Simulation of Systems Using Control Design Software 139

Polynomials are represented by row vectors containing the polynomial coeffi-
cients in order of descending degree. For example, the polynomial

p s s s3 43 2( ) = + +

is entered as shown in Figure 2.47. Notice that even though the coefficient of the s 
term is zero, it is included in the input definition of p(s).

If p is a row vector containing the coefficients of p(s) in descending degree, then 
roots(p) is a column vector containing the roots of the polynomial. Conversely, if 
r is a column vector containing the roots of the polynomial, then poly(r) is a row 
vector with the polynomial coefficients in descending degree. We can compute the 
roots of the polynomial p s s s3 43 2( ) = + +  with the roots function as shown in 
Figure 2.47. In this figure, we show how to reassemble the polynomial with the poly 
function.

Multiplication of polynomials is accomplished with the conv function. Suppose 
we want to expand the polynomial

n s s s s3 2 1 4 .2( )( ) ( )= + + +

The associated commands using the conv function are shown in Figure 2.48. Thus, 
the expanded polynomial is

n s s s s3 14 9 4.3 2( ) = + + +

Calculate roots of p(s) = 0.

>>p=[1 3 0 4];

>>r=roots(p)

r =
 -3.3553
  0.1777+ 1.0773i 
  0.1777- 1.0773i
>>p=poly(r)
p =

1.0000 3.0000 0.0000 4.0000

Reassemble polynomial from roots.

p(s) = s3 + 3s2 + 4

FIGURE 2.47
Entering the 
polynomial 

= + +p s s s( ) 3 43 2  
and calculating its 
roots.

>>p=[3 2 1]; q=[1 4];
>>n=conv(p,q)
n=
    3     14     9     4

>>value=polyval(n,-5)
value =

   -66

n(s) = 3s3 + 14s2 + 9s + 4

Evaluate n(s) at s = - 5.

Multiply p and q.

FIGURE 2.48
Using conv and  
polyval to  multiply 
and evaluate 
the polynomials 

+ +s s(3 2 1)2  
+s( 4).
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140 Chapter 2  Mathematical Models of Systems

The function polyval is used to evaluate the value of a polynomial at the given 
value of the variable. The polynomial n s( ) has the value n 5 66,( )− = −  as shown in 
Figure 2.48.

Linear, time-invariant system models can be treated as objects, allowing one to 
manipulate the system models as single entities. In the case of transfer functions, 
one creates the system models using the tf function; for state variable models one 
employs the ss function. The use of tf is illustrated in Figure 2.49(a). For example, 
consider the two system models

G s
s s

G s
s

10
2 5

and
1

1
.1 2 2( ) ( )=

+ +
=

+

The systems G s1( ) and G s2 ( ) can be added using the “ ”+  operator yielding

G s G s G s
s s

s s s
12 15

3 7 5
.1 2

2

3 2( ) ( ) ( )= + =
+ +

+ + +

The corresponding commands are shown in Figure 2.49(b) where sys1 represents 
G s1( ) and sys2 represents G s .2 ( )  Computing the poles and zeros associated with a 
transfer function is accomplished by operating on the system model object with the 
pole and zero functions, respectively, as illustrated in Figure 2.50.

In the next example, we obtain a plot of the pole–zero locations in the complex 
plane. This will be accomplished using the pzmap function, shown in Figure 2.51. 
On the pole–zero map, zeros are denoted by an “o” and poles are denoted by an 
“ ”×  If the pzmap function is invoked without left-hand arguments, the plot is gen-
erated automatically.

sys = tf(num,den)

>> num1=[10];den1=[1 2 5];
>> sys1=tf(num1,den1)

Transfer function:

10
-----------------
s^2 + 2 s + 5

s^2 + 12 s + 15
----------------------------
s^3 + 3 s^2 + 7 s + 5

1
-------
s + 1

>> num2=[1];den2=[1 1];
>> sys2=tf(num2,den2)

Transfer function:

>> sys=sys1+sys2

Transfer function:

G1(s) 

G2(s) 

G1(s) + G2(s) 

Transfer function
object

G(s) =
num
den

(a) (b)

FIGURE 2.49
(a) The tf function. 
(b) Using the tf 
function to create 
transfer function 
objects and adding 
them using the tf  
operator.
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Section 2.9 The Simulation of Systems Using Control Design Software 141

EXAMPLE 2.15 Transfer functions

Consider the transfer functions

G s
s

s s s
H s

s s
s i s i s

6 1
3 3 1

and
1 2

2 2 3
.

2

3 2( ) ( ) ( )( )
( )( )( )

=
+

+ + +
=

+ +
+ − +

Using an m-file script, we can compute the poles and zeros of G s( ), the character-
istic equation of H s( ), and divide G s( ) by H s( ). We can also obtain a plot of the 
pole–zero map of G s( )/H s( ) in the complex plane.

The pole–zero map of the transfer function G s( )/H s( ) is shown in Figure 2.52, 
and the associated commands are shown in Figure 2.53. The pole–zero map 
shows clearly the five zero locations, but it appears that there are only two poles. 

p=pole(sys)

z=zero(sys)

>> sys=tf([1 10],[1 2 1])

Transfer function:

    s + 10
-----------------
s^2 + 2 s + 1

>> p=pole(sys)

p=

   -1
   -1

>> z=zero(sys)

z=

   -10

Poles

sys

The system poles

The system zeros

Transfer
function
object

Zeros

(a) (b)

FIGURE 2.50
(a) The pole and 
zero functions. 
(b) Using the pole 
and zero functions 
to compute the pole 
and zero  locations of 
a linear system.

[P,Z]=pzmap(sys)

P:  pole locations in column vector
Z:  zero locations in column vector

num
den

G(s) =  = sys

FIGURE 2.51
The pzmap 
function.
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142 Chapter 2  Mathematical Models of Systems

This cannot be the case, since we know that for physical systems the number of poles 
must be greater than or equal to the number of zeros. Using the roots function, we 
can ascertain that there are in fact four poles at s 1.= −  Hence, multiple poles or 
multiple zeros at the same location cannot be discerned on the pole–zero map. ■

- 0.5

-2.5-3 -2 -1.5 -1 -0.5 0

2

1.5

1

0.5

0

-1

-1.5

-2

Pole–Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s

Poles

Zeros

FIGURE 2.52
Pole–zero map for  
G(s)/H(s).

>>numg=[6 0 1]; deng=[1 3 3 1];sysg=tf(numg,deng);
>>z=zero(sysg)

z =
     0 + 0.4082i
     0 - 0.4082i

>>p=pole(sysg)

p =
     -1.0000
     -1.0000 + 0.0000i
     -1.0000 -  0.0000i

>>n1=[1 1]; n2=[1 2]; d1=[1 2*i]; d2=[1 -2*i]; d3=[1 3];
>>numh=conv(n1,n2); denh=conv(d1,conv(d2,d3));
>>sysh=tf(numh,denh)

s^2 + 3 s + 2
s^3 + 3 s^2 + 4 s + 12

6 s^5 + 18 s^4 + 25 s^3 + 75 s^2 + 4 s +12
s^5 + 6 s^4 + 14 s^3 + 16 s^2 + 9 s + 2

>>sys=sysg/sysh

>>pzmap(sys) Pole–zero map

G(s)
H(s)

= sys

H(s)

Expand H(s)

Compute poles and
zeros of G(s)

Transfer function:

Transfer function:

FIGURE 2.53
Transfer function  
example for ( )G s   
and ( )H s .
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Section 2.9 The Simulation of Systems Using Control Design Software 143

Suppose we have developed mathematical models in the form of transfer func-
tions for a process, represented by G s( ), and a controller, represented by G sc( ),  
and possibly many other system components such as sensors and actuators. Our 
objective is to interconnect these components to form a control system.

A simple open-loop control system can be obtained by interconnecting a pro-
cess and a controller in series as illustrated in Figure 2.54. We can compute the 
transfer function from R s( ) to Y s( ), as follows.

EXAMPLE 2.16 Series connection

Let the process represented by the transfer function G s( ) be

( ) =G s
s

1
500

,
2

and let the controller represented by the transfer function G sc ( ) be

G s
s
s

c
1
2

.( ) =
+
+

We can use the series function to cascade two transfer functions G s1( ) and G s ,2 ( )  
as shown in Figure 2.55.

The transfer function G s G sc ( ) ( ) is computed using the series function as shown 
in Figure 2.56. The resulting transfer function is

G s G s
s

s s
c

1
500 1000

sys,
3 2( ) ( ) =

+
+

=

R(s)
Controller

Gc(s)
Process

G(s)
Y(s)

U(s)FIGURE 2.54
Open-loop control 
system (without 
feedback).

U(s) Y(s)
System 1

G1(s)
System 2

G2(s)

(a)

(b)

Y(s)
U(s)

= sysT(s) = G1(s) = sys1 G2(s) = sys2

[sys]=series(sys1,sys2)FIGURE 2.55
(a) Block diagram. 
(b) The series 
function.
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144 Chapter 2  Mathematical Models of Systems

where sys is the transfer function name in the m-file script. ■

Block diagrams quite often have transfer functions in parallel. In such cases, the 
function parallel can be quite useful. The parallel function is described in Figure 2.57.

We can introduce a feedback signal into the control system by closing the loop 
with unity feedback, as shown in Figure 2.58. The signal E sa ( ) is an error signal; 
the signal R s( ) is a reference input. In this control system, the controller is in the 
forward path, and the closed-loop transfer function is

∓
T s

G s G s
G s G s
c

c1
.( ) ( ) ( )

( ) ( )
=

1
500 s2G (s) =

s + 1
s + 2

Gc(s) =R(s)
U(s)

Y(s)

(a)

(b)

>>numg=[1]; deng=[500 0 0]; sysg=tf(numg,deng);
>>numh=[1 1]; denh=[1 2]; sysh=tf(numh,denh);
>>sys=series(sysg,sysh);
>>sys

s + 1
500 s^3 + 1000 s^2

Gc(s)G(s)

Transfer function:

FIGURE 2.56
Application of the 
series function.

Y(s)
U(s)

= sysT(s) = G1(s) = sys1 G2(s) = sys2

[sys]=parallel(sys1,sys2)

(a)

(b)

U(s) Y(s)

System 1
G1(s)

System 2
G2(s)

+

+

FIGURE 2.57
(a) Block diagram. 
(b) The parallel 
function.

R(s) Y(s)
+ Controller

Gc(s)
Process

G(s)

U(s)Ea(s)

-+FIGURE 2.58
A basic control 
system with unity 
feedback.
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Section 2.9 The Simulation of Systems Using Control Design Software 145

We can utilize the feedback function to aid in the block diagram reduction pro-
cess to compute closed-loop transfer functions for single- and multiple-loop control 
systems.

It is often the case that the closed-loop control system has unity feedback, as 
illustrated in Figure 2.58. We can use the feedback function to compute the closed-
loop transfer function by setting H s 1.( ) =  The use of the feedback function for 
unity feedback is depicted in Figure 2.59.

The feedback function is shown in Figure 2.60 with the associated system con-
figuration, which includes H s( ) in the feedback path. If the input “sign” is omitted, 
then negative feedback is assumed.

(b)

(a)

R(s) Y(s)
System 1
Gc(s)G(s)

Y(s)
R(s)

= sysT(s) = Gc(s)G(s) = sys1 +1 - positive feedback
-1 - negative feedback (default)

[sys]=feedback(sys1,[1],sign)

-+

FIGURE 2.59
(a) Block diagram. 
(b) The feedback 
function with unity 
feedback.

(b)

T (s) =
Y(s)
R(s)

= sys

[sys]=feedback(sys1,sys2,sign)

G(s) = sys1 H(s) = sys2
+1 - positive feedback
-1 - negative feedback

(default)

(a)

System 1
G(s)

System 2
H(s)

R(s) Y(s)
+

+-

FIGURE 2.60
(a) Block diagram. 
(b) The feedback 
function.
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146 Chapter 2  Mathematical Models of Systems

EXAMPLE 2.17 The feedback function with unity feedback

Let the process, G s( ), and the controller, G sc ,( )  be as in Figure 2.61(a). To apply the 
feedback function, we first use the series function to compute G s G sc ,( ) ( )  followed 
by the feedback function to close the loop. The command sequence is shown in 
Figure 2.61(b). The closed-loop transfer function, as shown in Figure 2.61(b), is

T s
G s G s

G s G s
s

s s s
c

c1
1

500 1000 1
sys.

3 2( ) ( ) ( )
( ) ( )

=
+

=
+

+ + +
=  ■

Another basic feedback control configuration is shown in Figure 2.62. In this 
case, the controller is located in the feedback path. The closed-loop transfer function is

∓
T s

G s
G s H s1

.( ) ( )
( ) ( )

=

EXAMPLE 2.18 The feedback function

Let the process, G s( ), and the controller, H s( ), be as in Figure 2.63(a). To  compute 
the closed-loop transfer function with the controller in the feedback loop, we use 

(a)

1
500 s2G(s) =s + 1

s + 2
Gc(s) =R(s) Y(s)

+

-

U(s)Ea(s)

(b)

Gc(s)G(s)
1 + Gc(s)G(s) 

Y(s)
R(s)

=
s + 1

500 s^3 + 1000 s^2 + s + 1 

>>numg=[1]; deng=[500 0 0]; sys1=tf(numg,deng);
>>numc=[1 1]; denc=[1 2]; sys2=tf(numc,denc);
>>sys3=series(sys1,sys2);
>>sys=feedback(sys3,[1])

Transfer function:

FIGURE 2.61
(a) Block diagram. 
(b) Application 
of the feedback 
function.

R(s) Y(s)

Controller
H(s)

Process
G(s)

Ea(s)+

-+FIGURE 2.62
A basic control 
system with the 
controller in the 
feedback loop.
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Section 2.9 The Simulation of Systems Using Control Design Software 147

the feedback function. The command sequence is shown in Figure 2.63(b). The 
closed-loop transfer function is

T s
s

s s s
2

500 1000 1
sys.

3 2( ) =
+

+ + +
=  ■

The functions series, parallel, and feedback can be used as aids in block dia-
gram manipulations for multiple-loop block diagrams.

EXAMPLE 2.19 Multiloop reduction

A multiloop feedback system is shown in Figure 2.26. Our objective is to compute 
the closed-loop transfer function, T s( ), with

G s
s

G s
s

1
10

,
1

1
,1 2( ) ( )=

+
=

+

G s
s

s s
G s

s
s

1
4 4

,
1
6

,3

2

2 4( ) ( )=
+

+ +
=

+
+

H s
s
s

H s H s
1
2

, 2, and 1.1 2 3( ) ( ) ( )=
+
+

= =

For this example, a five-step procedure is followed:

	❏ Step 1. Input the system transfer functions.
	❏ Step 2. Move H s2 ( ) behind G s .4 ( )
	❏ Step 3. Eliminate the G s G s H s3 4 1( ) ( ) ( ) loop.
	❏ Step 4. Eliminate the loop containing H s .2 ( )
	❏ Step 5. Eliminate the remaining loop and calculate T s( ).

(a)

R(s) Y(s)
-

Ea(s) 1
500 s2G(s) =

s + 1
s + 2

H(s) =

+

(b)

s + 2
500 s^3 + 1000 s^2 + s + 1 

>>numg=[1]; deng=[500 0 0]; sys1=tf(numg,deng);
>>numh=[1 1]; denh=[1 2]; sys2=tf(numh,denh);
>>sys=feedback(sys1,sys2);
>>sys

Transfer function:

G(s)
1 + G(s)H(s) 

Y(s)
R(s)

=   FIGURE 2.63
Application of the 
feedback function: 
(a) block diagram, 
(b) m-file script.
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148 Chapter 2  Mathematical Models of Systems

The five steps are utilized in Figure 2.64, and the corresponding block diagram re-
duction is shown in Figure 2.27. The result of executing the commands is

s s s s s
s s s s s s

sys
4 6 6 5 2

12 205 1066 2517 3128 2196 712
.

5 4 3 2

6 5 4 3 2
=

+ + + + +
+ + + + + +

We must be careful in calling this the closed-loop transfer function. The transfer 
function is defined as the input–output relationship after pole–zero cancellations. 
If we compute the poles and zeros of T s( ), we find that the numerator and denom-
inator polynomials have s( 1)+  as a common factor. This must be canceled before 
we can claim we have the closed-loop transfer function. To assist us in the pole–
zero cancellation, we will use the minreal function. The minreal function, shown 
in Figure 2.65, removes common pole–zero factors of a transfer function. The final 
step in the block reduction process is to cancel out the common factors, as shown in 
Figure 2.66. After the application of the minreal function, we find that the order of 
the denominator polynomial has been reduced from six to five, implying one pole–
zero cancellation. ■

>>ng1=[1]; dg1=[1 10]; sysg1=tf(ng1,dg1);
>>ng2=[1]; dg2=[1 1]; sysg2=tf(ng2,dg2);
>>ng3=[1 0 1]; dg3=[1 4 4]; sysg3=tf(ng3,dg3);
>>ng4=[1 1]; dg4=[1 6]; sysg4=tf(ng4,dg4);
>>nh1=[1 1]; dh1=[1 2]; sysh1=tf(nh1,dh1);
>>nh2=[2]; dh2=[1]; sysh2=tf(nh2,dh2);
>>nh3=[1]; dh3=[1]; sysh3=tf(nh3,dh3);
>>sys1=sysh2/sysg4;
>>sys2=series(sysg3,sysg4);
>>sys3=feedback(sys2,sysh1,+1);
>>sys4=series(sysg2,sys3);
>>sys5=feedback(sys4,sys1);
>>sys6=series(sysg1,sys5);
>>sys=feedback(sys6,sysh3);

Step 1

Step 2

Step 3

Step 4

Step 5

s^5 + 4 s^4 + 6 s^3 + 6 s^2 + 5 s + 2
12 s^6 + 205 s^5 + 1066 s^4 + 2517 s^3 + 3128 s^2 + 2196 s + 712

Transfer function:

FIGURE 2.64
Multiple-loop block 
reduction.

G(s) = sys1

Possible common factors

T(s) = sys

No common factors

sys=minreal(sys1)
FIGURE 2.65
The minreal 
function.
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Section 2.9 The Simulation of Systems Using Control Design Software 149

EXAMPLE 2.20 Electric traction motor control

Finally, let us reconsider the electric traction motor system from Example 2.13. The 
block diagram is shown in Figure 2.43(c). The objective is to compute the closed-
loop transfer function and investigate the response of sω( ) to a commanded sd .ω ( )  
The first step, as shown in Figure 2.67, is to compute the closed-loop transfer func-
tion ω ω( ) ( ) ( )=s s T sd/ .  The closed-loop characteristic equation is second order 
with n 52ω =  and 0.012.ζ =  Since the damping is low, we expect the response to 
be highly oscillatory. We can investigate the response tω( ) to a reference input, 

td ,ω ( )  by utilizing the step function. The step function, shown in Figure 2.68, calcu-
lates the unit step response of a linear system. The step function is very important, 
since control system performance specifications are often given in terms of the unit 
step response.

If the only objective is to plot the output, y t( ), we can use the step function 
without left-hand arguments and obtain the plot automatically with axis labels. If 
we need y t( ) for any purpose other than plotting, we must use the step function 
with left-hand arguments, followed by the plot function to plot y t( ). We define t as 
a row vector containing the times at which we wish the value of the output variable 
y t( ). We can also select t t ,final=  which results in a step response from t 0=  to 
t tfinal=  and the number of intermediate points are selected automatically.

>>num=[1 4 6 6 5 2]; den=[12 205 1066 2517 3128 2196 712];
>>sys1=tf(num,den);
>>sys=minreal(sys1);

Transfer function:

0.08333 s^4 + 0.25 s^3 + 0.25 s^2 + 0.25 s + 0.1667
s^5 + 16.08 s^4 + 72.75 s^3 + 137 s^2 + 123.7 s + 59.33

Cancel common factors.

FIGURE 2.66
Application of the 
minreal function.

5400
2 s^2 + 2.5 s + 5402

>>num1=[10]; den1=[1 1]; sys1=tf(num1,den1);
>>num2=[1]; den2=[2 0.5]; sys2=tf(num2,den2);
>>num3=[540]; den3=[1]; sys3=tf(num3,den3);
>>num4=[0.1]; den4=[1]; sys4=tf(num4,den4);
>>sys5=series(sys1,sys2);
>>sys6=feedback(sys5,sys4);
>>sys7=series(sys3,sys6);
>>sys=feedback(sys7,[1])

Compute closed-loop
transfer function

v(s)
vd(s)

Eliminate
inner loop

Transfer function:

FIGURE 2.67
Electric traction 
motor block 
reduction.
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150 Chapter 2  Mathematical Models of Systems

The step response of the electric traction motor is shown in Figure 2.69. As 
expected, the wheel velocity response, given by y t( ), is highly oscillatory. Note that 
the output is y t t .ω( ) ( )≡  ■

2.10 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

Our goal for the disk drive system is to position the reader head accurately at the 
desired track and to move from one track to another. We need to identify the plant, 
the sensor, and the controller. The disk drive reader uses a permanent magnet 

(a)

(b)

u(t) y (t)
Step
input

Output
System

G(s)

t t

y(t) = output response at t
    T = simulation time

t = T: user-supplied time vector
or
t = Tfinal: simulation final time

G(s) = sys

[y,T]=step(sys,t)

(optional)

FIGURE 2.68
The step function.

(b)(a)

Time (s)
0.5 1.00 1.5 2.0 2.5 3.0

0.2
0

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

W
he

el
 v

el
oc

ity

% This script computes the step
% response of the traction motor
% wheel velocity
%
num=[5400]; den=[2 2.5 5402]; sys=tf(num,den);
t=[0:0.005:3];
[y,t]=step(sys,t);
plot(t,y),grid
xlabel('Time (s)')
ylabel('Wheel velocity')

FIGURE 2.69 (a) Traction motor wheel velocity step response. (b) m-file script.
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Section 2.10  Sequential Design Example: Disk Drive Read System 151

DC motor to rotate the reader arm. The DC motor is called a voice coil motor. 
The read head is mounted on a slider device, which is connected to the arm as shown 
in Figure 2.70. A flexure (spring metal) is used to enable the head to float above 
the disk at a gap of less than 100 nm. The thin-film head reads the magnetic flux 
and provides a signal to an amplifier. The error signal of Figure 2.71(a) is provided 
by reading the error from a prerecorded index track. Assuming an accurate read 
head, the sensor has a transfer function H s 1,( ) =  as shown in Figure 2.71(b). The 
model of the permanent magnet DC motor and a linear amplifier is shown in Figure 
2.71(b). As a good approximation, we use the model of the armature- controlled 
DC motor as shown earlier in Figure 2.20 with Kb 0.=  The model shown in Figure 
2.71(b) assumes that the flexure is entirely rigid and does not significantly flex. In 
future control designs, we should consider the model when the flexure cannot be 
assumed to be completely rigid.

Motor

Arm

Flexure

Head

FIGURE 2.70
Head mount for 
reader, showing 
flexure.

(a)

(b)

Read head and index track on disk

Actual
head

position-

+ Error
Input

voltageDesired
head

position

Control device

Sensor

DC motor and arm

Actuator and read arm

Amplifier

-

+ E(s) V(s)
R(s) Y(s)

H(s) = 1

Sensor

Motor and arm G(s)
Amplifier

Ka s(Js + b)(Ls + R)
G(s) =

Km

FIGURE 2.71
Block diagram 
model of disk drive 
read system.
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152 Chapter 2  Mathematical Models of Systems

Table 2.8 Typical Parameters for Disk Drive Reader

Parameter Symbol Typical Value

Inertia of arm and read head J 1 N m s /rad2

Friction b 20 N m s/rad

Amplifier Ka 10–1000

Armature resistance R 1 Ω

Motor constant Km 5 N m/A

Armature inductance L 1 mH

Typical parameters for the disk drive system are given in Table 2.8. Thus, 
we have

 G s
K

s Js b Ls R s s s
m 5000

20 1000
.( )

( )( ) ( )( )
=

+ +
=

+ +
 (2.124)

We can also write

 
1 1

,
τ τ

( )
( )

( )( )
=

/
+ +

G s
K bR

s s s
m

L
 (2.125)

where 50 msτ = / =J bL  and 1 ms.τ = / =L R  Since � L,τ τ  we often neglect .τ   
Then, we would have

1
0.25

0.05 1
5

20
.

τ
( )

( )
( ) ( ) ( )

≈
/

+
=

+
=

+
G s

K bR
s s s s s s

m

L

The block diagram of the closed-loop system is shown in Figure 2.72. Using the 
block diagram transformation of Table 2.5, we have

 
Y s
R s

K G s
K G s
a

a1
.

( )
( )

( )
( )

=
+

 (2.126)

Using the approximate second-order model for G s( ), we obtain

Y s
R s

K
s s K

a

a

5
20 5

.
2

( )
( )

=
+ +

Y(s)
-

+
R(s)

G(s)Amplifier

Ka
5

s(s + 20)FIGURE 2.72
Block diagram 
of closed-loop 
system.
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Section 2.11   Summary 153

When Ka 40,=  we have

Y s
s s

R s
200

20 200
  .

2( ) ( )=
+ +

We obtain the step response for R s
s

0.1
 rad,( ) =  as shown in Figure 2.73.

2.11 SUMMARY

In this chapter, we have been concerned with quantitative mathematical mod-
els of control components and systems. The differential equations describing the 
 dynamic performance of physical systems were utilized to construct a mathemat-
ical model. The physical systems under consideration can include a wide-range of 
 mechanical, electrical, biomedical, environmental, aerospace, industrial, and chem-
ical  engineering systems. A linear approximation using a Taylor series expansion 
about the operating point was utilized to obtain a small-signal linear approxima-
tion for nonlinear control components. Then, with the approximation of a linear 
system, one may utilize the Laplace transformation and its related input–output 
 relationship given by the transfer function. The transfer function approach to linear 
systems allows the analyst to determine the response of the system to various input 
signals in terms of the location of the poles and zeros of the transfer function. Using 
 transfer function notations, block diagram models of systems of interconnected 
components were  developed. The block relationships were obtained. Additionally, 
an alternative use of transfer function models in signal-flow graph form was inves-
tigated. Mason’s  signal-flow gain formula was presented and found to be useful for 
obtaining the relationship between system variables in a complex feedback system. 
The advantage of the signal-flow graph method was the availability of Mason’s sig-
nal-flow gain formula, which provides the relationship between system variables 
without requiring any reduction or manipulation of the flow graph. Thus, we have 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (s)

0

0.02

0.04

0.06

0.08

0.12

0.1

y(
t)

 (
ra

d)
FIGURE 2.73
The system response 
of the system shown 
in Figure 2.72 for 

=R s
s

( )
0.1 .
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154 Chapter 2  Mathematical Models of Systems

obtained a useful mathematical model for feedback control systems by developing 
the concept of a transfer function of a linear system and the relationship among sys-
tem variables using block diagram and signal-flow graph models. We considered the 
utility of the computer simulation of linear and nonlinear systems to determine the 
response of a system for several conditions of the system parameters and the envi-
ronment. Finally, we continued the development of the Disk Drive Read System by 
obtaining a model in transfer function form of the motor and arm.

SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or False, 
Multiple Choice, and Word Match. To obtain direct feedback, check your answers with the 
answer key provided at the conclusion of the end-of-chapter problems. Use the block diagram 
in Figure 2.74 as specified in the various problem statements.

-

+ +

+

+

+

R(s) Y(s)

N(s)

Controller

Measurement

Gc(s)

Process

G(s)

H(s)

Td(s)

Ea(s)

FIGURE 2.74 Block diagram for the Skills Check.

In the following True or False and Multiple Choice problems, circle the correct answer.

1. Very few physical systems are linear within some range of the variables. True or False

2. The s-plane plot of the poles and zeros graphically portrays the character  
of the natural response of a system. True or False

3. The roots of the characteristic equation are the zeros of the closed-loop 
system. True or False

4. A linear system satisfies the properties of superposition and homogeneity. True or False

5. The transfer function is the ratio of the Laplace transform of the output  
variable to the Laplace transform of the input variable, with all initial  
conditions equal to zero. True or False

6. Consider the system in Figure 2.74 where

G s H s G s
s

s sc 10, 1, and
50

60 500
.

2( ) ( ) ( )= = =
+

+ +

If the input R s( ) is a unit step input, T sd 0,( ) =  and N s 0,( ) =  the final value of the 
 output ( )y t  is:

a. y y tss
t
lim   100( )= =
→∞

b. y y tss
t
lim   1( )= =
→∞

c. y y tss
t
lim   50( )= =
→∞

d. None of the above
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7. Consider the system in Figure 2.74 with

G s H s G s
s

s sc 20, 1, and
4

12 65
.

2( ) ( ) ( )= = =
+

− −

When all initial conditions are zero, the input R s( ) is an impulse, the disturbance 
T sd 0,( ) =  and the noise N s 0,( ) =  the output y t( ) is

a. y t e et t10 105 3( ) = +− −

b. y t e et t108( ) = +− −

c. y t e et t10 103 5( ) = −− −

d. y t e et t20 58 15( ) = +− −

8. Consider a system represented by the block diagram in Figure 2.75.

-

+ 10
s + 5

Y(s)R(s)

5

1
s

+

+

FIGURE 2.75 Block diagram with an internal loop.

The closed-loop transfer function T s Y s R s( ) ( ) ( )= /  is

a. T s
s s

50
55 502( ) =

+ +

b. T s
s s

10
55 102( ) =

+ +

c. T s
s s

10
50 552( ) =

+ +

d. None of the above

Consider the block diagram in Figure 2.74 for Problems 9 through 11 where

G s H s G s
s sc 4, 1, and

5
10 5

.
2( ) ( ) ( )= = =

+ +

T sd ( ) = 0,  and N s( ) = 0.

9. The closed-loop transfer function T s Y s R s( ) ( ) ( )= /  is:

a. T s
s s

50
5 502( ) =

+ +

b. T s
s s

20
10 252( ) =

+ +

c. T s
s s

50
5 562( ) =

+ +

d. T s
s s

20
10 152( ) =

+ −
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156 Chapter 2  Mathematical Models of Systems

10. The closed-loop unit step response is:

a. y t e t et t20
25

20
25

5 2 5( ) = + −− −

b. y t te t1 20 5( ) = + −

c. y t e tet t20
25

20
25

45 5( ) = − −− −

d. y t e tet t1 2 45 5( ) = − −− −

11. The final value of the unit step response y t( ) is:

a. y y tss
t
lim   0.8( )= =
→∞

b. y y tss
t
lim   1.0( )= =
→∞

c. y y tss
t
lim   2.0( )= =
→∞

d. y y tss
t
lim   1.25( )= =
→∞

12. Consider the differential equation

y t y t y t u t�� �( ) ( ) ( ) ( )+ + =2

where y y�( ) ( )= =0 0 0.   The poles of this system are:

a. s s1,   11 2= − = −

b. s j s j1 ,   11 2= = −

c. s s1,   21 2= − = −

d. None of the above

13. A cart of mass m 1000 kg=  is attached to a truck using a spring of stiffness 
k = /  20,000 N m  and a damper of constant = /200 Ns m,b  as shown in Figure 2.76. 
The truck moves at a constant acceleration of a = /0.7 m s2.

b m

k

FIGURE 2.76 Truck pulling a cart of mass m.

The transfer function between the speed of the truck and the speed of the cart is:

a. T s
s s

50
5 1002( ) =

+ +

b. T s
s

s s
20

10 252( ) =
+

+ +

c. T s
s

s s
100

5 1002( ) =
+

+ +
d. None of the above
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14. Consider the closed-loop system in Figure 2.74 with

G s H s G s
s s sc 15, 1, and

1000
50 4500 1000

.
3 2( ) ( ) ( )= = =

+ + +

T sd ( ) = 0,  and N s( ) = 0.

Compute the closed-loop transfer function and the closed-loop poles. 

a. T s
s s s

s s j
15000

50 4500 16000
,   3.70,   23.15 61.59

3 2 1 2,3( ) =
+ + +

= − = − ±

b. T s
s s

s s
15000

50 4500 16000
,   3.70,   86.29

2 1 2( ) =
+ +

= − = −

c. T s
s s s

s s j
1

50 4500 16000
,   3.70,   23.2 63.2

3 2 1 2,3( ) =
+ + +

= − = − ±

d. T s
s s s

s s s
15000

50 4500 16000
,   3.70,   23.2,   63.2

3 2 1 2 3( ) =
+ + +

= − = − = −

15. Consider the feedback system in Figure 2.74 with

G s
K s

s
H s s G s

s s s
c

0.3
, 2 , and

1
2 10 45

.
2( )

( )
( )

( ) ( )
( )

=
+

= =
− + +

Assuming R s s0 and N 0,( ) ( )= =  the closed-loop transfer function from the distur-
bance T sd ( ) to the output Y s( ) is:

a. Y s
T s s s K s Kd

1
8 2 25 0.6 903 2

( )
( ) ( ) ( )

=
+ + + + −

b. Y s
T s s s K s Kd

100
8 2 25 0.6 903 2

( )
( ) ( ) ( )

=
+ + + + −

c. Y s
T s s K s Kd

1
8 2 25 0.6 902

( )
( ) ( ) ( )

=
+ + + −

d. Y s
T s

K s
s s K s K sd

0.3
8 2 25 0.6 904 3 2

( )
( )

( )
( ) ( )

=
+

+ + + + −

In the following Word Match problems, match the term with the definition by writing the correct 
letter in the space provided.

a. Actuator An oscillation in which the amplitude decreases  
with time.

b. Block diagrams A system that satisfies the properties of  superposition 
and homogeneity.

c.  Characteristic  
 equation

The case where damping is on the boundary  between 
underdamped and overdamped.

d. Critical damping A transformation of a function f(t) from the time  
domain into the complex frequency domain  
yielding F(s).

e. Damped oscillation The device that provides the motive power to the 
process.

f. Damping ratio A measure of damping. A dimensionless number for 
the second-order characteristic equation.

g. DC motor The relation formed by equating to zero the 
 denominator of a transfer function.
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158 Chapter 2  Mathematical Models of Systems

h. Laplace transform Unidirectional, operational blocks that represent the 
transfer functions of the elements of the system.

i. Linear
approximation

A rule that enables the user to obtain a transfer 
 function by tracing paths and loops within a system.

j. Linear system An electric actuator that uses an input voltage as a 
 control variable.

k. Mason loop rule The ratio of the Laplace transform of the output 
 variable to the Laplace transform of the input variable.

l. Mathematical
models

Descriptions of the behavior of a system using 
mathematics.

m. Signal-flow graph A model of a system that is used to investigate the be-
havior of a system by utilizing actual input signals.

n. Simulation A diagram that consists of nodes connected by  several 
directed branches and that is a graphical  representation 
of a set of linear relations.

o. Transfer function An approximate model that results in a linear relationship 
between the output and the input of the device.

Exercises are straightforward applications of the concepts 
of the chapter.

E2.1 A unity, negative feedback system has a nonlinear 
function y f e e ,2( )= =  as shown in Figure E2.1. For 
an input r in the range of 0 to 4, calculate and plot the 
open-loop and closed-loop output versus input and 
show that the feedback system results in a more linear 
relationship.

E2.4 A laser printer uses a laser beam to print copy rap-
idly for a computer. The laser is positioned by a control 
input r t( ), so that we have

Y s
s

s s
R s

4 50
30 200

  .
2( )

( )
( )=

+
+ +

The input r t( ) represents the desired position of the 
laser beam.
(a) If r t( ) is a unit step input, find the output y t( ).
(b) What is the final value of y t( )?

Answer: (a) y t e et t1 0.6 1.6 ,20 10( ) = + −− −  (b) yss 1=

E2.5 A summing amplifier uses an op-amp as shown 
in Figure E2.5. Assume an ideal op-amp model, and 
 determine .oυ

Answer: 
R
Ro

2

1
1 2 3υ υ υ υ( )= − + +

EXERCISES

f (e)
r e y

Close switch for closed loop

-

+

FIGURE E2.1 Open and closed loop.

1 2 3-3 -2 -1

Spring
compresses

Spring
breaks

2

1

-1

-2

-3

Force

Displacement
(cm)

FIGURE E2.3 Spring behavior.

E2.2 A thermistor has a response to temperature 
 represented by

,o
0.3R R e t= −

where R R= Ω =5,000  ,   resistance,o  and T =  tem-
perature in degrees Celsius. Find the linear model for 
the thermistor operating at T 20°C=  and for a small 
range of variation of temperature.
Answer: R T3.7∆ = − ∆

E2.3 The force versus displacement for a spring is shown 
in Figure E2.3 for the spring-mass-damper system of 
Figure 2.1. Graphically find the spring constant for 
the equilibrium point of 1.0 cmy =  and a range of 
 operation of 2.0 cm.±
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v3

v2

v1

vo

R2

+

--

+

-
R1

R1

R1

FIGURE E2.5 A summing amplifier using an op-amp.

E2.6 A nonlinear device is represented by the function

y f x Aex( )= = ,

where the operating point for the input x is x = 0,o  
where A is a constant. Determine a linear approxima-
tion valid near the operating point.

Answer: y A Ax A x= + = +(1 ).

E2.7 A lamp’s intensity stays constant when monitored 
by an optotransistor-controlled feedback loop. When 
the voltage drops, the lamp’s output also drops, and 
optotransistor Q1  draws less current. As a result, a 
power transistor conducts more heavily and charges 
a capacitor more rapidly [24]. The capacitor voltage 
controls the lamp voltage directly. A block diagram of 
the  system is shown in Figure E2.7. Find the closed-
loop transfer function, I s( )/R s( ) where I s( ) is the 
lamp intensity, and R s( ) is the command or desired 
level of light.

E2.8 A control engineer, N. Minorsky, designed an inno-
vative ship steering system in the 1930s for the U.S. 
Navy. The system is represented by the block diagram 
shown in Figure E2.8, where Y s( ) is the ship’s course, 
R s( ) is the desired course, and A s( ) is the rudder 
angle [16]. Find the transfer function Y s( )/R s( ).

Answer:  
Y s

R s

( )
( )

=

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )+ + + +

KG s G s s

G s H s G s G s H s H s KG s G s s

/

1 [ ] /
1 2

1 3 1 2 1 2 1 2

E2.9 A four-wheel antilock automobile braking  system 
uses electronic feedback to control automatically the  
brake force on each wheel [15]. A block  diagram model 
of a brake control system is shown in Figure  E2.9, 
where F sf ( )  and F sR ( ) are the braking force of the 
front and rear wheels, respectively, and R s( ) is the 
desired automobile response on an icy road. Find  

( ) ( )F s R sf / .

R(s)
A(s)

Y(s)

-

---

+ + +
G1(s)K

H3(s)

H1(s)

H2(s)

G2(s) 1
s

FIGURE E2.8 Ship steering system.

(a)

(b)

R(s) I(s)
+

-
G1(s)

H(s)

G2(s)

Filter

Iris Opaque tube

Q1

FIGURE E2.7 Lamp controller.
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160 Chapter 2  Mathematical Models of Systems

E2.10 One of the beneficial applications of an auto-
motive control system is the active control of the 
suspension system. One feedback control system 
uses a shock absorber consisting of a cylinder filled 
with a compressible fluid that provides both spring 
and damping forces [17]. The cylinder has a plunger 

R(s)

Ff (s)

FR(s)

-

-

+
G1(s)

H2(s)

H2(s)

G2(s)

G3(s)

FIGURE E2.9 Brake control system.

Controller

Gear motor

Sensor output

Piston travel

Liquid

Cylinder

Control output

Plunger

Damping
orifice

Piston rod

Piston

FIGURE E2.10 Shock absorber.

-

-

+

+

+

Td(s)

R(s)
G(s)

Y(s)

Preview of disturbance

Bump disturbance

Desired
deflection

Vehicle
dynamics Bounce of

auto or
deflection

from
horizontal

K1

K2

FIGURE E2.12 Active suspension system.
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-1 0-2
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FIGURE E2.11 Spring characteristic.

activated by a gear motor, a displacement-measuring 
sensor, and a piston. Spring force is generated by pis-
ton displacement, which compresses the fluid. During 
piston displacement, the pressure imbalance across 
the piston is used to control damping. The plunger 
varies the internal volume of the cylinder. This  system 
is shown in Figure E2.10. Develop a block diagram 
model.

E2.11 A spring exhibits a force-versus-displacement 
characteristic as shown in Figure E2.11. For small de-
viations from the operating point xo, find the spring 
constant when xo  is (a) 1.1,−  (b) 0, and (c) 2.8.

E2.12 Off-road vehicles experience many disturbance 
inputs as they traverse over rough roads. An active 
suspension system can be controlled by a sensor that 
looks “ahead” at the road conditions. An example of a 
simple suspension system that can accommodate the 
bumps is shown in Figure E2.12. Find the appropriate 
gain K1  so that the vehicle does not bounce when the 
desired deflection is R s 0( ) =  and the disturbance is 
T sd .( )
Answer: K K 11 2 =
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E2.13 Consider the feedback system in Figure E2.13. Com -
pute the transfer functions ( ) ( )/Y s T sd  and ( ) ( )/Y s N s .

E2.14 Find the transfer function

Y s
R s

1

2

( )
( )

for the multivariable system in Figure E2.14.

E2.15 Obtain the differential equations of the circuit in 
Figure E2.15 in terms of i t1( ) and i t .2 ( )

E2.16 The position control system for a spacecraft plat-
form is governed by the following equations:

d p t
dt

dp t
dt

p t2 4
2

2
θ

( ) ( )
( )+ + =

t r t p t1υ ( ) ( ) ( )= −

d t
dt

t0.5 2
θ

υ
( )

( )=

t t8 .2 1υ υ( ) ( )=

The variables involved are as follows:

r t desired platform position( ) =

p t actual platform position( ) =

t amplifier input voltage1υ ( ) =

t amplifier output voltage2υ ( ) =

t motor shaft positionθ( ) =

Sketch a signal-flow diagram or a block diagram of  
the system, identifying the component parts, and 
 determine the system transfer function P(s)/R(s).

-

+ +

+

++

R(s) Y(s)

N(s)

Controller

K

Plant

Td(s)

Ea(s)

s(s + 25)
1

FIGURE E2.13 Feedback system with measurement noise, ( )N s ,  and plant  
disturbances, ( )T sd .

R2(s)

R1(s) Y1(s)

Y2(s)

-

+

++

+ +

-

+
G4(s)

G1(s) G2(s)

G9(s)

G3(s)

H1(s)

G5(s)

H2(s)

G7(s) G8(s)

G6(s)

FIGURE E2.14 Multivariable system.
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162 Chapter 2  Mathematical Models of Systems

E2.17 A logarithmic amplifier has a diode whose voltage 
is represented by the relation

V C I= In ,

where C is a constant and I is the current across the 
diode. Determine a linear model for the diode when 
I = 1.o

E2.18 The output y and input x of a device are related by

y x x1.9 .3= +

(a) Find the values of the output for steady-state opera-
tion at the two operating points x 1.2o =  and x 2.5.o =
(b) Obtain a linearized model for both operating points 
and compare them.

E2.19 The transfer function of a system is

Y s

R s

s

s s

( )
( )

( )
=

+
+ +

15 1
9 14

.
2

Determine y t( ) when r t( ) is a unit step input.

Answer: y t e e tt t( ) 1.07 1.5 2.57 ,   02 7= + − ≥− −

E2.20 Determine the transfer function V s V s/0 ( ) ( ) of the  
operational amplifier circuit shown in Figure E2.20.  
Assume an ideal operational amplifier. Determine the 
transfer  function when R R C  170 k ,    1 2 1= = Ω =  
15 μF, and C 25  F.2 μ=

R1

R2

L1

L2i1(t) i2(t)

C2

C1

v(t) -+

FIGURE E2.15 Electric circuit.

R1

C1

v (t) v0(t)+

-

R2

C2

   +

   -
2
1

FIGURE E2.20 Op-amp circuit.

xin

xp

kd

bd

Probe

Sliding
friction, bs

Carriage
mc

FIGURE E2.21 Precision slide.

Beam adjustment

L

v(t)
Rotation

FIGURE E2.22 Satellite with adjustable rotational velocity.

E2.21 A high-precision positioning slide is shown in Figure 
E2.21. Determine the transfer function X s X sp ( ) ( )/ in  
when the drive shaft friction is bd 0.7,=  the drive 
shaft spring constant is k md c2,   1,= =  and the slid-
ing friction is bs 0.8.=

E2.22 The rotational velocity ω  of the satellite shown in 
Figure E2.22 is adjusted by changing the length of the 
beam L. The transfer function between sω( ) and the in-
cremental change in beam length L s( )∆  is

s

L s

s

s s

ω( )
( )

( )

( )( )∆
=

+

+ +

8 3

2 3
.2

The beam length change is L s s( )∆ = 2/ .  Determine 
the response of the rotation t .ω( )
Answer: t e et t2.67 8 5.332 3ω( ) = − +− −
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E2.25 The block diagram of a system is shown in 
Figure E2.25. Determine the transfer function 

    .( ) ( ) ( )= /T s Y s R s

E2.24 An amplifier may have a region of deadband as 
shown in Figure E2.24. Use an approximation that 
uses a cubic equation y ax3=  in the approximately 
linear region. Select a and determine a linear approx-
imation for the amplifier when the operating point is 
x 0.6.=

-k3

1
s

R(s) Y(s)
1 1

k2
s

-1

-1

k1

FIGURE E2.23 Control system with three feedback loops.

0.4

0.8

1.2

1.6

2.0

-2.0

-1.6

-1.2

-0.8

-0.4

x

y

0.4 0.8 1.2-0.4-0.8-1.2

FIGURE E2.24 An amplifier with a deadband region.

-

+ 10
s + 1

Y(s)R(s)

2

1
s

++

FIGURE E2.25 Multiloop feedback system.

F(t)
k m2

1 kg

x2(t)

m1
1 kg

x1(t)

FIGURE E2.26 Two connected masses on a 
frictionless surface.

-

+

+

+
Y(s)

Td (s)

G1(s) G2(s)R(s)

H(s)

FIGURE E2.27 System with disturbance.

E2.23 Determine the closed-loop transfer function 
 ( ) ( ) ( )= /T s Y s R s  for the system of Figure E2.23.

E2.26 Determine the transfer function 2 ( ) ( )/X s F s  for 
the system shown in Figure E2.26. Both masses slide 
on a frictionless surface and = /1 N m.k

Answer: 
X s
F s s s

1
2

2
2 2( )

( )
( )

=
+

E2.27 Find the transfer function ( ) ( )/Y s T sd  for the sys-
tem shown in Figure E2.27.

Answer: 
Y s
T s

G s
G s G s H sd 1

2

1 2

( )
( )

( )
( ) ( ) ( )

=
+

E2.28 Determine the transfer function ( ) ( )o /V s V s  for 
the op-amp circuit shown in Figure E2.28 [1]. Let 
R R R R  167 k ,   240 k ,   1 k ,   100 k ,1 2 3 4= Ω = Ω = Ω = Ω  
and C 1  F.μ=  Assume an ideal op-amp.

E2.29 A system is shown in Fig. E2.29(a).
(a)  Determine G s( )  and H s( ) of the block diagram 

shown in Figure E2.29(b) that are equivalent to 
those of the block diagram of Figure E2.29(a).

(b) Determine Y s( )/R(s) for Figure E2.29(b).
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164 Chapter 2  Mathematical Models of Systems

E2.30 A system is shown in Figure E2.30.
(a) Find the closed-loop transfer function Y s( )/R(s) 

when G s
s s

10
2 10

.
2

( ) =
+ +

(b) Determine Y s( ) when the input R s( ) is a unit step.
(c) Compute y t( ).

V s
s s

400
8 400

.
2

( ) =
+ +

R2

R1

R3

R4

V V0

C

+

-

+

-

+
-

-

+ 

FIGURE E2.28
Op-amp circuit.

-

+
Y(s)G(s)R(s)

H(s)

(b)

(a)

-+

-

+

Y(s)R(s)

1
s + 5

1
s + 10

FIGURE E2.29 Block diagram equivalence.

-

+
Y(s)G(s)R(s)

FIGURE E2.30 Unity feedback control system.

Problems require an extension of the concepts of the 
chapter to new situations.

P2.1 An electric circuit is shown in Figure P2.1. Obtain a 
set of simultaneous integrodifferential equations rep-
resenting the network.

P2.2 A dynamic vibration absorber is shown in Figure 
P2.2. This system is representative of many situations 
involving the vibration of machines containing unbal-
anced components. The parameters M2  and k12  may 
be chosen so that the main mass M1 does not vibrate 
in the steady state when F t a t sin .0ω( )( ) =  Obtain 
the differential equations describing the system.

PROBLEMS

R1 R2

R3

L1

i1(t) i2(t)C2

C1

 n(t) ,
+

-
'

FIGURE P2.1 Electric circuit.

E2.31 Determine the partial fraction expansion for 
,( )V s  and compute the inverse Laplace transform. 

The transfer function V s( )  is given by
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P2.4 A nonlinear amplifier can be described by the fol-
lowing characteristic:

tυ
υ υ

υ
( ) =

≥

− <








2 0

2 0
.0

2
in in

2
in in

 tυ
υ υ

υ
( ) =

≥

− <













2 0

2 0
.0

2
in in

2
in in

The amplifier will be operated over a range of 0.5V±  
around the operating point for .inυ  Describe the am-
plifier by a linear approximation (a) when the operat-
ing point is 0inυ =  and (b) when the operating point 
is V1 .inυ =  Obtain a sketch of the nonlinear function 
and the approximation for each case.

P2.5 Fluid flowing through an orifice can be represented 
by the nonlinear equation

Q K P P ,1 2
1/2( )= −

where the variables are shown in Figure P2.5 and K is 
a constant [2]. (a) Determine a linear approximation 

P2.3 A coupled spring–mass system is shown in Figure 
P2.3. The masses and springs are assumed to be equal. 
Obtain the differential equations describing the system.

Q
P1

P2

FIGURE P2.5 Flow through an orifice.

C

R
V1(s) V2(s)

+

-

+

-

+
-

FIGURE P2.7 An integrating amplifier circuit.

Vin Vo

R2

R1

C
+

-

+

-

C

FIGURE P2.8 Bridged-T network.

Force
F(t)

b

M1

M2

y1(t)

y2(t)

k1

k12

FIGURE P2.2 Vibration absorber.

Force
F(t)

v1(t)

x1(t)

v2(t)

x2(t)

k k
MM

b

FIGURE P2.3 Two-mass system.

for the fluid-flow equation. (b) What happens to the 
approximation obtained in part (a) if the operating 
point is P P 0?1 2− =

P2.6 Using the Laplace transformation, obtain the cur-
rent I s2 ( ) of Problem P2.1. Assume that all the ini-
tial currents are zero, the initial voltage across capac-
itor C1  is 5 ,υ( )t  and the initial voltage across C2 is  
10 volts.

P2.7 Obtain the transfer function of the integrating 
 amplifier circuit shown in Figure P2.7, which is an im-
plementation of a first-order low pass filter.

P2.8 A bridged-T network is often used in AC control 
systems as a filter network [8]. The circuit of one 
bridged-T network is shown in Figure P2.8. Show that 
the transfer function of the network is

V s
V s

R Cs R R C s
R R Cs R R C s

1 2
1 2

.o

in

1 1 2
2 2

1 2 1 2
2 2( )

( )
( )

=
+ +

+ + +

Sketch the pole–zero diagram when 0.5,   1,1 2= =R R   
and 0.5.=C

P2.9 Determine the transfer function X s F s( ) ( )/1  for the 
coupled spring–mass system of Problem P2.3. Sketch 
the s-plane pole–zero diagram for low damping when 
M b k= / =1,   1,  and

ζ = =
b

kM

1
2

  0.1.

P2.10 Determine the transfer function 1 ( ) ( )/Y s F s  for the 
vibration absorber system of Problem P2.2. Determine 
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u(s)Load J, b

Motor

Rd

Rc

Ra
La

if = Constant

id

iq

ic

Control
field

Vc(s) Lc

Ld

Lq

Rq

1 2
3

4

Constant speed v0

Amplidyne

y12 = yq
y34 = yd

+

- 

FIGURE P2.11 Amplidyne and armature-controlled motor.

N1

N2

Motor

Generator
uL(s)

Rf Rg Rf
Lg

i f ig

Ia

vg N1

N2
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Load
JL, bL

LfVf (s) Lf

+  

-  

  +

  -

FIGURE P2.13 Motor and generator.

Controller

K
1

s + 50

Process

R(s) Y(s)

FIGURE P2.12 Open-loop control 
system.

the necessary parameters M2  and k12  so that the 
mass M1 does not vibrate in the steady state when 
F t a t sin .0ω( )( ) =

P2.11 For electromechanical systems that require large 
power amplification, rotary amplifiers are often 
used [8, 19]. An amplidyne is a power amplifying 
 rotary  amplifier. An amplidyne and a servomotor are 
shown in Figure P2.11. Obtain the transfer function 

,θ( ) ( )/s V sc  and draw the block diagram of the sys-
tem. Assume k id q2υ =  and k iq c .1υ =

P2.12 For the open-loop control system described by the 
block diagram shown in Figure P2.12, determine the 
value of K such that y t 1( ) →  as t → ∞  when r t( ) is a 
unit step input. Assume zero initial conditions.

P2.13 An electromechanical open-loop control system is 
shown in Figure P2.13. The generator, driven at a con-
stant speed, provides the field voltage for the motor. 
The motor has an inertia Jm  and bearing friction bm.  
Obtain the transfer function θ ( ) ( )/s V sL f  and draw a 
block diagram of the system. The generator voltage 
vg  can be assumed to be proportional to the field cur-
rent .if

P2.14 A rotating load is connected to a field-controlled 
DC electric motor through a gear system. The motor 
is assumed to be linear. A test results in the output 
load reaching a speed of 1 rad/s within 0.5 s when a 
constant 80 V is applied to the motor terminals. The 
output steady-state speed is 2.4 rad/s. Determine 
the transfer function θ( ) ( )/s V sf  of the motor, in 
rad/V. The inductance of the field may be assumed 
to be  negligible. Also, note that the application of  
80 V to the motor terminals is a step input of 80 V in 
magnitude.

P2.15 Consider the spring-mass system depicted in Figure 
P2.15. Determine a differential equation to describe the 
motion of the mass m. Obtain the system response x t( ) 
subjected to an impulse input with zero initial conditions. 
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P2.16 A mechanical system is shown in Figure P2.16, 
which is subjected to a known displacement x t3( )  
with respect to the reference. (a) Determine the two 
independent equations of motion. (b) Obtain the 
equations of motion in terms of the Laplace trans-
form,  assuming that the initial conditions are zero. 
(c) Sketch a signal-flow graph representing the system 
of equations. (d) Obtain the relationship T s13( ) be-
tween X s1( ) and X s3( ) by using Mason’s signal-flow 
gain formula. Compare the work necessary to  obtain 
T s13( ) by matrix methods to that using Mason’s 
 signal-flow gain formula.

Determine the value of each dependent variable 
by using the gain formula. After solving for x1 by 
Mason’s signal-flow gain formula, verify the solution 
by using Cramer’s rule.

P2.18 An LC ladder network is shown in Figure P2.18. 
One may write the equations describing the network 
as follows:

I V V Y V I I Za a a, ,  1 1 1 1 2( ) ( )= − = −

I V V Y V I Za a a, .2 3 2 4( )= − =

Construct a flow graph from the equations and deter-
mine the transfer function V s V s( ) ( )/ .2 1

x1(t)

x2(t)

x3(t)

K1

K2

b1

b2

Friction

M1

M2

FIGURE P2.16 Mechanical system.

V1(s) V2(s)

Va
I1

Ia Y3Y1

Z2 Z4

L L

C C

I2 = 0

++

--
FIGURE P2.18 LC ladder network.

P2.19 The source follower amplifier provides lower out-
put impedance and essentially unity gain. The circuit 
diagram is shown in Figure P2.19(a), and the small-sig-
nal model is shown in Figure P2.19(b). This circuit uses 
an FET and provides a gain of approximately unity. 
Assume that �R R2 1 for biasing purposes and that  

�R Rg .2  (a) Solve for the amplifier gain. (b) Solve 
for the gain when 1000 μ= Ωgm  and 25 k= ΩRs  
where R R Rs .1 2= +  (c) Sketch a block diagram that 
represents the circuit equations.

P2.20 A hydraulic servomechanism with mechanical 
feedback is shown in Figure P2.20 [18]. The power pis-
ton has an area equal to A. When the valve is moved a 
small amount z,∆  the oil will flow through to the cylin-
der at a rate p z,⋅ ∆  where p is the port coefficient. The 
input oil pressure is assumed to be constant. From the 

geometry, we find that z k
l l

l
x y

l
l

y    .1 2

1

2

1
( )∆ =

−
− −  

(a) Determine the closed-loop signal-flow graph or 
block diagram for this mechanical system. (b) Obtain 
the closed-loop transfer function .( ) ( )/Y s X s

P2.21 Figure P2.21 shows two pendulums suspended 
from frictionless pivots and connected at their mid-
points by a spring [1]. Assume that each pendulum can 
be represented by a mass M at the end of a massless 
bar of length L. Also assume that the displacement is 
small and linear approximations can be used for sin θ  
and cos  .θ  The spring located in the middle of the bars 
is unstretched when .1 2θ θ=  The input force is rep-
resented by f(t), which influences the left-hand bar 

P2.17 Obtain a signal-flow graph to represent the follow-
ing set of algebraic equations where  x1 and x2  are to 
be considered the dependent variables and 6 and 11 
are the inputs:

3 9, 3 6 22.1 2 1 2+ = + =x x x x

m

kb

x(t)

FIGURE P2.15 Suspended spring-mass-damper system.
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168 Chapter 2  Mathematical Models of Systems

only. (a) Obtain the equations of motion, and sketch 
a block diagram for them. (b) Determine the transfer 
function T s s F sθ( ) ( ) ( )= / .1  (c) Sketch the location 
of the poles and zeros of T s( ) on the s-plane.

P2.22 A particular form of an operational amplifier is when 
the feedback loop is short-circuited. This amplifier is 
known as a voltage follower (buffer amplifier) as shown 
in Figure P2.22. Show that T V s V so ( ) ( )= / = 1.in  
Assume an ideal op-amp. Discuss a practical use of this 
amplifier.

(a)

(b)

�

G S

R1

R2

RG

vgs

gmvgs

vo(t)

i in
    +  

v in(t)
+    

-    

�

C
G

S

R1

R2

VDD

RGv in(t)

vo(t)

  + 

   - 

+    

-    

FIGURE P2.19 The source follower or common drain 
amplifier using an FET.

l3l3

l2
l4

l1

Power
cylinder

Output, y(t)

Input, x(t)

Input
pressure

k (x(t) - y(t))

FIGURE P2.20 Hydraulic servomechanism.

FIGURE P2.21 The bars are each of length L and the 
spring is located at L/2.

u1(t) u2(t)

f (t)
k

L

L /2

M M

Vin(s) Vo(s)
++

+

- 

-

-

FIGURE P2.22 A buffer amplifier.

P2.23 The small-signal circuit equivalent to a common- 
emitter transistor amplifier is shown in Figure P2.23. 
The transistor amplifier includes a feedback resistor  
Rf . Determine the input–output ratio V s V sce ( ) ( )/ .in

'
+

+ +

-     
'

+

-
-

RL

Rf

Rs

vbe v ce(t)v in(t)

if

hoe

hie

hrevce

ib ic

bib

FIGURE P2.23 CE amplifier.

P2.24 A two-transistor series voltage feedback amplifier is 
shown in Figure P2.24(a). This AC equivalent circuit 
neglects the bias resistors and the shunt capacitors. 
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FIGURE P2.25 H. S. 
Black’s amplifier.

A block diagram representing the circuit is shown 
in Figure P2.24(b). This block diagram neglects the 
 effect of ,hre  which is usually an accurate approxima-
tion, and assumes that �R R RL .2 1+  (a) Determine  
the voltage gain V s V so ( ) ( )/ in . (b) Determine the cur-
rent gain i ic b/ .2 1  (c) Determine the input impedance 
V s I sb( ) ( )/ .in 1

P2.25 H. S. Black is noted for developing a negative 
feedback amplifier in 1927. Often overlooked is the 
fact that three years earlier he had invented a  circuit 
design technique known as feedforward correc-
tion [19]. Recent experiments have shown that this 
 technique offers the potential for yielding excellent 
amplifier stabilization. Black’s amplifier is shown in 
Figure  P2.25(a) in the form recorded in 1924. The 
block diagram is shown in Figure P2.25(b). Determine 
the transfer function between the output Y s( ) and 
the input R s( ) and between the output and the dis-
turbance T sd( ).  G s( )  is used to denote the amplifier 
represented by μ  in Figure P2.25(a).

P2.26 A robot includes significant flexibility in the arm 
members with a heavy load in the gripper [6, 20]. A 
two-mass model of the robot is shown in Figure P2.26. 
Find the transfer function ( )Y s / F s( ).

P2.27 Magnetic levitation trains provide a high-speed, 
very low friction alternative to steel wheels on steel 
rails. The train floats on an air gap as shown in Figure 
P2.27 [25]. The levitation force FL  is controlled by 
the coil current i in the levitation coils and may be ap-
proximated by

F k
i
zL ,

2

2
=

where z is the air gap. This force is opposed by the 
downward force F mg.=  Determine the linearized 

'

(a)

Ic1(s) Ic2(s)

R2

Rg

+

-
Vin(s)

Ib1(s)

Vc1(s)

R1 RL Vo(s)
+

(b)

1
Rg + hie1

RLb1b2

Ib1(s)

(1 + b1)R1

Ic2(s)+

-

+ +Vc1(s)

Vo(s)Vin(s)

R1

R1 + R2

(a)

m

1
m

u(= )

+

+

m

(b)

G(s)
+ +

+ -

Y(s)

Td(s)

R(s)

1
G(s) G(s)

F(t)

x (t)

M

b

k

m

y (t)

FIGURE P2.24 Feedback amplifier.

FIGURE P2.26 The spring-mass-damper model of 
a robot arm.
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170 Chapter 2  Mathematical Models of Systems

P2.29 We desire to balance a rolling ball on a tilting 
beam as shown in Figure P2.29. We will assume the 
motor input current i controls the torque with negligi-
ble friction. Assume the beam may be balanced near 
the horizontal 0 ;φ( )=  therefore, we have a small de-
viation of t .φ( )  Find the transfer function X(s) ( )/I s ,  
and draw a block diagram illustrating the transfer 
function showing s X s( ),  φ ( ) , and I s( ).

P2.30 The measurement or sensor element in a feedback 
system is important to the accuracy of the system [6]. 
The dynamic response of the sensor is important. 
Many sensor elements possess a transfer function

H s
k

s 1τ
( ) =

+
.

Suppose that a position-sensing photo detector has 
10  sτ μ= . Obtain the step response of the system. 

Show that the step response is independent of k. 
Compute the time to reach 98% of the final value.

P2.31 An interacting control system with two inputs 
and two outputs is shown in Figure P2.31. Solve for 
Y s R s( ) ( )/1 1  and Y s R s( ) ( )/2 1  when R 0.2 =

relationship between the air gap z and the controlling 
current near the equilibrium condition.

Train car

Rotor coil Rotor coil

Conducting plate

Stator
coils

FIGURE P2.27 Cutaway view of train.

Torque motor

Ball

Beam

f(t)

i

x(t)

FIGURE P2.29 Tilting beam and ball.

+ - +

+

+ +

Y1(s)

Y2(s)

R1(s)

+

+
R2(s)

G1(s)

G4(s)

G5(s) G6(s)

H2(s)

H1(s)

G2(s)

G3(s)

FIGURE P2.31 Interacting system.

P2.28 A multiple-loop model of an urban ecological sys-
tem might include the following variables: number of 
people in the city (P), modernization (M), migration 
into the city (C), sanitation facilities (S), number of 
diseases (D), bacteria/area (B), and amount of gar-
bage/area (G), where the symbol for the variable is 
given in parentheses. The following causal loops are 
hypothesized:

1. P G B D P→ → → →
2. P M C P→ → →
3. P M S D P→ → → →
4. P M S B D P→ → → → →

Sketch a signal-flow graph for these causal relation-
ships, using appropriate gain symbols. Indicate whether 
you believe each gain transmission is positive or 
 negative. For example, the causal link S to B is negative 
because improved sanitation facilities lead to reduced 
bacteria/area. Which of the four loops are positive 
feedback loops and which are negative feedback loops?

P2.32 A system consists of two electric motors that are 
coupled by a continuous flexible belt. The belt also 
passes over a swinging arm that is instrumented to 
allow measurement of the belt speed and tension. 
The basic control problem is to regulate the belt 
speed and tension by varying the motor torques.

An example of a practical system similar to that 
shown occurs in textile fiber manufacturing processes 
when yarn is wound from one spool to another at high 
speed. Between the two spools, the yarn is processed 
in a way that may require the yarn speed and tension 
to be controlled within defined limits. A model of the 
system is shown in Figure P2.32. Find Y s R s( ) ( )/ .2 1  
 Determine a relationship for the system that will 
make Y2 independent of R .1
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P2.33 Find the transfer function for Y s( )/R s( ) for the 
idle-speed control system for a fuel-injected engine 
as shown in Figure P2.33.

P2.34 The suspension system for one wheel of an old- 
fashioned pickup truck is illustrated in Figure P2.34. 
The mass of the vehicle is m1  and the mass of the 
wheel is m .2  The suspension spring has a spring con-
stant k1  and the tire has a spring constant k .2  The 
damping constant of the shock absorber is b. Obtain 
the transfer function Y s X s( )/( ) ,1  which represents 
the vehicle response to bumps in the road.

P2.35 A feedback control system has the structure 
shown in Figure P2.35. Determine the closed-loop 
transfer function Y s( )/R s( ) (a) by block diagram 
manipulation and (b) by using a signal-flow graph 
and Mason’s  signal-flow gain formula. (c) Select the 

Y1(s)
Speed

G2(s)

G1(s) G3(s) G4(s)

G5(s) G6(s)

G7(s)G8(s)

R1(s)
Speed
control
input

R2(s)
Tension
control
input

1

1

-1 -1

-H1(s)

-H2(s)

Y2(s)
Tension

FIGURE P2.32
A model of the 
coupled motor 
drives.

G2(s)H2(s)

H1(s)

G1(s) G3(s)

R(s)
Speed command

K4

K5 K6

Pressure Y(s)
Engine
speed

-

-

+

++

+ +

Air bypass Manifold

Fuel
gain

Dynamics

Spark gain

FIGURE P2.33 Idle speed control system.

y1

y2

x

Shock
absorber

Spring
Profile
of road

FIGURE P2.34 Pickup truck suspension.

gains K1  and K2 so that the closed-loop response to 
a step input is  critically damped with two equal roots 
at s 10.= −  (d) Plot the critically damped response 
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172 Chapter 2  Mathematical Models of Systems

for a unit step input. What is the time required for the 
step response to reach 90% of its final value?

P2.36 A system is represented by Figure P2.36. (a) Deter-
mine the partial fraction expansion and y t( ) for a ramp 
input, ,  and 0.( ) = ≥r t t t  (b) Obtain a plot of y t( ) 
for part (a), and find y t( ) for t 1.0 s.=  (c) Determine 
the impulse response of the system y t( ) for t 0.≥  (d) 
Obtain a plot of y t( ) for part (c), and find y t( ) for 
t 1.0 s.=

+ +

+

-
R(s) Y(s)

K1

s + 1

K2

1
s

FIGURE P2.35 Multiloop feedback system.

24
s3 + 9s2 + 26s + 24

R(s) Y(s)

FIGURE P2.36 A third-order system.

0.5 m

FIGURE P2.38 Winding oscillator.

6V

1.5 H 0.75 F

1

2

t = 0

va 2 Æ

5 Æ

10 Æ

0.5va

V0(s)
10e-2t V

+

-

+

-
+- +-

+-

FIGURE P2.39
Model of an 
electronic circuit.

K2

m1

m2

u

x(t)

y(t)

K1

FIGURE P2.37 Two-mass system.

P2.37 A two-mass system is shown in Figure P2.37 with an 
input force u t( ). When m m 11 2= =  and K K 1,1 2= =   
(a) find the set of differential equations describing the sys-
tem, and (b) compute the transfer function from U(s) to Y(s).

P2.38 A winding oscillator consists of two steel spheres 
on each end of a long slender rod, as shown in Figure 
P2.38. The rod is hung on a thin wire that can be 
twisted many revolutions without breaking. The de-
vice will be wound up 4000 degrees. How long will 
it take until the motion decays to a swing of only 10 
degrees? Assume that the thin wire has a rotational 
spring constant of 2 10  N m rad4× /−  and that the 

viscous friction coefficient for the sphere in air is 
× /−2 10  N ms rad.4  The sphere has a mass of 1 kg.

P2.39 For the circuit of Figure P2.39, determine the 
transform of the output voltage V s .0 ( )  Assume that 
the circuit is in steady state when t 0.<  Assume that 
the switch moves instantaneously from contact 1 to 
contact 2 at t 0.=

P2.40 A damping device is used to reduce the undesired 
vibrations of machines. A viscous fluid, such as a 
heavy oil, is placed between the wheels, as shown in 
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P2.42 In many applications, such as reading product 
codes in supermarkets and in printing and manufac-
turing, an optical scanner is utilized to read codes, as 

Figure P2.40. When vibration becomes excessive, the 
relative motion of the two wheels creates damping. 
When the device is rotating without vibration, there is 
no relative motion and no damping occurs. Find s1θ ( ) 
and s .2θ ( )  Assume that the shaft has a spring constant 
K and that b is the damping constant of the fluid. The 
load torque is T.

P2.41 The lateral control of a rocket with a gimbaled en-
gine is shown in Figure P2.41. The lateral deviation 
from the desired trajectory is h and the forward rocket 
speed is V. The control torque of the engine is T sc ( ) and 
the disturbance torque is T sd .( )  Derive the describing 
equations of a linear model of the system, and draw the 
block diagram with the appropriate transfer functions.

Shaft

Fluid, b

Outer wheel
J1, u1

Inner wheel
J2, u2

u1

FIGURE P2.40 Cutaway view of damping device.

Desired
trajectory

Actual
trajectory

h

u(s)

Engine

FIGURE P2.41 Rocket with gimbaled engine.

L

r

JL

R1

N1

N2

Motor
Gears

G2

G1

R2

FIGURE P2.44 Motor, gears, and load.

shown in Figure P2.42. As the mirror rotates, a friction 
force is developed that is proportional to its angular 
speed. The friction constant is equal to 0.06 N s/rad, 
and the moment of inertia is equal to 0.1 kg m .2  The 
output variable is the velocity t .ω( )  (a) Obtain the dif-
ferential equation for the motor. (b) Find the response 
of the system when the input motor torque is a unit 
step and the initial velocity at t 0=  is equal to 0.7.

Laser

Mirror

Bar code

Motor
Reflected light

Lens
Detector

Microcomputer

v(t)

FIGURE P2.42 Optical scanner.

P2.43 An ideal set of gears is shown in Table 2.4, item 10. 
Neglect the inertia and friction of the gears and as-
sume that the work done by one gear is equal to that 
of the other. Derive the relationships given in item 10 
of Table 2.4. Also, determine the relationship between 
the torques Tm  and TL .

P2.44 An ideal set of gears is connected to a solid cylinder 
load as shown in Figure P2.44. The inertia of the motor 
shaft and gear G2  is Jm. Determine (a) the iner  tia of 
the load JL  and (b) the torque T at the motor shaft. 
Assume the friction at the load is bL  and the friction at 
the motor shaft is bm.  Also assume the density of the 
load disk is ρ  and the gear ratio is n. Hint: The torque 
at the motorshaft is given by T T Tm.1= +

P2.45 To exploit the strength advantage of robot manipu-
lators and the intellectual advantage of humans, a class of 
manipulators called extenders has been examined [22].  
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174 Chapter 2  Mathematical Models of Systems

P2.46 A load added to a truck results in a force F s( ) on 
the support spring, and the tire flexes as shown in 
Figure P2.46(a). The model for the tire movement 
is shown in Figure P2.46(b). Determine the transfer 
function X s F s( ) ( )/ .1

The extender is defined as an active manipulator worn 
by a human to augment the human’s strength. The 
human provides an input U s( ) , as shown in Figure 
P2.45. The endpoint of the extender is P(s). Determine 
the output P(s) for both U s( )  and F s( ) in the form

P s T s U s T s F s .1 2( ) ( ) ( ) ( ) ( )= +

+

-

+

-

+

+ +

Human Extender Performance
filter

Stability
controller

H(s)

E(s)

G(s)

K(s)

B(s)

P(s)

Gc(s)

G1(s)
+

+

Load

FIGURE P2.45 Model of extender.

F(t)

F(s)

Tire

k1

k2
b2

b1

mt

x1(t)

x2(t)

(a) (b)

mv

Force of material
placed in truck bed

Truck vehicle mass

Shock absorber

Tire

FIGURE P2.46
Truck support 
model.

P2.47 The water level h t( ) in a tank is controlled by an 
open-loop system, as shown in Figure P2.47. A DC 
motor controlled by an armature current ia turns a 
shaft, opening a valve. The inductance of the DC 
motor is negligible, that is, La 0.=  Also, the rotational 
friction of the motor shaft and valve is negligible, that 
is, b 0.=  The height of the water in the tank is

h t t h t dt[1.6 ]  ,∫ θ( ) ( ) ( )= −

the motor constant is Km 10,=  and the inertia of 
the motor shaft and valve is J 6 10  kg m .3 2= × −  
 Deter mine (a) the differential equation for h t( ) and tυ( ) 
and (b) the transfer function H s( )/V t( ).

P2.48 The circuit shown in Figure P2.48 is called a lead-lag 
filter.
(a)  Find the transfer function V s V s( ) ( )/ .2 1  Assume 

an ideal op-amp.
(b)  Determine V s V s( ) ( )/2 1  when 250  ,1 = ΩR k

250  ,   2  ,2 1 μ= Ω =R k C F  and 0.3  .2 μ=C F
(c)  Determine the partial fraction expansion for 

V s V s( ) ( )/ .2 1

P2.49 A closed-loop control system is shown in Figure P2.49.
(a) Determine the transfer function

T s Y s R s( ) ( ) ( )= / .

(b) Determine the poles and zeros of T s( ).
(c)  Use a unit step input, R s s= /( ) 1 ,  and obtain the 

partial fraction expansion for Y s( ) and the value 
of the residues.
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(d)  Plot y t( ) and discuss the effect of the real and 
complex poles of T s( ). Do the complex poles or 
the real poles dominate the response?

P2.50 A closed-loop control system is shown in Figure 
P2.50.
(a) Determine the transfer function T s Y s R s( ) ( ) ( )= /    .
(b)  Determine the poles and zeros of T s( ).
(c)  Use a unit step input, R s s( ) = /1 ,  and obtain 

the partial fraction expansion for Y s( ) and the 
value of the residues.

(d)  Plot y t( ) and discuss the effect of the real and 
complex poles of T s( ). Do the complex poles or 
the real poles dominate the response?

v(t) va(t)

vb(t)

ia(t)

Amplifier 10 Æ

u(t)
v(t)

Valve

Motor

h(t)

ka = 50

+

- - +

+

-

FIGURE P2.47
Open-loop control sys-
tem for the water level 
of a tank.

R2

R1
V1(s) V2(s)

C

+

-

+

-

+
-

C

FIGURE P2.48 Lead-lag filter.

+

-

1000
s (s2 + 20s + 100)

R(s) Y(s)

FIGURE P2.49 Unity feedback control system.

+

-
R(s) Y(s)

7000
s3 + 52s2 + 700s + 1200)

FIGURE P2.50 Third-order feedback system.

(e)  Predict the final value of y t( ) for the unit step 
input.

P2.51 Consider the two-mass system in Figure P2.51. 
Find the set of differential equations describing the 
system.

M2

M1

x (t)

y(t)

k1

k2

b1

u(t)

FIGURE P2.51 Two-mass system with two springs  
and one damper.
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176 Chapter 2  Mathematical Models of Systems

to achieve decoupling.

AP2.3 Consider the feedback control system in Figure 
AP2.3. Define the tracking error as

E s R s Y s .( ) ( ) ( )= −

(a) Determine a suitable H s( ) such that the tracking 
error is zero for any input R s( ) in the absence of a 
disturbance input (that is, when T sd 0( ) = ). (b) Using 
H s( ) determined in part (a), determine the response 
Y s( ) for a disturbance T sd ( ) when the input R s 0.( ) =  
(c) Is it possible to obtain Y s 0( ) =  for an arbitrary 
disturbance T sd ( ) when G sd 0?( ) ≠  Explain your 
answer.

AP2.4 Consider a DC amplifier given by

V s

V s
k

R C s
a

o o

( )
( )

=
+ 1

,2

1

where V s( )2  is the output voltage and V s( )1  is the 
input voltage. The system parameters are Ro  and 

G1(s)

H1(s)

H2(s)

G2(s)

G5(s)

G3(s) G4(s)

G6(s)

-+

+

-

+ + +

R1(s) Y1(s)

Y2(s)R2(s)

FIGURE AP2.2 Interacting control system.

+ +
Y(s)

+

-
R(s)

Td(s)

Gd (s)

Gc(s) G(s)

H(s)

FIGURE AP2.3 Feedback system with a disturbance 
input.

AP2.1 A first-order RL circuit consisting of a resistor and 
an inductor in series driven by a voltage source is one 
of the simplest analog infinite impulse response elec-
tronic filters. For an input voltage of 5 V, the current at 
t = 1  s is 2 A, and the steady state current is 5 A when 
t .→ ∞  Determine the transfer function I s V s( ) ( )/ .

AP2.2 A system has a block diagram as shown in Figure 
AP2.2. Determine the transfer function

T s
Y s
R s

.2

1
( )

( )
( )

=

It is desired to decouple Y s2 ( ) from R s1( )  by obtain-
ing T s 0.( ) =  Select G s5 ( ) in terms of the other G si ( ) 

ADVANCED PROBLEMS

k1

b1

u1(t)

x1(t)

k2

b2

u2(t)

x2(t)

k3

b3

u3(t)

x3(t)

M1 M2 M3

FIGURE AP2.5 Three-cart system with three inputs and 
three outputs.

Co ,  the output resistance and capacitance, respec-
tively. The DC amplifier is illustrated in Table 2.4. (a) 
Determine the response of the system to a unit step  
V s s( ) = /1 .1  (b) As t ,→ ∞  what value does the step 
response determined in part (a) approach? This is 
known as the steady-state response. (c) Describe how 
you would select the system parameters Ro and Co  to 
increase the speed of response of the system to a step 
input.

AP2.5 For the three-cart system (Figure AP2.5), obtain 
the equations of motion. The system has three inputs 
u t u t,   ,1 2( ) ( )  and u t3( ) and three outputs x t x t,   ,1 2( ) ( )  
and x t .3( )  Obtain three second-order ordinary differ-
ential equations with constant coefficients. If possible, 
write the equations of motion in matrix form.

AP2.6 Consider the hanging crane structure in Figure 
AP2.6. Write the equations of motion describing 
the motion of the cart and the payload. The mass of 
the cart is M, the mass of the payload is m, the mass-
less rigid connector has length L, and the friction is 
modeled as �F t bx tb ( ) ( )= −  where x t( ) is the distance 
traveled by the cart.

AP2.7 Consider the unity feedback system described in the 
block diagram in Figure AP2.7. Compute analytically 
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the response of the system to an impulse disturbance. 
Determine a relationship between the gain K and the 
minimum time it takes the impulse disturbance re-
sponse of the system to reach y t 0.5.( ) <  Assume that 
K 0.>  For what value of K does the disturbance re-
sponse first reach at y t 0.5( ) =  at t 0.01?=

AP2.8 Consider the cable reel control system given 
in Figure AP2.8. Find the value of Kt and Ka such 
that the percent overshoot is P O. . 15%≤  and a zero 
steady state error to a unit step is achieved. Compute 
the closed-loop response y t( ) analytically and con-
firm that the steady-state response and P.O. meet the 
specifications.

-

+ +

+
R(s) Y(s)

Controller

K

Plant

Td(s)

Ea(s)

s + 50
1FIGURE AP2.7

Unity feedback 
control system with 
 controller  

=( ) .G s Kc

-

+
R(s)

Desired
velocity Torque

Actual cable
velocity100

s + 2
1

s(s + 10)

Measured
velocity

Reel
dynamics

Ka

Kt

V(s)

Amplifier Motor

Tachometer

FIGURE AP2.8
Cable reel  
control system.

AP2.9 Consider the inverting operational amplifier in 
Figure AP2.9. Find the transfer function  ( ) ( )V s V so i/ .  
Show that the transfer function can be expressed as

G s
V s

V s
K K so

i
P D( )

( )
( )

= = + ,

where the gains K KP Dand   are functions of C R, ,1  
and R .2  This circuit is a proportional-derivative (PD) 
controller.

(a)

FIGURE AP2.6
(a) Hanging crane 
supporting the 
Space Shuttle 
Atlantis (photo 
courtesy of: NASA/
Jack Pfaller) and  
(b) schematic 
 representation 
of the hanging 
crane structure.

M

m

L

u(t)

Fb(t)

(b)

x(t)

w(t)
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178 Chapter 2  Mathematical Models of Systems

R2

R1

Vi(s)
Vo(s)

C

+

-

FIGURE AP2.9 An inverting 
operational amplifier circuit 
representing a PD controller.

CDP2.1 We want to accurately position a table for a 
 machine as shown in Figure CDP2.1. A traction- drive 
motor with a capstan roller possesses several desirable 
characteristics compared to the more popular ball screw. 
The traction drive exhibits low friction and no backlash. 
However, it is susceptible to disturbances. Develop a 
model of the traction drive shown in Figure CDP2.1(a) 
for the parameters given in Table CDP2.1. The drive 
uses a DC armature-controlled motor with a capstan 
roller attached to the shaft. The drive bar moves the 
linear slide-table. The slide uses an air bearing, so its 
friction is negligible. We are considering the open-loop 
model, Figure CDP2.1(b), and its transfer function in 
this problem. Feedback will be introduced later.

Table CDP2.1 Typical Parameters  
for the Armature-Controlled DC Motor  
and the Capstan and Slide

Ms Mass of slide 5.693 kg

Mb Mass of drive bar 6.96 kg

Jm Inertia of  
 roller, shaft, motor  
 and tachometer

10.91 10  kg m3 2⋅ −

r Roller radius 31.75 10  m3⋅ −

bm Motor damping 0.268 N ms/rad

Km Torque constant 0.8379 N m/amp

Kb Back emf constant 0.838 V s/rad

Rm Motor resistance 1.36 Ω

Lm Motor inductance 3.6 mH

DESIGN PROBLEMS

Va(s) X(s)G(s)

(b)

(a)

Traction drive motor 
and capstan roller

Drive bar

Linear slide

x

FIGURE CDP2.1 (a) Traction drive, capstan roller, and 
linear slide. (b) The block diagram model.

determine the gains K1 and K2 such that the final 
value y(t) as t S q reaches y S 1 and the closed-loop 
poles are located at s1= –20 and s2 = – 0.5.

DP2.2 The television beam circuit of a television is 
 represented by the model in Figure DP2.2. Select the 
unknown conductance G so that the voltage v is 24 V. 
Each conductance is given in siemens (S).

DP2.3 An input r t t t,   0,( ) = ≥  is applied to a black box 
with a transfer function G s( ) . The resulting output re-
sponse, when the initial conditions are zero, is

y t e e t tt t1
4

1
100

 
6
25

1
5

  ,   0.5( ) = − − + ≥− −

Determine G s( )  for this system.

DP2.4 An operational amplifier circuit that can serve as an 
active low-pass filter circuit is shown in Figure DP2.4. 
Determine the transfer function of the circuit, as-
suming an ideal op-amp. Find t0υ ( ) when the input is 

t tυ δ( ) = ( )1 , t 0.≥

DP2.1 A control system is shown in Figure DP2.1. With 

G s
s

( ) =
+
10

101  

and 

G s
s

( ) =
1

2 , 
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DP2.5 Consider the clock shown in Figure DP2.5. The 
pendulum rod of length L supports a pendulum disk. 
Assume that the pendulum rod is a massless rigid thin 
rod and the pendulum disc has mass m. Design the 
length of the pendulum, L, so that the period of mo-
tion is 2 seconds. Note that with a period of 2 seconds 
each “tick” and each “tock” of the clock represents 1 
second, as desired. Assume small angles, t ,ϕ( )  in the 
analysis so that tsin ϕ( ) L tϕ( ) . Can you explain why 
most grandfather clocks are about 1.5 m or taller?

+

- +

-
R(s) G1

K1

G2

K2

Y(s)

FIGURE DP2.1
Selection of transfer 
functions.

Reference

20 A

i2

v

GS2i2
1
3

S
1
4

FIGURE DP2.2 Television beam circuit.

Vo(s)

R2

+

-

C2

R1

C1

Vi(s)

FIGURE DP2.4 Operational amplifier 
circuit.

(a)

Pendulum rod

Pendulum disk

FIGURE DP2.5
(a) Typical clock 
(photo courtesy  
of Science 
and Society/
SuperStock) and 
(b) schematic 
 representation  
of the pendulum. (b)

“tick” “tock”
1 second later ...

L

w(t) -w(t)

m

g g

m
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180 Chapter 2  Mathematical Models of Systems

CP2.1 Consider the two polynomials

p s s s( ) = + +7 102

and

q s s 2.( ) = +

Compute the following

(a) p(s) q(s)
(b) poles and zeros of G s

q s
p s

( )
( )
( )

=
(c) p 1( )−

CP2.2 Consider the feedback system depicted in Figure 
CP2.2.

(a) Compute the closed-loop transfer function 
using the series and feedback functions.

(b) Obtain the closed-loop system unit step re-
sponse with the step function, and verify that 
final value of the output is 0.571.

to a unit step input. Let m k10,   1,= =  and b 0.5.=  
Show that the peak amplitude of the output is about 1.8.

CP2.5 A satellite single-axis attitude control system can 
be represented by the block diagram in Figure CP2.5. 
The variables k, a, and b are controller parameters, 
and J is the spacecraft moment of inertia. Suppose the 
nominal moment of inertia is =J 10.8E8(slug ft ),2  
and the controller parameters are k a10.8E 8,   1,= =  
and b 8.=
(a) Develop an m-file script to compute the closed-

loop transfer function θ θ( ) ( ) ( )=T s s sd/ .
(b) Compute and plot the step response to a 10° step 

input.
(c) The exact moment of inertia is generally unknown 

and may change slowly with time. Compare the 
step response performance of the spacecraft 
when J is reduced by 20% and 50%. Use the con-
troller parameters k a10.8E8,   1,= =  and b 8=  
and a 10° step input. Discuss your results.

CP2.6 Consider the block diagram in Figure CP2.6.
(a) Use an m-file to reduce the block diagram in 

Figure CP2.6, and compute the closed-loop trans-
fer function.

COMPUTER PROBLEMS

-

+ 1
s + 1

s + 2
s + 3R(s) Y(s)

Controller Plant

4

FIGURE CP2.2 A negative feedback control system.

f (t)
Forcing
function

Spring
constant

k

Mass
displacement

y(t)
Friction
constant

b

Mass
m

FIGURE CP2.4 A mechanical spring-mass-damper 
system.

-

+ k(s + a)
s + b

1
Js2

Controller
ud(s)

Desired
attitude

u(s)
Actual
attitude

Spacecraft

FIGURE CP2.5 A spacecraft single-axis attitude control block diagram.

CP2.3 Consider the differential equation

y y t y u�� �( )+ + =4 3 ,

where �y y0 0 0( ) ( )= =  and u t( ) is a unit step. 
Deter mine the solution y t( ) analytically, and verify 
by co-plotting the analytic solution and the step re-
sponse obtained with the step function.

CP2.4 Consider the mechanical system depicted in 
Figure CP2.4. The input is given by f t( ), and the out-
put is y t( ). Determine the transfer function from f t( ) 
to y t( ) and, using an m-file, plot the system response 
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CP2.8 A system has a transfer function

20

3 20
.

2

( )( )
( )

( )
=

/ +

+ +
X s

R s

z s z

s s

Plot the response of the system when R s( ) is a unit 
step for the parameter 5,  10,=z  and 15.

CP2.9 Consider the feedback control system in Figure 
CP2.9, where

G s
s
s

H s
s

1
2

and
1

1
.( ) ( )=

+
+

=
+

(a) Using an m-file, determine the closed-loop 
transfer function.

(b) Obtain the pole–zero map using the pzmap 
function. Where are the closed-loop system 
poles and zeros?

(c) Are there any pole–zero cancellations? If so, use 
the minreal function to cancel common poles 
and zeros in the closed-loop transfer function.

(d) Why is it important to cancel common poles and 
zeros in the transfer function?

(b) Generate a pole–zero map of the closed-loop 
transfer function in graphical form using the 
pzmap function.

(c) Determine explicitly the poles and zeros of the 
closed-loop transfer function using the pole and 
zero functions and correlate the results with the 
pole–zero map in part (b).

CP2.7 For the simple pendulum shown in Figure CP2.7, 
the nonlinear equation of motion is given by

�� t
g
L

t sin  0,θ θ( ) ( )+ =

where L m0.5 m,  1 kg,= =  and g m s= /9.8  .2  
When the nonlinear equation is linearized about 
the equilibrium point 0,0θ =  we obtain the linear 
time-invariant model,

�� t
g
L

t 0.θ θ( ) ( )+ =

Create an m-file to plot both the nonlinear and the 
linear response of the simple pendulum when the ini-
tial angle of the pendulum is 0 30°θ( ) =  and explain 
any differences.

FIGURE CP2.6 A multiple-loop feedback control system block diagram.

R(s) Y(s)
1

s + 1
s

s2 + 2

4s + 2

s2 + 2s + 1

s2 + 2

s3 + 14

1

s24

50

+

- -
+

+

m, mass

L, length

u(t)

Y(s)
+

-
R(s) G(s)

H(s)

FIGURE CP2.7 Simple pendulum.

FIGURE CP2.9 Control system with nonunity 
feedback.

CP2.10 Consider the block diagram in Figure CP2.10. 
Create an m-file to complete the following tasks:
(a) Compute the step response of the closed-loop 

system (that is, R s s( ) = /1  and T sd 0)( ) =  and 
plot the steady-state value of the output Y s( ) as a 
function of the controller gain K0 10.< ≤

(b) Compute the disturbance step response of 
the closed-loop system (i.e., R s 0( ) =  and 
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182 Chapter 2  Mathematical Models of Systems

(c) Determine the value of K such that the steady-
state value of the output is equal for both the 
input response and the disturbance response.

1 )( ) = /T s sd  and co-plot the steady-state value 
of the output Y s( ) as a function of the controller 
gain K0 10< ≤  on the same plot as in (a) above.

-

+ +

+
R(s) Y(s)

Controller

K

Plant

Td(s)

Ea(s)

s2 + 20s + 20

1FIGURE CP2.10 Block 
diagram of a unity feedback 
 system with a  reference input 

( )R s  and a disturbance input 
( )T sd .

ANSWERS TO SKILLS CHECK
True or False: (1) False; (2) True; (3) False; (4) True; 

(5) True
Multiple Choice: (6) d; (7) a; (8) b; (9) b; (10) c; (11)  

a; (12) a; (13) c; (14) a; (15) a

Word Match (in order, top to bottom): e, j, d, h, a, f, c, 
b, k, g, o, l, n, m, i

TERMS AND CONCEPTS

Across-Variable A variable determined by measuring the 
difference of the values at the two ends of an element.

Actuator The device that causes the process to provide 
the output. The device that provides the motive power 
to the process.

Analogous variables Variables associated with electrical, 
mechanical, thermal, and fluid systems possessing sim-
ilar solutions providing the analyst with the ability to 
extend the solution of one system to all analogous sys-
tems with the same describing differential equations.

Assumptions Statements that reflect situations and con-
ditions that are taken for granted and without proof. 
In control systems, assumptions are often employed 
to simplify the physical dynamical models of systems 
under consideration to make the control design prob-
lem more tractable.

Block diagrams Unidirectional, operational blocks that 
represent the transfer functions of the elements of the 
system.

Branch A unidirectional path segment in a signal-flow 
graph that relates the dependency of an input and an 
output variable.

Characteristic equation The relation formed by equating 
to zero the denominator of a transfer function.

Closed-loop transfer function A ratio of the output signal 
to the input signal for an interconnection of systems 

when all the feedback or feedfoward loops have been 
closed or otherwise accounted for. Generally obtained 
by block diagram or signal-flow graph reduction.

Coulomb damper A type of mechanical damper where 
the model of the friction force is a nonlinear function 
of the mass velocity and possesses a discontinuity 
around zero velocity. Also know as dry friction.

Critical damping The case where damping is on the 
boundary between underdamped and overdamped.

Damped oscillation An oscillation in which the ampli-
tude decreases with time.

Damping ratio A measure of damping. A dimensionless 
number for the second-order characteristic equation.

DC motor An electric actuator that uses an input voltage 
as a control variable.

Differential equation An equation including differentials 
of a function.

Error signal The difference between the desired out-
put R s( ) and the actual output Y s ;( )  therefore 
E s R s Y s  .( ) ( ) ( )= −

Final value The value that the output achieves after all 
the transient constituents of the response have faded. 
Also referred to as the steady-state value.

Final value theorem The theorem that states that 
y t sY s

t s
lim lim   ,

0
( ) ( )=

→∞ →
 where Y s( ) is the Laplace 

 transform of y t .( )
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Homogeneity The property of a linear system in which 
the system response, y t ,( )  to an input u t( ) leads to 
the response y tβ ( ) when the input is u t .β ( )

Inverse Laplace transform A transformation of a func-
tion F s( ) from the complex frequency domain into 
the time domain yielding f t .( )

Laplace transform A transformation of a function f t( ) 
from the time domain into the complex frequency 
domain yielding F s .( )

Linear approximation An approximate model that re-
sults in a linear relationship between the output and 
the input of the device.

Linear system A system that satisfies the properties of 
superposition and homogeneity.

Linearized Made linear or placed in a linear form. 
Taylor series approximations are commonly em-
ployed to obtain linear models of physical systems.

Loop A closed path that originates and terminates on 
the same node of a signal-flow graph with no node 
being met twice along the path.

Mason loop rule A rule that enables the user to obtain 
a transfer function by tracing paths and loops within 
a system.

Mathematical models Descriptions of the behavior of a 
system using mathematics.

Natural frequency The frequency of natural oscillation 
that would occur for two complex poles if the damp-
ing were equal to zero.

Necessary condition A condition or statement that 
must be satisfied to achieve a desired effect or re-
sult. For example, for a linear system it is necessary 
that the input u t u t1 2( ) ( )+  results in the response 
y t y t ,1 2( ) ( )+  where the input u t1( ) results in the 
response y t1( ) and the input u t2 ( ) results in the re-
sponse y t .2 ( )

Node The input and output points or junctions in a signal- 
flow graph.

Nontouching Two loops in a signal-flow graph that do 
not have a common node.

Overdamped The case where the damping ratio is 1.ζ >

Path A branch or a continuous sequence of branches 
that can be traversed from one signal (node) to an-
other signal (node) in a signal-flow graph.

Poles The roots of the denominator polynomial (i.e., the 
roots of the characteristic equation) of the transfer 
function.

Positive feedback loop Feedback loop wherein the 
output signal is fed back so that it adds to the input 
signal.

Principle of superposition The law that states that if two 
inputs are scaled and summed and routed through a 
linear, time-invariant system, then the output will be 
identical to the sum of outputs due to the individual 
scaled inputs when routed through the same system.

Reference input The input to a control system often 
representing the desired output, denoted by R s .( )

Residues The constants ki  associated with the partial 
fraction expansion of the output Y s ,( )  when the out-
put is written in a residue-pole format.

Signal-flow graph A diagram that consists of nodes 
connected by several directed branches and that is a 
graphical representation of a set of linear relations.

Simulation A model of a system that is used to investi-
gate the behavior of a system by utilizing actual input 
signals.

Steady state The value that the output achieves after all 
the transient constituents of the response have faded. 
Also referred to as the final value.

s-plane The complex plane where, given the complex 
number s s jw,= +  the x-axis (or horizontal axis) 
is the s-axis, and the y-axis (or vertical axis) is the 
jw-axis.

Taylor series A power series defined by g x  ( ) =  
g x

m
x x

m

m
m

!
  .

0

0
0∑ ( ) ( )−

( )

=

∞
 For < ∞m , the series is an 

 approximation which is used to linearize functions 
and system models.

Through-variable A variable that has the same value at 
both ends of an element.

Time constant The time interval necessary for a system 
to change from one state to another by a specified 
percentage. For a first order system, the time con-
stant is the time it takes the output to manifest a 
63.2% change due to a step input.

Transfer function The ratio of the Laplace transform of 
the output variable to the Laplace transform of the 
input variable.

Underdamped The case where the damping ratio is 
1.ζ <

Unity feedback A feedback control system wherein the 
gain of the feedback loop is one.

Viscous damper A type of mechanical damper where 
the model of the friction force is linearly propor-
tional to the velocity of the mass.

Zeros The roots of the numerator polynomial of the 
transfer function.
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3.11 Summary 235

PREVIEW

In this chapter, we consider system modeling using time-domain methods. We 
 consider physical systems described by an nth-order ordinary differential equa-
tion. Utilizing a (nonunique) set of variables, known as state variables, we can ob-
tain a set of first-order differential equations. We group these first-order equations 
using a compact matrix notation in a model known as the state variable model. 
The relationship between signal-flow graph models and state variable models will 
be investigated. Several interesting physical systems, including a space station and 
a printer belt drive, are presented and analyzed. The chapter concludes with the 
 development of a state variable model for the Sequential Design Example: Disk 
Drive Read System.

DESIRED OUTCOMES

Upon completion of Chapter 3, students should be able to:

	❏ Define state variables, state differential equations, and output equations.

	❏ Recognize that state variable models can describe the dynamic behavior of physical 
 systems and can be represented by block diagrams and signal flow graphs.

	❏ Obtain the transfer function model from a state variable model, and vice versa.

	❏ Identify solution methods for state variable models and describe the role of the state 
transition matrix in obtaining the time responses.

	❏ Explain the important role of state variable modeling in control system design.
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Section 3.2  The State Variables of a Dynamic System 185

3.1 INTRODUCTION

In the preceding chapter, we developed and studied several useful approaches to the 
analysis and design of feedback systems. The Laplace transform was used to trans-
form the differential equations representing the system to an algebraic equation 
expressed in terms of the complex variable s. Using this algebraic equation, we were 
able to obtain a transfer function representation of the input–output relationship.

In this chapter, we represent system models utilizing a set of ordinary differential 
equations in a convenient matrix-vector form. The time domain is the mathematical 
domain that incorporates the description of the system, including the inputs, outputs, 
and response, in terms of time, t. Linear time-invariant single-input, single-output 
models, can be represented via state variable models. Powerful mathematical con-
cepts from linear algebra and matrix-vector analysis, as well as effective computa-
tional tools, can be utilized in the design and analysis of control systems in the time 
domain. Also, these time domain design and analysis methods are readily extended 
to nonlinear, time-varying, and multiple input– output systems. As we shall see, math-
ematical models of linear time-invariant physical  systems can be represented in either 
the frequency domain or the time domain. The time domain design techniques are 
another tool in the designer’s toolbox.

A time-varying control system is a system in which one or more of the 
 parameters of the system may vary as a function of time.

For example, the mass of an airplane varies as a function of time as the fuel is 
expended during flight. A multivariable system is a system with several input and 
output signals.

The time-domain representation of control systems is an essential basis for 
modern control theory and system optimization. In later chapters, we will have an 
opportunity to design optimum control systems by utilizing time-domain methods. 
In this chapter, we develop the time-domain representation of control systems and 
illustrate several methods for the solution of the system time response.

3.2 THE STATE VARIABLES OF A DYNAMIC SYSTEM

The time-domain analysis and design of control systems uses the concept of the 
state of a system [1–3, 5].

The state of a system is a set of variables whose values, together with the 
input signals and the equations describing the dynamics, will provide the  

future state and output of the system.

For a dynamic system, the state of a system is described in terms of a set of 
state   variables t x t x t x tnx ( )( ) ( ) ( ) ( )= ,   ,...,   .1 2  The state variables are those vari-
ables that determine the future behavior of a system when the present state of the 

M03_DORF2374_14_GE_C03.indd   185M03_DORF2374_14_GE_C03.indd   185 14/09/21   9:54 AM14/09/21   9:54 AM



186 Chapter 3  State Variable Models

system and the  inputs are known. Consider the system shown in Figure 3.1, where  
( )y t  is the output signal and ( )u t  is the input signal. A set of state variables  

( )( ) ( ) ( ) ( )=x t x t x t x tn,   , ...,  1 2  for the system shown in the figure is a set such that knowl-
edge of the initial values of the state variables ( )( ) ( ) ( ) ( )=x t x t x t x tn, , ...,  0 1 0 2 0 0  at 
the initial time ,0t  and of the input signal ( )u t  for ,0≥t t  suffices to determine the 
future values of the outputs and state variables [2].

The concept of a set of state variables that represent a dynamic system can be 
illustrated in terms of the spring-mass-damper system shown in Figure 3.2. The 
number of state variables chosen to represent this system should be as small as 
possible in order to avoid redundant state variables. A set of state variables suf-
ficient to describe this system includes the position and the velocity of the mass. 
Therefore, we will define a set of state variables as ( )( ) ( ) ( )=x t x t x t,   ,1 2  where

and .1 2( ) ( ) ( ) ( )
= =x t y t x t

dy t
dt

The differential equation describes the behavior of the system and can be written as

 .
2

2
( ) ( ) ( ) ( )+ + =M

d y t
dt

b
dy t

dt
ky t u t  (3.1)

To write Equation (3.1) in terms of the state variables, we substitute the state vari-
ables as already defined and obtain

 .2
2 1

( ) ( ) ( ) ( )+ + =M
dx t

dt
bx t kx t u t  (3.2)

Therefore, we can write the equations that describe the behavior of the spring-
mass-damper system as the set of two first-order differential equations

 1
2

( ) ( )=
dx t

dt
x t  (3.3)

and

    
1

  .2
2 1

( ) ( ) ( ) ( )=
−

− +
dx t

dt
b

M
x t

k
M

x t
M

u t  (3.4)

This set of differential equations describes the behavior of the state of the system in 
terms of the rate of change of each state variable.

As another example of the state variable characterization of a system, consider 
the RLC circuit shown in Figure 3.3. The state of this system can be described by 
a set of state variables t x t x tx ( )( ) ( ) ( )= ,   ,1 2  where 1( )x t  is the capacitor voltage 

u(t)
Input

y(t)
Output

x (0) Initial
conditions

Dynamic system
state x(t)FIGURE 3.1

Dynamic system.

y(t) u(t)

Wall
friction

b

k

M

FIGURE 3.2
A spring-mass-
damper system.
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Section 3.2  The State Variables of a Dynamic System 187

( )v tc  and 2 ( )x t  is the inductor current .( )i tL  This choice of state variables is intu-
itively satisfactory because the stored energy of the network can be described in 
terms of these variables as

 
1
2

 
1
2

  .2 2e Li t C tL cυ ( )( )= +  (3.5)

Therefore 1 0( )x t  and 2 0( )x t  provide the total initial energy of the network and 
the state of the system at .0=t t  For a passive RLC network, the number of state 
variables required is equal to the number of independent energy-storage elements. 
Utilizing Kirchhoff’s current law at the junction, we obtain a first-order differential 
equation by describing the rate of change of capacitor voltage as

 
υ

( ) ( ) ( ) ( )= = + −i t C
d t

dt
u t i tc

c
L .  (3.6)

Kirchhoff’s voltage law for the right-hand loop provides the equation describing the 
rate of change of inductor current as

 .υ
( ) ( ) ( )= − +L

di t
dt

Ri t tL
L c  (3.7)

The output of this system is represented by the linear algebraic equation

.oυ ( ) ( )=t Ri tL

We can rewrite Equations (3.6) and (3.7) as a set of two first-order differential 
equations in terms of the state variables 1( )x t  and 2 ( )x t  as

 
1

 
1

  ,1
2

( ) ( ) ( )= − +
dx t

dt C
x t

C
u t  (3.8)

and

 
1

    .2
1 2

( ) ( ) ( )= + −
dx t

dt L
x t

R
L

x t  (3.9)

The output signal is then

 .1 o 2υ( ) ( ) ( )= =y t t Rx t  (3.10)

Utilizing Equations (3.8) and (3.9) and the initial conditions of the network repre-
sented by ,   ,0 1 0 2 0t x t x tx ( )( ) ( ) ( )=  we can determine the future behavior.

u(t)
Current
source

iL(t)

vc(t) vo(t)

ic(t)

L

C R
- -

+
+

FIGURE 3.3
An RLC circuit.
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188 Chapter 3  State Variable Models

The state variables that describe a system are not a unique set, and several 
 alternative sets of state variables can be chosen. For example, for a second-order 
 system, such as the spring-mass-damper or RLC circuit, the state variables may be 
any two independent linear combinations of 1( )x t  and .2 ( )x t  For the RLC circuit, we 
might choose the set of state variables as the two voltages, υ ( )tc  and ,υ ( )tL  where 
υ ( )tL  is the voltage drop across the inductor. Then the new state variables, x t( )1

*  
and x t( ),2

*  are related to the old state variables, 1( )x t  and ,2 ( )x t  as

 x t t x tcυ( ) ( ) ( )= = ,1
*

1  (3.11)

and

 x t t t Ri t x t Rx tL c Lυ υ( ) ( ) ( ) ( ) ( ) ( )= = − = − .2
*

1 2  (3.12)

Equation (3.12) represents the relation between the inductor voltage and the for-
mer state variables υ ( )tc  and .( )i tL  In a typical system, there are several choices 
of a set of state variables that specify the energy stored in a system and therefore 
adequately describe the dynamics of the system. It is usual to choose a set of state 
variables that can be readily measured.

An alternative approach to developing a model of a device is the use of the 
bond graph. Bond graphs can be used for electrical, mechanical, hydraulic, and 
thermal devices or systems as well as for combinations of various types of elements. 
Bond graphs produce a set of equations in the state variable form [7].

The state variables of a system characterize the dynamic behavior of a sys-
tem. The engineer’s interest is primarily in physical systems, where the variables  
typically are voltages, currents, velocities, positions, pressures, temperatures, and 
similar physical variables. However, the concept of system state is also useful in 
analyzing biological, social, and economic systems. For these systems, the concept 
of state is extended beyond the concept of the current configuration of a physical 
system to the broader viewpoint of variables that will be capable of describing the 
future behavior of the system.

3.3 THE STATE DIFFERENTIAL EQUATION

The response of a system is described by the set of first-order differential equa-
tions written in terms of the state variables x t x t x tn( )( ) ( ) ( ),   ,  . . . ,  1 2  and the inputs 
u t u t u tm( )( ) ( ) ( ),   ,  . . . ,   .1 2  A set of linear first-order differential equations can be 

written in general form as

� � �( ) ( ) ( ) ( ) ( ) ( )= + + + + + +x t a x t a x t a x t b u t b u tn n m m    ,1 11 1 12 2 1 11 1 1

    ,2 21 1 22 2 2 21 1 2� � �( ) ( ) ( ) ( ) ( ) ( )= + + + + + +x t a x t a x t a x t b u t b u tn n m m

�

     ,1 1 2 2 1 1� � �( ) ( ) ( ) ( ) ( ) ( )= + + + + + +x t a x t a x t a x t b u t b u tn n n nn n n nm m  

(3.13)
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Section 3.3  The State Differential Equation 189

where � .( ) ( )= /x t dx t dt  Thus, this set of simultaneous differential equations can be 
written in matrix form as follows [2, 5]:

 













=





































+































�

�
�

� � �

�
�

�
� �

�
�

d
dt

x t

x t

x t

a a a

a a a

a a a

x t

x t

x t

b b

b b

u t

u t
n

n

n

n n nn n

n

n nm m

( )

( )

( )

( )

( )

( )

( )

( )
.

1

2

11 12 1

21 22 2

1 2

1

2
11 1

1

1

 (3.14)

The column matrix consisting of the state variables is called the state vector and is 
written as

 t

x t

x t

x tn

�
( )

( )

( )

( )

=













,

1

2x  (3.15)

where the boldface indicates a vector. The vector of input signals is defined as u(t). 
Then the system can be represented by the compact notation of the state differen-
tial equation as

 t t t� ( ) ( ) ( )= + .x Ax Bu  (3.16)

Equation (3.16) is also commonly called the state equation.
The matrix A is an ×n n  square matrix, and B is an ×n m  matrix.† The state 

differential equation relates the rate of change of the state of the system to the state 
of the system and the input signals. In general, the outputs of a linear system can be 
related to the state variables and the input signals by the output equation

 t t t( ) ( ) ( )= + ,y Cx Du  (3.17)

where ( )y t  is the set of output signals expressed in column vector form. The state-
space representation (or state-variable representation) comprises the state differen-
tial equation and the output equation.

We use Equations (3.8) and (3.9) to obtain the state variable differential equa-
tion for the RLC of Figure 3.3 as

 � t C

L
R

L

t C u t( ) ( ) ( )=

−

−























+



















x x
0 1

1

1

0
 (3.18)

†Boldfaced lowercase letters denote vector quantities and boldfaced uppercase letters denote matri-
ces. For an introduction to matrices and elementary matrix operations, refer to the MCS website and 
references [1] and [2].
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190 Chapter 3  State Variable Models

and the output as

 ( ) ( )=y t R tx[0 ] .  (3.19)

When 3,   1,= =R L  and =C 1/2,  we have

t t u t� ( ) ( ) ( )= −
−











 +













0 2
1 3

2
0

x x

and

( ) ( )=y t tx[0 3] .

The solution of the state differential equation can be obtained in a manner 
similar to the method for solving a first-order differential equation. Consider the 
first-order differential equation

 ,�( ) ( ) ( )= +x t ax t bu t  (3.20)

where x(t) and u(t) are scalar functions of time. We expect an exponential solution 
of the form .eat  Taking the Laplace transform of Equation (3.20), we have

0 ;( ) ( ) ( ) ( )− = +sX s x aX s bU s

therefore,

 
0

  .( ) ( ) ( )=
−

+
−

X s
x
s a

b
s a

U s  (3.21)

The inverse Laplace transform of Equation (3.21) is

 x t e x e bu dat
t

a t∫ τ τ( ) ( ) ( )= + τ( )+ −0   .
0

 (3.22)

We expect the solution of the general state differential equation to be similar to 
Equation (3.22) and to be of exponential form. The matrix exponential function is 
defined as

 e t t
t t

k
t

k k
= = + + + + +A A I A

A A
exp( )

2!
. . .  

!
. . . ,

2 2
 (3.23)

which converges for all finite t and any A[2]. Then the solution of the state differen-
tial equation is found to be

 t t t d
t

∫ τ τ τ( ) ( ) ( ) ( )= + −exp( ) 0  exp[ ] .
0

x A x A Bu  (3.24)
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Section 3.3  The State Differential Equation 191

Equation (3.24) may be verified by taking the Laplace transform of Equation (3.16) 
and rearranging to obtain

 s s s s( ) [ ] ( ) [ ] ( )= − + −− −0 ,1 1X I A x I A BU  (3.25)

where we note that s sΦ[ ] ( )− =−1I A  is the Laplace transform of t tΦ( ) = exp( ).A  
Taking the inverse Laplace transform of Equation (3.25) and noting that the second 
term on the right-hand side involves the product s sΦ( ) ( ),BU  we obtain Equation 
(3.24). The matrix exponential function describes the unforced response of the sys-
tem and is called the fundamental or state transition matrix tΦ( ).  Thus, Equation 
(3.24) can be written as

 t t t d
t

∫ τ τ τΦ Φ( ) ( ) ( ) ( ) ( )= + −0     .
0

x x Bu  (3.26)

The solution to the unforced system (that is, when ( ) =tu 0 ) is

 

φ φ

φ φ

φ φ













=





































x t

x t

x t

t

t

t

x

x

xn

n

n

n nn n

( )

( )

( )

( )

( )

( )

(0)

(0)

(0)

.

1

2

11 1

21 2

1

1

2

�

�

�

� �
�

�
 (3.27)

We note that to determine the state transition matrix, all initial conditions are set 
to 0 except for one state variable, and the output of each state variable is evaluated. 
That is, the term φ ( )tij  is the response of the ith state variable due to an initial 
condition on the jth state variable when there are zero initial conditions on all the 
other variables. We shall use this relationship between the initial conditions and the 
state variables to evaluate the coefficients of the transition matrix in a later section. 
However, first we shall develop several suitable signal-flow state models of systems 
and investigate the stability of the systems by utilizing these flow graphs.

EXAMPLE 3.1 Two rolling carts

Consider the system shown in Figure 3.4. The variables of interest are noted on 
the figure and defined as: ,   mass1 2 =M M  of carts, ,   position( ) ( ) =p t q t  of 
carts, external( ) =u t  force acting on system, ,   spring1 2 =k k  constants, and 

M2 M1

q(t) p(t)

u(t)

k1k2

b2 b1

Cart 1Cart 2
FIGURE 3.4
Two rolling carts 
 attached with 
springs and 
dampers.
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192 Chapter 3  State Variable Models

,   damping1 2 =b b  coefficients. The free-body diagram of mass 1M  is shown in 
Figure 3.5(b), where ,   velocity� �( ) ( ) =p t q t  of 1M  and ,2M  respectively. We assume 
that the carts have negligible rolling friction. We consider any existing rolling fric-
tion to be lumped into the damping coefficients, 1b  and .2b

Now, given the free-body diagram with forces and directions appropriately ap-
plied, we use Newton’s second law (sum of the forces equals mass of the object 
multiplied by its acceleration) to obtain the equations of motion—one equation for 
each mass. For mass 1M  we have

 ,1 1 1 1 1�� � �( ) ( ) ( ) ( ) ( ) ( )+ + = + +M p t b p t k p t u t k q t b q t  (3.28)

where

�� ��( ) ( ) =p t q t M M,   acceleration of   and  ,  respectively.1 2

Similarly, for mass 2M  in Figure 3.5(a), we have

 .2 1 2 1 2 1 1�� � �( ) ( ) ( ) ( ) ( ) ( ) ( )+ + + + = +M q t k k q t b b q t k p t b p t  (3.29)

We now have a model given by the two second-order ordinary differential equa-
tions in Equations (3.28) and (3.29). We can start developing a state-space model 
by defining

,1( ) ( )=x t p t

.2 ( ) ( )=x t q t

We could have alternatively defined 1( ) ( )=x t q t  and .2 ( ) ( )=x t p t  The state-space 
model is not unique. Denoting the derivatives of 1( )x t  and 2 ( )x t  as 3( )x t  and ,4 ( )x t  
respectively, it follows that

 ,3 1� �( ) ( ) ( )= =x t x t p t  (3.30)

 .4 2� �( ) ( ) ( )= =x t x t q t  (3.31)

Taking the derivative of 3x (t) and 4x (t) yields, respectively,

    
1

      ,3
1

1

1

1 1

1

1

1

1
� �� � �( ) ( ) ( ) ( ) ( ) ( ) ( )= = − − + + +x t p t

b
M

p t
k
M

p t
M

u t
k
M

q t
b
M

q t  (3.32)

         ,4
1 2

2

1 2

2

1

2

1

2
� �� � �( ) ( ) ( ) ( ) ( ) ( )= = −

+
−

+
+ +x t q t

k k
M

q t
b b

M
q t

k
M

p t
b
M

p t  (3.33)

where we use the relationship for ��( )p t  given in Equation (3.28) and the rela-
tionship for ��( )q t  given in Equation (3.29). But 3� ( ) ( )=p t x t  and ,4�( ) ( )=q t x t  so 
Equation (3.32) can be written as

        
1

 3
1

1
1

1

1
2

1

1
3

1

1
4

1
� ( ) ( ) ( ) ( ) ( ) ( )= − + − + +x t

k
M

x t
k
M

x t
b
M

x t
b
M

x t
M

u t  (3.34)
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and Equation (3.33) as

         .4
1

2
1

1 2

2
2

1

2
3

1 2

2
4� ( ) ( ) ( ) ( ) ( )= −

+
+ −

+
x t

k
M

x t
k k

M
x t

b
M

x t
b b

M
x t  (3.35)

In matrix form, Equations (3.30), (3.31), (3.34), and (3.35) can be written as

t t u t� ( ) ( ) ( )= +x Ax B

where

�

�

( ) =

( )

( )

( )

( )

( )

( )

( )

( )

,

1

2

3

4













=













t

x t

x t

x t

x t

p t

q t

p t

q t

x

0 0 1 0
0 0 0 1

, and =

0
0

0

,11

1

1

1

1

1

1

1

1

2

1 2

2

1

2

1 2

2

1

A Bk
M

k
M

b
M

b
M

k
M

k k
M

b
M

b b
M

M
= − −

− −

















































+ +

and u(t) is the external force acting on the system. If we choose  p(t) as the output, 
then

( ) ( ) ( )= =y t t tx Cx[1 0 0 0] .

Suppose that the two rolling carts have the following parameter values: 
= /k 150 N m;1  = / = / = / =k b b M700 N m;   15 N s m;   30 N s m;   5 kg;2 1 2 1  and 

20 kg.2 =M  The response of the two rolling cart system is shown in Figure 3.6 
when the initial conditions are 0 10 cm,  0 0,( ) ( )= =p q  and 0 0 0� �( ) ( )= =p q  and 
there is no input driving force, that is, 0.( ) =u t

p(t)

u(t)M2 M1

q(t)

k2q (t)

b2q (t)

k1q (t) - k1p (t) k1p (t) - k1q (t)

(a) (b)

. .
b1q (t) - b1p (t)

.
b1p (t) - b1q (t)

. .

FIGURE 3.5 Free-body diagrams of the two rolling carts. (a) Cart 2; (b) Cart 1.
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194 Chapter 3  State Variable Models

3.4 SIGNAL-FLOW GRAPH AND BLOCK DIAGRAM MODELS

The state of a system describes the dynamic behavior where the dynamics of the 
system are represented by a set of first-order differential equations. Alternatively, 
the dynamics of the system can be represented by a state differential equation as in 
Equation (3.16). In either case, it is useful to develop a graphical model of the sys-
tem and use this model to relate the state variable concept to the familiar transfer 
function representation. The graphical model can be represented via signal-flow 
graphs or block diagrams.

As we have learned in previous chapters, a system can be meaningfully de-
scribed by an input–output relationship, the transfer function ( )G s . For example, if 
we are interested in the relation between the output voltage and the input voltage 
of the network of Figure 3.3, we can obtain the transfer function

.0( ) ( )
( )

=G s
V s
U s

The transfer function for the RLC network of Figure 3.3 is of the form

 ,0
2

α
β γ

( ) ( )
( )

= =
+ +

G s
V s
U s s s

 (3.36)

0 1 2 3 4 5

0

5

25

21

22

10

Time (s)

p 
(c

m
)

0 1 2 3 4 5

0

1

2

Time (s)

q 
(c

m
)

FIGURE 3.6
Initial condition 
response of the two 
cart system. ■
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Section 3.4  Signal-Flow Graph and Block Diagram Models 195

where ,   ,α β  and γ  are functions of the circuit parameters R, L, and C, respectively. 
The values of ,   ,α β  and γ  can be determined from the differential equations that 
describe the circuit. For the RLC circuit (see Equations 3.8 and 3.9), we have

 
1

 
1

  ,1 2� ( ) ( ) ( )= − +x t
C

x t
C

u t  (3.37)

 
1

    ,2 1 2� ( ) ( ) ( )= −x t
L

x t
R
L

x t  (3.38)

and

 .2υ ( ) ( )=t Rx to  (3.39)

The flow graph representing these simultaneous equations is shown in Figure 3.7(a), 
where 1/s indicates an integration. The corresponding block diagram model is 
shown in Figure 3.7(b). The transfer function is found to be

 
V s
U s

R LCs

R Ls LCs

R LC
s R L s LC

( )
( ) ( )

( )
( ) ( )

( )
( )

=
/

+ / + /
=

/
+ / + /1 1 1

.o
2

2 2
 (3.40)

Many electric circuits, electromechanical systems, and other control systems are not 
as simple as the RLC circuit of Figure 3.3, and it is often a difficult task to determine 
a set of first-order differential equations describing the system. Therefore, it is often 
simpler to derive the transfer function of the system and then derive the state model 
from the transfer function.

The signal-flow graph state model and the block diagram model can be readily 
derived from the transfer function of a system. However, as we noted in Section 3.3, 

(a)

1
s

Vo(s)U(s)
R

X1(s) X2(s)1
s

1
L

1
C

1
C

-

- R
L

(b)

+ -
Vo(s)

X2(s)X1(s)+

-
U(s) R

1
s

1
s

1
L

1
C

1
C

R
L

FIGURE 3.7
RLC network. 
(a) Signal-flow 
graph. (b) Block 
diagram.
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196 Chapter 3  State Variable Models

there is more than one alternative set of state variables, and therefore there is 
more than one possible form for the signal-flow graph and block diagram mod-
els. There are several key canonical forms of the state-variable representation, such 
as the  phase variable canonical form, that we will investigate in this chapter. In 
general, we can represent a transfer function as

 
 

 
1

1
1 0

1
1

1 0

�
�

( ) ( )
( )

= =
+ + + +

+ + + +
−

−

−
−G s

Y s
U s

b s b s b s b
s a s a s a

m
m

m
m

n
n

n
 (3.41)

where ,≥n m  and all the a and b coefficients are real numbers. If we multiply the 
numerator and denominator by ,−s n  we obtain
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1
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1
0

1
1

1
1

0
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( ) =
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−
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G s
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a s a s a s
m

n m
m

n m n n

n
n n

 (3.42)

Our familiarity with Mason’s signal-flow gain formula allows us to recognize the 
 familiar feedback factors in the denominator and the forward-path factors in the nu-
merator. Mason’s signal-flow gain formula was discussed in Section 2.7 and is written as

 
 

.( )
( )
( )

( ) ( )
( )

= =
∑ ∆

∆
G s

Y s
U s

P s s
s

k k k  (3.43)

When all the feedback loops are touching and all the forward paths touch the feed-
back loops, Equation (3.43) reduces to

 

G s
P s

L s
k k

q
N

q
( )

( )
( )

=
∑

− ∑
=

−
−−1
Sum of the forward path factors

1 sum of the feedback loop factors
.

1

 (3.44)

There are several flow graphs that could represent the transfer function. Two flow 
graph configurations based on Mason’s signal-flow gain formula are of particular 
interest, and we will consider these in greater detail. In the next section, we will 
consider two additional configurations: the physical state variable model and the 
diagonal (or Jordan canonical) form model.

To illustrate the derivation of the signal-flow graph state model, let us initially 
consider the fourth-order transfer function

0
4

3
3

2
2

1 0
( ) ( )

( )
= =

+ + + +
G s

Y s
U s

b
s a s a s a s a

 
1

.0
4

3
1

2
2

1
3

0
4

=
+ + + +

−

− − − −
b s

a s a s a s a s
 (3.45)

First we note that the system is fourth order, and hence we identify four state vari-
ables ( ,   ( ),   ( ),   ( )).1 2 3 4( )x t x t x t x t  Recalling Mason’s signal-flow gain formula, we note 
that the denominator can be considered to be 1 minus the sum of the loop gains. 
Furthermore, the  numerator of the transfer function is equal to the forward-path fac-
tor of the flow graph. The flow graph must include a minimum number of integrators 
equal to the order of the system. Therefore, we use four integrators to represent this sys-
tem. The necessary flow graph nodes and the four integrators are shown in Figure 3.8.  
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Section 3.4  Signal-Flow Graph and Block Diagram Models 197

Considering the simplest series interconnection of integrators, we can represent the 
transfer function by the flow graph of Figure 3.9. Examining this figure, we note that 
all the loops are touching and that the transfer function of this flow graph is indeed 
Equation (3.45). The reader can readily verify this by noting that the forward-path 
factor of the flow graph is b s/0

4  and the denominator is equal to 1 minus the sum of 
the loop gains.

We can also consider the block diagram model of Equation (3.45). Rearranging 
the terms in Equation (3.45) and taking the inverse Laplace transform yields the 
differential equation model

d y t b
dt

a
d y t b

dt
a

d y t b
dt

a
d y t b

dt
a y t b u t

( ) ( ) ( ) ( )

( ) ( )

/
+

/
+

/
+

/

+ / =

( ) ( ) ( ) ( )
 

( ) .

4
0

4 3

3
0

3 2

2
0

2 1
0

0 0

Define the four state variables as follows:

x t y t b( ) ( )= /1 0

� �x t x t y t b( ) ( ) ( )= = /2 1 0

� ��x t x t y t b( ) ( ) ( )= = /3 2 0

� ���x t x t y t b( ) ( ) ( )= = / .4 3 0

1
s

1
s

1
s

1
sU(s) Y(s)

X2X3X4 X1x4
.

sX4 x3
.

sX3 x2
.

sX2 x1
.

sX1

FIGURE 3.8
Flow graph nodes 
and integrators 
for fourth-order 
system.
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1
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1
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1
s
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1
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(b)

-
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FIGURE 3.9
Model for G s( )  
of Equation (3.45). 
(a) Signal-flow 
graph. (b) Block 
diagram.
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198 Chapter 3  State Variable Models

Then it follows that the fourth-order differential equation can be written equivalently 
as four first-order differential equations, namely,

,1 2� ( ) ( )=x t x t

,2 3� ( ) ( )=x t x t

,3 4� ( ) ( )=x t x t

and

;4 0 1 1 2 2 3 3 4� ( ) ( ) ( ) ( ) ( ) ( )= − − − − +x t a x t a x t a x t a x t u t

and the corresponding output equation is

.0 1( ) ( )=y t b x t

The block diagram model can be readily obtained from the four first-order differen-
tial equations as illustrated in Figure 3.9(b).

Now consider the fourth-order transfer function when the numerator is a poly-
nomial in s, so that we have

3
3

2
2

1 0
4

3
3

2
2

1 0
( ) =

+ + +
+ + + +

G s
b s b s b s b

s a s a s a s a

 
1
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1

2
2

1
3

0
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3
1

2
2

1
3

0
4

=
+ + +

+ + + +

− − − −

− − − −
b s b s b s b s

a s a s a s a s
 (3.46)

The numerator terms represent forward-path factors in Mason’s signal-flow gain 
formula. The forward paths will touch all the loops, and a suitable signal-flow graph 
realization of Equation (3.46) is shown in Figure 3.10(a). The forward-path factors 
are / / /b s b s b s, , ,3 2

2
1

3  and /b s0
4  as required to provide the numerator of the transfer 

function. Recall that Mason’s signal-flow gain formula indicates that the numerator 
of the transfer function is simply the sum of the forward-path factors. This general 
form of a signal-flow graph can represent the general transfer function of Equation 
(3.46) by utilizing n feedback loops involving the an coefficients and m forward-path 
factors involving the bm  coefficients. The general form of the flow graph state model 
and the block diagram model shown in Figure 3.10 is called the phase variable 
 canonical form.

The state variables are identified in Figure 3.10 as the output of each energy 
storage element, that is, the output of each integrator. To obtain the set of 
first-order differential equations representing the state model of Equation (3.46), 
we will introduce a new set of flow graph nodes immediately preceding each in-
tegrator of Figure 3.10(a) [5, 6]. The nodes are placed before each integrator, and 
therefore they represent the derivative of the output of each integrator. The sig-
nal-flow graph, including the added nodes, is shown in Figure 3.11. Using the flow 
graph of this figure, we are able to obtain the following set of first-order differential 
 equations describing the state of the model:

, , ,1 2 2 3 3 4� � �( ) ( ) ( ) ( ) ( ) ( )= = =x t x t x t x t x t x t

.4 0 1 1 2 2 3 3 4� ( ) ( ) ( ) ( ) ( ) ( )= − − − − +x t a x t a x t a x t a x t u t  (3.47)

In this equation, ,   ,1 2( ) ( ) ( )…x t x t x tn  are the n phase variables.
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FIGURE 3.10 Model for G s( )  of Equation (3.46) in the phase variable format.  
(a) Signal-flow graph. (b) Block diagram.
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FIGURE 3.11
Flow graph of 
Figure 3.10 with 
nodes inserted.

M03_DORF2374_14_GE_C03.indd   199M03_DORF2374_14_GE_C03.indd   199 14/09/21   9:55 AM14/09/21   9:55 AM



200 Chapter 3  State Variable Models

The block diagram model can also be constructed directly from Equation (3.46). 
Define the intermediate variable Z(s) and rewrite Equation (3.46) as

  .3
3

2
2

1 0
4

3
3

2
2

1 0
( ) ( )

( )
( )
( )

= =
+ + +

+ + + +
G s

Y s
U s

b s b s b s b
s a s a s a s a

Z s
Z s

Notice that, by multiplying by Z(s)/Z(s), we do not change the transfer function, 
( )G s . Equating the numerator and denominator polynomials yields

[ ]3
3

2
2

1 0( ) ( )= + + +Y s b s b s b s b Z s

and

[ ] .4
3

3
2

2
1 0( ) ( )= + + + +U s s a s a s a s a Z s

Taking the inverse Laplace transform of both equations yields the differential 
equations

3

3

3 2

2

2 1 0( ) ( ) ( ) ( ) ( )= + + +y t b
d z t

dt
b

d z t
dt

b
dz t

dt
b z t

and

.
4

4 3

3

3 2

2

2 1 0( ) ( ) ( ) ( ) ( ) ( )= + + + +u t
d z t

dt
a

d z t
dt

a
d z t

dt
a

dz t
dt

a z t

Define the four state variables as follows:

1( ) ( )=x t z t

2 1� �( ) ( ) ( )= =x t x t z t

3 2� ��( ) ( ) ( )= =x t x t z t

.4 3� ���( ) ( ) ( )= =x t x t z t

Then the differential equation can be written equivalently as

,1 2� ( ) ( )=x t x t

,2 3� ( ) ( )=x t x t

,3 4� ( ) ( )=x t x t

and

,4 0 1 1 2 2 3 3 4� ( ) ( ) ( ) ( ) ( ) ( )= − − − − +x t a x t a x t a x t a x t u t

and the corresponding output equation is

 .0 1 1 2 2 3 3 4( ) ( ) ( ) ( ) ( )= + + +y t b x t b x t b x t b x t  (3.48)

The block diagram model can be readily obtained from the four first-order differen-
tial equations and the output equation as illustrated in Figure 3.10(b).
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Section 3.4  Signal-Flow Graph and Block Diagram Models 201

In matrix form, we can represent the system in Equation (3.46) as

 � ( ) ( ) ( )= +t t u tx Ax B , (3.49)

or

 ( )













=

− − − −



































+























d
dt

x

x

x

x a a a a

x

x

x

x

u t 

0 1 0 0
0 0 1 0
0 0 0 1

0
0
0
1

.

1

2

3

4 0 1 2 3

1

2

3

4

 (3.50)

The output is

 ( ) ( )= =













y t t b b b b

x

x

x

x

Cx [ ] .0 1 2 3

1

2

3

4

 (3.51)

The graphical structures of Figure 3.10 are not unique representations of 
Equation (3.46); another equally useful structure can be obtained. A flow graph 
that represents Equation (3.46) equally well is shown in Figure 3.12(a). In this case, 
the forward-path factors are obtained by feeding forward the signal U(s). We will 
call this model the input feedforward canonical form.

Then the output signal ( )y t  is equal to the first state variable .1( )x t  This flow 
graph structure has the forward-path factors b s b s b s b s/ / / /,   ,   ,   ,0

4
1

3
2

2
3  and all the for-

ward paths touch the feedback loops. Therefore, the resulting transfer function is 
indeed equal to Equation (3.46).

Associated with the input feedforward format, we have the set of first-order 
differential equations

,   ,1 3 1 2 3 2 2 1 3 2� �( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= − + + = − + +x t a x t x t b u t x t a x t x t b u t

, and .3 1 1 4 1 4 0 1 0� �( ) ( ) ( ) ( ) ( ) ( ) ( )= − + + = − +x t a x t x t b u t x t a x t b u t  (3.52)

Thus, in matrix form, we have

 
d t

dt

a

a

a

a

t

b

b

b

b

u t
x

x
( )

( ) ( )=

−
−
−
−

























+

























1 0 0
0 1 0
0 0 1
0 0 0

3

2

1

0

3

2

1

0

 (3.53)

and

x[1 0 0 0 ] [0] .( ) ( ) ( )= +y t t u t

Although the input feedforward canonical form of Figure 3.12 represents the same 
transfer function as the phase variable canonical form of Figure 3.10, the state 
 variables of each graph are not equal. Furthermore we recognize that the initial con-
ditions of the system can be represented by the initial conditions of the integrators, 
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202 Chapter 3  State Variable Models

0 ,   0 , ,   0 .1 2( ) ( ) ( )…x x xn  Let us consider a control system and determine the state 
differential equation by utilizing the two forms of flow graph state models.

EXAMPLE 3.2 Two state variable models

Consider a closed-loop transfer function
2 8 6

8 16 6
.

2

3 2( ) ( )
( )

= =
+ +

+ + +
T s

Y s
U s

s s
s s s

Multiplying the numerator and denominator by ,3−s  we have

 
2 8 6

1 8 16 6
.

1 2 3

1 2 3( ) ( )
( )

= =
+ +

+ + +

− − −

− − −T s
Y s
U s

s s s
s s s

 (3.54)
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FIGURE 3.12 (a) Alternative flow graph state model for Equation (3.46). This model is called the 
input feedforward canonical form. (b) Block diagram of the input feedforward canonical form.
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Section 3.4  Signal-Flow Graph and Block Diagram Models 203

The first model is the phase variable state model using the feedforward of the 
state variables to provide the output signal. The signal-flow graph and block diagram 
are shown in Figures 3.13(a) and (b), respectively. The state differential equation is

 � t t u t( ) ( ) ( )=
− − −



















+



















x x
0 1 0
0 0 1
6 16 8

0
0
1

,  (3.55)

and the output is

 x[ 6 8 2 ] .( ) ( )=y t t  (3.56)

The second model uses the feedforward of the input variable, as shown in 
Figure 3.14. The vector differential equation for the input feedforward model is

 � t t u t( ) ( ) ( )=
−

−
−



















+



















x x
8 1 0

16 0 1
6 0 0

2
8
6

,  (3.57)

and the output is

x[1 0 0] .( ) ( )=y t t
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FIGURE 3.13
(a) Phase variable 
flow graph state 
model for T(s). 
(b) Block diagram 
for the phase 
variable canonical 
form.
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204 Chapter 3  State Variable Models

We note that it was not necessary to factor the numerator or denominator poly-
nomial to obtain the state differential equations for the phase variable model or the 
input feedforward model. Avoiding the factoring of polynomials permits us to avoid 
the tedious effort involved. Both models require three integrators because the sys-
tem is third order. However, it is important to emphasize that the state variables 
of the state model of Figure 3.13 are not identical to the state variables of the state 
model of Figure 3.14. Of course, one set of state variables is related to the other set 
of state variables by an appropriate linear transformation of variables. A linear ma-
trix transformation is represented by z Mx,=  which transforms the x-vector into 
the z-vector by means of the M matrix. Finally, we note that the transfer function of 
Equation (3.41) represents a single-output linear constant coefficient system; thus, 
the transfer function can represent an nth-order differential equation
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�

   

  .

1

1

1 0 1

1

1

0
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+ + + = +
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−

− −

−

−
d y t

dt
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a y t
d u t
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d u t
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b u t

n

n n

n

n

m

m m

m

m

 

(3.58)

Accordingly, we can obtain the n first-order equations for the nth-order differential 
equation by utilizing the phase variable model or the input feedforward model of 
this section.
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FIGURE 3.14
(a) Alternative flow 
graph state model 
for T(s) using the 
input feedforward 
canonical form. 
(b) Block diagram 
model. ■
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3.5 ALTERNATIVE SIGNAL-FLOW GRAPH AND BLOCK DIAGRAM MODELS

Often the control system designer studies an actual control system block diagram 
that represents physical devices and variables. An example of a model of a DC 
motor with shaft velocity as the output is shown in Figure 3.15 [9]. We wish to 
select the physical variables as the state variables. Thus, we select: ,1( ) ( )=x t y t  
the velocity output; ,2 ( ) ( )=x t i t  the field current; and the third state variable, 

,3( )x t  is selected to be x t r t u t( ) ( ) ( )= −    ,3
1
4

1
20

 where u(t) is the field voltage. We 
may draw the models for these physical variables, as shown in Figure 3.16. Note 
that the state variables ,   ,1 2( ) ( )x t x t  and 3( )x t are identified on the models. We will 
denote this format as the physical state variable model. This model is particularly 
useful when we can measure the physical state variables. Note that the model of 
each block is separately determined. For example, note that the transfer function 
for the controller is

5 1
5

5 5
1 5

,
1

1
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( ) ( )
= =

+
+

=
+
+

−

−
U s
R s

G s
s

s
s
s

c

and the flow graph between ( )R s  and ( )U s  represents .( )G sc
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Velocity
1

s + 2
6
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5(s + 1)

s + 5
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FIGURE 3.15
A block diagram 
model of an open-
loop DC motor 
 control with velocity 
as the output.
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FIGURE 3.16 (a) The physical state variable signal-flow graph for the block diagram  
of Figure 3.15. (b) Physical state block diagram.
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The state variable differential equation is directly obtained from Figure 3.16 as

 � t t r t( ) ( ) ( )=
−

− −
−



















+



















x x
3 6 0
0 2 20
0 0 5

0
5
1

 (3.59)

and

 x[1 0 0 ] .( )=y t  (3.60)

A second form of the model we need to consider is the decoupled response 
modes. The overall input–output transfer function of the block diagram system 
shown in Figure 3.15 is

30 1
5 2 3

,
1 2 3

( )
( )

( ) ( )
( )( )( )

( )
( )( )( )

= =
+

+ + +
=

− − −
Y s
R s

T s
s

s s s
q s

s s s s s s

and the transient response has three modes dictated by ,   ,1 2s s  and .3s  These modes 
are indicated by the partial fraction expansion as

 
5 2 3

,1 2 3( )
( )

( )= =
+

+
+

+
+

Y s
R s

T s
k

s
k

s
k

s
 (3.61)

where we find that 20,   10,1 2= − = −k k  and 30.3 =k  The decoupled state  variable 
model representing Equation (3.61) is shown in Figure 3.17. The state variable  matrix 
differential equation is

t t r tx x( ) ( ) ( )=
−

−
−



















+



















5 0 0
0 2 0
0 0 3

1
1
1

�

and

 x[ 20 10 30 ] .( ) ( )= − −y t t  (3.62)

Note that we chose 1( )x t  as the state variable associated with 5,  1 2 ( )= −s x t  asso-
ciated with 2,2 = −s  and 3( )x t  associated with 3,3 = −s  as indicated in Figure 3.17. 
This choice of state variables is arbitrary; for example, 1( )x t  could be chosen as 
associated with the factor 2.+s

The decoupled form of the state differential matrix equation displays the 
distinct model poles − − −s s sn,   , . . . ,   ,1 2  and this format is often called the 
 diagonal  canonical form. A system can always be written in diagonal form if it 
possesses distinct poles; otherwise, it can only be written in a block diagonal form, 
known as the Jordan canonical form [24].
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EXAMPLE 3.3 Inverted pendulum control

The problem of balancing a broomstick on a person’s hand is illustrated in Figure 3.18. 
The only equilibrium condition is 0θ( ) =t  and θ( )/ =d t dt 0. The problem of balanc-
ing a broomstick on one’s hand is not unlike the problem of controlling the attitude 
of a missile during the initial stages of launch. This problem is the classic and intrigu-
ing problem of the inverted pendulum mounted on a cart, as shown in Figure 3.19. 
The cart must be moved so that mass m is always in an upright position. The state 
variables must be expressed in terms of the angular rotation θ( )t  and the position of 
the cart ( )y t . The differential equations describing the motion of the system can be 
obtained by writing the sum of the forces in the horizontal direction and the sum of 
the moments about the pivot point [2, 3, 10, 23]. We will assume that �M m and 
the angle of rotation θ( )t , is small so that the equations are linear. The sum of the 
forces in the horizontal direction is

 0,�� ��θ( ) ( ) ( )+ − =My t ml t u t  (3.63)

where u(s) equals the force on the cart, and l is the distance from the mass m to the 
pivot point. The sum of the torques about the pivot point is

 0.2�� ��θ θ( ) ( ) ( )+ − =mly t ml t mlg t  (3.64)

The state variables for the two second-order equations are chosen as (x1 (t),
� �x t x t x t y t y t t tθ θ( ))( ) ( ) ( ) ( ) ( ) ( ) ( )=, ,       ,   ,   ,   .2 3 4  Then Equations (3.63) and (3.64) 

are written in terms of the state variables as

 02 4� �( ) ( ) ( )+ − =Mx t mlx t u t  (3.65)

and

 0.2 4 3� �( ) ( ) ( )+ − =x t lx t gx t  (3.66)

R(s) Y(s)
X2(s)

X3(s)

X1(s)

R(s) Y(s)

(a)

1

- 2

- 3

- 5
1

1

-10

30

-20

1
s

1
s

1
s

(b)

X2(s)+

-

1
s

+

2

10

+

-

-
-

1
s

5

20

X3(s)+

-

1
s

3

30

X1(s)

FIGURE 3.17 (a) The decoupled state variable flow graph model for the system shown in block 
diagram form in Figure 3.15. (b) The decoupled state variable block diagram model.
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208 Chapter 3  State Variable Models

To obtain the necessary first-order differential equations, we solve for 4� ( )lx t  in 
Equation (3.66) and substitute into Equation (3.65) to obtain

 ,2 3� ( ) ( ) ( )+ =Mx t mgx t u t  (3.67)

since .�M m  Substituting 2� ( )x t  from Equation (3.65) into Equation (3.66), we 
have

 0.4 3� ( ) ( ) ( )− + =Mlx t Mgx t u t  (3.68)

Therefore, the four first-order differential equations can be written as

,  
1

  ,1 2 2 3� �( ) ( ) ( ) ( ) ( )= = − +x t x t x t
mg
M

x t
M

u t

 , and  
1

  .3 4 4 3� �( ) ( ) ( ) ( ) ( )= = −x t x t x t
g
l

x t
Ml

u t  (3.69)

Thus, the system matrices are

 A B

0 1 0 0
0 0 / 0

0 0 0 1
0 0 / 0

,

0
1/

0
1/

.

( )

=
−

























=

−

























mg M

g l

M

Ml

 (3.70) ■

L

u(t)
Hand movement

u(t)

M

FIGURE 3.18
An inverted 
 pendulum balanced 
on a person’s hand 
by moving the hand 
to reduce .θ( )t  
Assume, for ease, 
that the pendulum 
rotates in the x–y 
plane.

M u(t)

y(t)

Mass m

Frictionless
surface

mg

my

u(t)

¨ (t)

FIGURE 3.19
A cart and an in-
verted pendulum. 
The pendulum is 
constrained to pivot 
in the vertical plane.
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Section 3.6  The Transfer Function from the State Equation 209

3.6 THE TRANSFER FUNCTION FROM THE STATE EQUATION

Given a transfer function ( )G s , we can obtain the state variable equations using 
the signal-flow graph model. Now we turn to the matter of determining the transfer 
function ( )G s  of a single-input, single-output (SISO) system. Recalling Equations 
(3.16) and (3.17), we have

 t t u t� ( ) ( ) ( )= +x Ax B  (3.71)

and

 y t t u t( ) ( ) ( )= +Cx D  (3.72)

where ( )y t  is the single output and u(s) is the single input. The Laplace transforms 
of Equations (3.71) and (3.72) are

 s s s U s( ) ( ) ( )= +X AX B  (3.73)

and

 Y s s U s( ) ( ) ( )= +CX D  (3.74)

where B is an 1×n  matrix, since ( )U s  is a single input. Note that we do not include 
initial conditions, since we seek the transfer function. Rearranging Equation (3.73), 
we obtain

 s s U s( ) ( )− =( ) .I A X B  (3.75)

Since [ ] ,1s sI A Φ( )− =−  we have

 .s s U sX BΦ( ) ( ) ( )=  (3.76)

Substituting X (s) into Equation (3.74), we obtain

 C B D[ ] .Φ( ) ( ) ( )= +Y s s U s  (3.77)

Therefore, the transfer function G s Y s U s( ) ( ) ( )= /  is

 G s sC B DΦ( ) ( )= +  (3.78) 

EXAMPLE 3.4 Transfer function of an RLC circuit

Let us determine the transfer function G s Y s U s( ) ( ) ( )= /  for the RLC circuit of 
Figure 3.3 as described by the differential equations (see Equations 3.18 and 3.19):

0
1

1

1

0
t C

L
R

L

t C u tx x ( ) ( ) ( )=

−

−























+



















x[0 ] .( ) ( )=y t R t
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Then we have

− =
−

+























s
s

C

L
s

R
L

I A[ ]

1

1
.

Therefore, we obtain

Φ( )
( )

= − =
∆

+








−























−s s
s

s
R
L C

L
s

I A[ ]
1

 

1

1
,1

where

 
1

.2( )∆ = + +s s
R
L

s
LC

Then the transfer function is

[0 ]

1
 

1
 

1

0
( ) ( ) ( )
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−
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∆ ∆















































G s R

s
R
L
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1 ,
2

( )
( )

( )
=

/
∆

=
/

+ +

R LC
s

R LC

s
R
L

s
LC

 (3.79)

which agrees with the result Equation (3.40) obtained from the flow graph model 
using Mason’s signal-flow gain formula. ■

3.7 THE TIME RESPONSE AND THE STATE TRANSITION MATRIX

It is often desirable to obtain the time response of the state variables of a control 
system and thus examine the performance of the system. The transient response 
of a system can be readily obtained by evaluating the solution to the state vector 
differential equation. In Section 3.3, we found that the solution for the state differ-
ential Equation (3.26) was

 ∫ τ τ τΦ Φ( ) ( ) ( ) ( ) ( )= + −t t t d
t

x x Bu0   .
0

 (3.80)

If the initial conditions x(0), the input u ,τ( )  and the state transition matrix tΦ( )  
are known, the time response of x(t) can be obtained. Thus the problem focuses 
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Section 3.7  The Time Response and the State Transition Matrix 211

on the evaluation of Φ( )t ,  the state transition matrix that represents the response 
of the system. Fortunately, the state transition matrix can be readily evaluated by 
using the signal-flow graph techniques.

Before proceeding to the evaluation of the state transition matrix using 
signal-flow graphs, we should note that several other methods exist for evaluating 
the transition matrix, such as the evaluation of the exponential series

 ∑Φ( ) = =
=

∞
t t

t
kk

k k
A

A
exp( )

!0

 (3.81)

in a truncated form [2, 8]. Several efficient methods exist for the evaluation of ( )Φ t  
by means of a computer algorithm [21].

In Equation (3.25), we found that Φ( ) = − −s sI A[ ] .1  Therefore, if Φ( )s  
is obtained by completing the matrix inversion, we can obtain Φ( )t  by noting 
that l .1Φ Φ{ }( ) ( )= −t s  The matrix inversion process is generally unwieldy for 
higher-order systems.

The usefulness of the signal-flow graph state model for obtaining the state 
transition matrix becomes clear upon consideration of the Laplace transformation 
 version of Equation (3.80) when the input is zero. Taking the Laplace transforma-
tion of Equation (3.80) when τ( ) =u 0,  we have

 Φ( ) ( ) ( )=s sX x 0 .  (3.82)

Therefore, we can evaluate the Laplace transform of the transition matrix from the 
signal-flow graph by determining the relation between a state variable ( )X si  and 
the state initial conditions [ 0 ,   0 , ,   0 ].1 2( ) ( ) ( )…x x xn  Then the state transition matrix 
is the inverse transform of Φ( )s ;  that is,

 l .1Φ Φ{ }( ) ( )= −t s  (3.83)

The relationship between a state variable ( )X si  and the initial conditions x(0) 
is obtained by using Mason’s signal-flow gain formula. Thus, for a second-order 
system, we would have

0 0 ,1 11 1 12 2φ φ( ) ( ) ( ) ( ) ( )= +X s s x s x

 0 0 ,2 21 1 22 2φ φ( ) ( ) ( ) ( ) ( )= +X s s x s x  (3.84)

and the relation between 2 ( )X s  as an output and 01( )x  as an input can be evaluated 
by Mason’s signal-flow gain formula. All the elements of the state transition matrix, 

,φ ( )sij  can be obtained by evaluating the individual relationships between ( )X si  
and 0( )xj  from the state model flow graph. An example will illustrate this approach 
to determining the transition matrix.

EXAMPLE 3.5 Evaluation of the state transition matrix

We will consider the RLC network of Figure 3.3. We seek to evaluate Φ( )s  by (1) 
determining the matrix inversion Φ( ) = − −s sI A[ ] 1, and (2) using the signal-flow 
diagram and Mason’s signal-flow gain formula.
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212 Chapter 3  State Variable Models

First, we determine Φ( )s  by evaluating Φ( ) = − −s sI A[ ] .1  We note from 
Equation (3.18) that

= −
−











A 0 2

1 3
.

Then

 [ ] 2
1 3

.− =
− +













s
s

s
I A  (3.85)

The inverse matrix is

 [ ]
1

  3 2
1

,1Φ( )
( )

= − =
∆

+ −











−s s
s

s
s

I A  (3.86)

where 3 2 3 2 1 2 .2( ) ( ) ( )( )∆ = + + = + + = + +s s s s s s s
The signal-flow graph state model of the RLC network of Figure 3.3, is 

shown in Figure 3.7. This RLC network can be represented by the state variables 
1 υ( ) ( )=x t tc  and .2 ( ) ( )=x t i tL  The initial conditions, 01( )x  and 0 ,2 ( )x  represent 

the initial capacitor voltage and inductor current, respectively. The flow graph, in-
cluding the initial conditions of each state variable, is shown in Figure 3.20. The 
initial conditions appear as the initial value of the state variable at the output of 
each integrator.

To obtain Φ( )s ,  we set 0.( ) =U s  When 3,   1,= =R L  and 1/2,=C  we ob-
tain the signal-flow graph shown in Figure 3.21, where the output and input nodes 
are deleted because they are not involved in the evaluation of Φ( )s .  Then, using 
Mason’s signal-flow gain formula, we obtain 1( )X s  in terms of 01( )x  as

 X s
s x s

s
( )

( ) ( )
( )

=
⋅ ∆ ⋅ /

∆
1 [ 0 ]

,1
1 1  (3.87)

U(s)

1
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1
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1
L

x1(0)
s

x2(0)
s

X1(s) X2(s)-RNL

R

1
C

-

1 1

Initial
conditions

Vo(s)

FIGURE 3.20
Flow graph of the 
RLC network.

1
s

1
s

x1(0)
s

x2(0)
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X1(s)
X2(s)

1 1

1
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FIGURE 3.21
Flow graph of the 
RLC network with 

0.( ) =U s
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Section 3.7  The Time Response and the State Transition Matrix 213

where ( )∆ s  is the graph determinant, and 1( )∆ s  is the path cofactor. The graph 
determinant is

1 3 2 .1 2( )∆ = + +− −s s s

The path cofactor is 1 31
1∆ = + −s  because the path between 01( )x  and 1( )X s  does 

not touch the loop with the factor 3 .1− −s  Therefore, the first element of the transi-
tion matrix is

 s
s s

s s
s

s s
φ

( )( )
( ) =

+ /

+ +
=

+
+ +

−

− −

1 3 1

1 3 2
3

3 2
.11

1

1 2 2
 (3.88)

The element 12φ ( )s  is obtained by evaluating the relationship between 1( )X s  and 
02 ( )x  as

X s
s x s

s s

( )( )
( )

( )
=

− /

+ +

−

− −

2 0

1 3 2
.1

1
2

1 2

Therefore, we obtain

 
2

3 2
.12 2

φ ( ) =
−

+ +
s

s s
 (3.89)

Similarly, for 21φ ( )s  we have

 s
s s

s s s s
φ

( )( )
( ) =

/

+ +
=

+ +

−

− −

1

1 3 2
1
3 2

.21

1

1 2 2
 (3.90)

Finally, for ,22φ ( )s  we obtain

 s
s

s s
s

s s
φ

( )
( ) =

/
+ +

=
+ +− −

1 1

1 3 2 3 2
.22 1 2 2
 (3.91)

Therefore, the state transition matrix in Laplace transformation form is

 s
s s s s s

s s s s s
Φ

( ) ( )
( ) ( )

( )
( )

=
+ / + + − / + +

/ + + / + +



















3 3 2 2 3 2

1 3 2 3 2
.

2 2

2 2
 (3.92)

The factors of the characteristic equation are 1( )+s  and 2 ,( )+s  so that

1 2 3 2.2( )( )+ + = + +s s s s

Then the state transition matrix is

 l
2 2 2

2
.1

2 2

2 2
Φ Φ

( ) ( )
( ) ( )

{ }( ) ( )= =
− − +

− − +



















−
− − − −

− − − −
t s

e e e e

e e e e

t t t t

t t t t
 (3.93)

The evaluation of the time response of the RLC network to various initial 
conditions and input signals can now be evaluated by using Equation (3.80). For 
example, when 0 0 11 2( ) ( )= =x x  and 0,( ) =u t  we have

 Φ
( )

( )
( )












=









 =













−

−

x t

x t
t e

e

t

t

1
1

.
1

2

2

2
 (3.94) 
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214 Chapter 3  State Variable Models

The response of the system for these initial conditions is shown in Figure 3.22. 
The trajectory of the state vector ,  1 2( )( ) ( )x t x t  on the ,   -plane1 2( )x x  is shown in 
Figure 3.23.

The evaluation of the time response is facilitated by the determination of the 
state transition matrix. Although this approach is limited to linear systems, it is a 
powerful method and utilizes the familiar signal-flow graph to evaluate the transi-
tion matrix. ■

3.8 DESIGN EXAMPLES

In this section we present two illustrative design examples. In the first example, we 
present a detailed look at modeling a large space vehicle (such as a space station) 
using a state variable model. The state variable model is then used to take a look 
at the stability of the orientation of the spacecraft in a low Earth orbit. The design 
process is highlighted in this example. The second example is a printer belt drive 
design. The relationship between the state variable model and the block diagram is 
illustrated and, using block diagram reduction methods, the transfer function equiv-
alent of the state variable model is obtained.

EXAMPLE 3.6 Modeling the orientation of a space station

The International Space Station, shown in Figure 3.24, is a good example of a multi-
purpose spacecraft that can operate in many different configurations. An important 
step in the control system design process is to develop a mathematical model of 
the spacecraft motion. In general, this model describes the translation and attitude 
motion of the spacecraft under the influence of external forces and torques, and 
controller and actuator forces and torques. The resulting spacecraft dynamic model 

0 0.25
t

x1(t)

0.50 0.75 1.00 0 0.25 0.50 0.75 1.00

11

t

x2(t)

FIGURE 3.22
Time response 
of the state 
variables of the 
RLC network for 

( ) ( )= =x x0 0 1.1 2

x2(t)

x1(t)
0

x2(0) = 1

x1(0) = 1

(x1(0), x2(0))

FIGURE 3.23
Trajectory of the 
state vector in the 
( )x x plane,   - .1 2
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Section 3.8  Design Examples 215

is a set of highly coupled, nonlinear ordinary differential equations. Our objec-
tive is to simplify the model while retaining important system characteristics. This 
is not a trivial task, but an important, and often neglected component of control 
engineering. In this example, the rotational motion is considered. The translational 
motion, while critically important to orbit maintenance, can be decoupled from the 
rotational motion.

Many spacecraft (such as the International Space Station) will maintain an 
Earth-pointing attitude. This means that cameras and other scientific instruments 
pointing down will be able to sense the Earth. Conversely, scientific instruments 
pointing up will see deep space, as desired. To achieve Earth-pointing attitude, the 
spacecraft needs an attitude hold control system capable of applying the necessary 
torques. The torques are the inputs to the system, in this case, the space station. The 
attitude is the output of the system. The International Space Station employs con-
trol moment gyros and reaction control jets as actuators to control the attitude. The 
control moment gyros are momentum exchangers and are preferable to reaction 
control jets because they do not expend fuel. They are actuators that consist of a 
constant-rate flywheel mounted on a set of gimbals. The flywheel orientation is var-
ied by rotating the gimbals, resulting in a change in direction of the flywheel angular 
momentum. In accord with the basic principle of conservation of angular momen-
tum, changes in control moment gyro momentum must be transferred to the space 

FIGURE 3.24 The International Space Station. (Courtesy of NASA.)
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216 Chapter 3  State Variable Models

station, thereby producing a reaction torque. The reaction torque can be employed 
to control the space station attitude. However, there is a maximum limit of control 
that can be provided by the control moment gyro. When that maximum is attained, 
the device is said to have reached saturation. So, while control moment gyros do not 
expend fuel, they can provide only a limited amount of control. In practice, it is pos-
sible to control the attitude of the space station while simultaneously desaturating 
the control moment gyros.

Several methods for desaturating the control moment gyros are available, but 
using existing natural environmental torques is the preferred method because it 
minimizes the use of the reaction control jets. A clever idea is to use gravity gra-
dient torques (which occur naturally) to continuously desaturate the momentum 
exchange devices. Due to the variation of the Earth’s gravitational field over the 
International Space Station, the total moment generated by the gravitational forces 
about the spacecraft’s center of mass is nonzero. This nonzero moment is called the 
gravity gradient torque. A change in attitude changes the gravity gradient torque 
acting on the vehicle. Thus, combining attitude control and momentum manage-
ment becomes a matter of compromise.

The elements of the design process emphasized in this example are illustrated 
in Figure 3.25. We can begin the modeling process by defining the attitude of the 

See Equations (3.96 – 3.98) for
the nonlinear model.

See Equations (3.99 – 3.100) for
the linear model.

Maintain space station attitude
in Earth pointing orientation while
minimizing control moment gyro
momentum.

Space station orientation and
control moment gyro momentum.

Establish the system configuration

Obtain a model of the process, the
actuator, and the sensor

If the performance meets the specifications,
then finalize the design.

If the performance does not meet the
specifications, then iterate the configuration. 

Identify the variables to be controlled

Establish the control goals

Topics emphasized in this example

Write the specifications

Optimize the parameters and
analyze the performance

Describe a controller and select key
parameters to be adjusted

FIGURE 3.25
Elements of the 
control system 
design process 
emphasized in the 
spacecraft control 
example.
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space station using the three angles, 2θ ( )t  (the pitch angle), 3θ ( )t  (the yaw angle), 
and 1θ ( )t  (the roll angle). These three angles represent the attitude of the space sta-
tion relative to the desired Earth-pointing attitude. When 0,1 2 3θ θ θ( ) ( ) ( )= = =t t t  
the space station is oriented in the desired direction. The goal is to keep the space 
station oriented in the desired attitude while minimizing the amount of momentum 
exchange required by the control momentum gyros (keeping in mind that we want 
to avoid saturation). The control goal can be stated as

Control Goal
Minimize the roll, yaw, and pitch angles in the presence of persistent exter-
nal disturbances while simultaneously minimizing the control moment gyro 
momentum.

The time rate of change of the angular momentum of a body about its center of 
mass is equal to the sum of the external torques acting on that body. Thus the at-
titude dynamics of a spacecraft are driven by externally acting torques. The main 
external torque acting on the space station is due to gravity. Since we treat the 
Earth as a point mass, the gravity gradient torque [30] acting on the spacecraft is 
given by

 ( ) ( ) ( )= ×t n t tgT c Ic3 ,2  (3.95)

where n is the orbital angular velocity ( n rad s= /0.0011   for the space station), and 
( )tc  is

θ θ

θ θ θ θ θ

θ θ θ θ θ

−

+

−





















t

t t

t t t t t

t t t t t

c( ) =

sin ( )cos ( )

sin ( )cos ( ) cos ( )sin ( )sin ( )

cos ( )cos ( ) sin ( )sin ( )sin ( )

.
2 3

1 2 1 2 3

1 2 1 2 3

The notation ‘×’ denotes vector cross-product. Matrix I is the spacecraft iner-
tia matrix and is a function of the space station configuration. It also follows 
from Equation (3.95) that the gravity gradient torques are a function of the atti-
tude ,   ,1 2θ θ( ) ( )t t  and .3θ ( )t  We want to maintain a prescribed attitude (that is 
Earth-pointing 01 2 3θ θ θ= = = ), but sometimes we must deviate from that atti-
tude so that we can generate gravity gradient torques to assist in the control moment 
gyro momentum management. Therein lies the conflict; as engineers we often are 
required to develop control systems to manage conflicting goals.

Now we examine the effect of the aerodynamic torque acting on the space 
station. Even at the high altitude of the space station, the aerodynamic torque does 
affect the attitude motion. The aerodynamic torque acting on the space station is 
generated by the atmospheric drag force that acts through the center of pressure. In 
general, the center of pressure and the center of mass do not coincide, so aerody-
namic torques develop. In low Earth orbit, the aerodynamic torque is a sinusoidal 
function that tends to oscillate around a small bias. The oscillation in the torque 
is primarily a result of the Earth’s diurnal atmospheric bulge. Due to heating, the 
atmosphere closest to the Sun extends further into space than the atmosphere on 
the side of the Earth away from the Sun. As the space station travels around the 
Earth (once every 90 minutes or so), it moves through varying air densities, thus 
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218 Chapter 3  State Variable Models

causing a cyclic aerodynamic torque. Also, the space station solar panels rotate as 
they track the Sun. This results in another cyclic component of aerodynamic torque. 
The aerodynamic torque is generally much smaller than the gravity gradient torque. 
Therefore, for design purposes we can ignore the atmospheric drag torque and view 
it as a disturbance torque. We would like the controller to minimize the effects of 
the aerodynamic disturbance on the spacecraft attitude.

Torques caused by the gravitation of other planetary bodies, magnetic fields, 
solar radiation and wind, and other less significant phenomena are much smaller 
than the Earth’s gravity-induced torque and aerodynamic torque. We ignore these 
torques in the dynamic model and view them as disturbances.

Finally, we need to discuss the control moment gyros themselves. First, we will 
lump all the control moment gyros together and view them as a single source of 
torque. We represent the total control moment gyro momentum with the variable h(t). 
We need to know and understand the dynamics in the design phase to manage the 
angular momentum. But since the time constants associated with these dynamics 
are much shorter than for attitude dynamics, we can ignore the dynamics and as-
sume that the control moment gyros can produce precisely and without a time delay 
the torque demanded by the control system.

Based on the above discussion, a simplified nonlinear model that we can use as 
the basis for the control design is

 �Θ Θ Ω( ) ( )= +t tR n( ) ,  (3.96)

 � ( ) ( ) ( ) ( ) ( ) ( )Ω = −Ω × Ω + × −t t t n t t tI I c Ic u3 ,2  (3.97)

 � ( ) ( ) ( ) ( )= −Ω × +t t t th h u ,  (3.98)

where
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where u(t) is the control moment gyro input torque, Ω (t) in the angular velocity, I 
is the moment of inertia matrix, and n is the orbital angular velocity. Two good 
references that describe the fundamentals of spacecraft dynamic modeling are [26] 
and [27]. There have been many papers dealing with space station control and mo-
mentum management. One of the first to present the nonlinear model in Equations 
(3.96–3.98) is Wie et al. [28]. Other related information about the model and the 
control problem in general appears in [29–33]. Articles related to advanced control 
topics on the space station can be found in [34–40]. Researchers are developing 
nonlinear control laws based on the nonlinear model in Equations (3.96)–(3.98). 
Several good articles on this topic appear in [41–50].
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Equation (3.96) represents the kinematics—the relationship between the Euler 
angles, denoted by ,tΘ( )  and the angular velocity vector, .tΩ( )  Equation (3.97) 
represents the space station attitude dynamics. The terms on the right side repre-
sent the sum of the external torques acting on the spacecraft. The first torque is due 
to inertia cross-coupling. The second term represents the gravity gradient torque, 
and the last term is the torque applied to the spacecraft from the actuators. The 
disturbance torques (due to such factors as the atmosphere) are not included in the 
model used in the design. Equation (3.98) represents the control moment gyro total 
momentum.

The conventional approach to spacecraft momentum management design 
is to develop a linear model, representing the spacecraft attitude and control 
 moment gyro momentum by linearizing the nonlinear model. This linearization 
is accomplished by a standard Taylor series approximation. Linear control design 
methods can then be readily applied. For linearization purposes we assume that 
the  spacecraft has zero products of inertia (that is, the inertia matrix is diagonal) 
and the aerodynamic disturbances are negligible. The equilibrium state that we 
 linearize about is

Θ = 0,

Ω = −












n

0

0

,h 0=

and where we assume that

=





















I
I 0 0
0 I 0
0 0 I

.
1

2

3

In reality, the inertia matrix, I, is not a diagonal matrix. Neglecting the off-diagonal 
terms is consistent with the linearization approximations and is a common 
assumption. Applying the Taylor series approximations yields the linear model, 
which as it turns out decouples the pitch axis from the roll/yaw axis.

The linearized equations for the pitch axis are
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 (3.99)

where

: .2
3 1

2

I I
I

∆ =
−

The subscript 2 refers to the pitch axis terms, the subscript 1 is for the roll axis terms, 
and 3 is for the yaw axis terms. The linearized equations for the roll/yaw axes are
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(3.100)

where

∆ =
−

∆ =
−I I

I
I I

I
: and : .1

2 3

1
3

1 2

3

Consider the analysis of the pitch axis. Define the state-vector as

θ

ω( )

( )

( )

( )

=













x t

t

t

h t

:   ,
2

2

2

and the output as

θ( ) ( ) ( )= =y t t tx[1 0 0] .2

Here we are considering the spacecraft attitude, ,2θ ( )t  as the output of interest. 
We can just as easily consider both the angular velocity, ,2ω ( )t  and the control 
moment gyro momentum, ,2 ( )h t  as outputs. The state variable model is

 � ( ) ( ) ( )= +t t u tx Ax B , (3.101)

( ) ( ) ( )= +y t t u tCx D ,

where
0 1 0

3   0 0
0 0 0

, =
0
1/

1

,2
2 2n IA B= ∆





















−





















= =C D[1 0 0], [0]

and where u(t) is the control moment gyro torque in the pitch axis. The solution to 
the state differential equation, given in Equation (3.101), is

∫ τ τ τΦ Φ( ) ( ) ( ) ( ) ( )= + −t t t u d
t

x x B0   ,
0
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where
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We can see that if 0,2∆ >  then some elements of the state transition matrix will 
have terms of the form eat,  where 0.>a  This indicates that our system is unstable. 
Also, if we are interested in the output, ,2θ( ) ( )=y t t  we have

( ) ( )=y t tCx .

With x(t) given by

0 ,
0

t t t u d
t

x x B∫ τ τ τΦ Φ( ) ( ) ( ) ( ) ( )= + −

it follows that

0 .
0

y t t t u d
t

C x C B∫ τ τ τΦ Φ( ) ( ) ( ) ( ) ( )= + −

The transfer function relating the output Y(s) to the input U(s) is

( )
( )

( )
( )

= = − = −
− ∆

−G s
Y s
U s

s
I s n

C I A B( )
1
3  

.1

2
2 2

2

The characteristic equation is

3   3   3   0.2 2
2

2
2

2
2( )( )− ∆ = + ∆ − ∆ =s n s n s n

If 02∆ >  (that is, if 3 1>I I ), then we have two real poles—one in the left half-
plane and the other in the right half-plane. For spacecraft with ,3 1>I I  we can say 
that an Earth-pointing attitude is an unstable orientation. This means that active 
control is necessary.

Conversely, when 02∆ <  (that is, when 1 3>I I ), the characteristic equation 
has two imaginary roots at

3 .2
2= ± ∆s j n

This type of spacecraft is marginally stable. In the absence of any control moment 
gyro torques, the spacecraft will oscillate around the Earth-pointing orientation for 
any small initial deviation from the desired attitude. ■
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222 Chapter 3  State Variable Models

EXAMPLE 3.7 Printer belt drive modeling

A commonly used low-cost printer for a computer uses a belt drive to move the 
printing device laterally across the printed page [11]. The printing device may be a 
laser printer, a print ball, or thermal printhead. An example of a belt drive printer 
with a DC motor actuator is shown in Figure 3.26. In this model, a light sensor is 
used to measure the position of the printing device, and the belt tension adjusts 
the spring flexibility of the belt. The goal of the design is to determine the effect 
of the belt spring constant k and select appropriate parameters for the motor, the 
belt pulley, and the controller. To achieve the analysis, we will determine a model 
of the belt-drive system and select many of its parameters. Using this model, we 
will obtain the signal-flow graph model and select the state variables. We then 
will  determine an appropriate transfer function for the system and select its other 
 parameters,  except for the spring constant. Finally, we will examine the effect of 
varying the spring constant within a realistic range.

We propose the model of the belt-drive system shown in Figure 3.27. This 
model assumes that the spring constant of the belt is k, the radius of the pulley is r, 
the angular rotation of the motor shaft is ,θ( )t  and the angular rotation of the right-
hand pulley is .θ ( )tp  The mass of the printing device is m, and its position is ( )y t . A 
light sensor is used to measure ( )y t , and the output of the sensor is a voltage ,1υ ( )t  

Belt

Light emitter
Pulley

Printing
device

DC
motor

Motor voltage
Controller

Printing
device

position

Light
sensor

y(t)

FIGURE 3.26
Printer belt-drive 
system.

y(t)

Motor

y(t)

T1(t) k

k

u(t)

up(t)

v2(t) v1(t)

Sensor
v1 = k1y

Controller
dv1

dt
v2 = -k2

T2(t)

rr

m

FIGURE 3.27
Printer belt-drive 
model.
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where .1 1υ ( ) ( )=t k y t  The controller provides an output voltage ,2υ ( )t  where 2υ ( )t  
is a function of .1υ ( )t  The voltage 2υ ( )t  is connected to the field of the motor. Let us 
assume that we can use the linear relationship

,2 2
1

3 1υ
υ

υ( ) ( ) ( )= − +






t k

d t
dt

k t

and elect to use 0.12 =k  and 03 =k  (velocity feedback).
The inertia of the motor and pulley is .motor pulley= +J J J  We plan to 

use a moderate-DC motor. Selecting a typical 1/8-hp DC motor, we find that  
0.01 kg m ,2=J  the field inductance is negligible, the field resistance is 2  ,= ΩR  

the motor constant is Km = /2 Nm A, and the motor and pulley friction is 
0.25 Nms rad.= /b  The radius of the pulley is 0.15 m,=r  0.2 kg,=m  and 

= /k 1 V m.1

We now proceed to write the equations of the motion for the system; note that 
.θ( ) ( )=y t r tp  Then the tension from equilibrium 1T  is

) ( .1T t k r t r t k r t y tpθ θ θ( )( ) ( ) ( ) ( ) ( )= − = −

The tension from equilibrium 2 ( )T t  is

.2T t k y t r tθ( )( ) ( ) ( )= −

The net tension at the mass m is

 1 2

2

2( ) ( ) ( )
− =T t T t m

d y t
dt

 (3.102)

and

 

 

2 2 ,

1 2

1

T t T t k r t y t k y t r t

k r t y t kx t

θ θ

θ

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

− = − − −

= − =  (3.103)

where the first state variable is .1 θ( ) ( ) ( )= −x t r t y t  Let the second state variable be 
x t dy t dt( ) ( )= / ,2  and use Equations (3.102) and (3.103) to obtain

 
2

  .2
1

( ) ( )=
dx t

dt
k

m
x t  (3.104)

The first derivative of ( )1x t  is

 1
3 2

θ( ) ( ) ( ) ( ) ( )= − = −
dx t

dt
r

d t
dt

dy t
dt

rx t x t  (3.105)

when we select the third state variable as x t d t dtθ( ) ( )= / .3  We now require a dif-
ferential equation describing the motor rotation. When 0,=L  we have the field 
current i t t Rυ( ) ( )= /2  and the motor torque T t K i tm m( ) ( )= . Therefore,

T t
K
R

tm
m υ( ) ( )=   ,2
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224 Chapter 3  State Variable Models

and the motor torque provides the torque to drive the belts plus the disturbance or 
undesired load torque, so that

.( ) ( ) ( )= +T t T t T tm d

The torque T(t) drives the shaft to the pulley, so that

.
2

2 1 2
θ θ

( ) ( ) ( ) ( ) ( )= + + −T t J
d t

dt
b

d t
dt

rT t rT t

Therefore,

.3
2

2
θ( ) ( )

=
dx t

dt
d t

dt

Hence,

   
2

  ,3
3 1

( ) ( ) ( ) ( ) ( )=
−

− −
dx t

dt
T t T t

J
b
J

x t
kr
J

x tm d

where

T t
K
R

t t k k
dy t

dt
k k x tm

m υ υ( ) ( ) ( )
( )

( )= = − = −  , and .2 2 1 2 1 2 2

Thus, we obtain
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x t
T t

J
m d( )

( ) ( ) ( )
( )

=
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− − −       
2

    .3 1 2
2 3 1  (3.106)

Equations (3.104)–(3.106) are the three first-order differential equations required 
to describe this system. The matrix differential equation is
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 (3.107)

The signal-flow graph and block diagram models representing the matrix differen-
tial equation are shown in Figure 3.28, where we include the identification of the 
node for the disturbance torque .( )T td

We can use the flow graph to determine the transfer function .1 ( ) ( )/X s T sd  The 
goal is to reduce the effect of the disturbance ,( )T sd  and the transfer function will 
show us how to accomplish this goal. Using Mason’s signal-flow gain formula, we 
obtain

 

1
,1

2

1 2 3 4 1 2

X s
T s

r
J

s

L s L s L s L s L s L sd ( )
( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

=
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− + + + +

−
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where
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We can also determine the closed-loop transfer function using block diagram re-
duction methods, as illustrated in Figure 3.29. Remember, there is no unique path 
to follow in reducing the block diagram; however, there is only one correct solution 
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- k2k1
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-1
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(b)

X3+
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+ -
1
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r
1
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1

1
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k2k1
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2kr
J

b
J

2k
m

V2(s) X2

-
-

s

(s)

(s)

(s)

(s)

FIGURE 3.28
Printer belt drive. 
(a) Signal-flow 
graph. (b) Block 
diagram model.
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226 Chapter 3  State Variable Models

in the end. The original block diagram is shown in Figure 3.28(b). The result of 
the first step is shown in Figure 3.29(a), where the upper feedback loop has been 
reduced to a single transfer function. The second step illustrated in Figure 3.29(b) 
then reduces the two lower feedback loops to a single transfer function. In the third 
step shown in Figure 3.29(c), the lower feedback loop is closed and then the re-
maining transfer functions in series in the lower loop are combined. The final step 
closed-loop transfer function is shown in Figure 3.29(d).

Substituting the parameter values, we obtain
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25 14.5 265
.1

3 2
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+ + +
X s
T s

s
s s ks kd

 (3.108)
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+

+ -

-

(c)

(b)

(a)

(d)
-(r>J)s
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2kKmk2k1
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Jms3 + mbs2 + 2k(J + mr2)s + 2bk
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-

FIGURE 3.29
Printer belt drive 
block diagram 
reduction.
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We wish to select the spring constant k so that the state variable 1( )x t  will quickly 
decline to a low value when a disturbance occurs. For test purposes, consider a 
step disturbance T s a sd ( ) = / .  Recalling that ,1 θ( ) ( ) ( )= −x t r t y t  we thus seek  
a small magnitude for 1x  so that y is nearly equal to the desired .θr  If we have a 
perfectly stiff belt with ,→ ∞k  then θ( ) ( )=y t r t  exactly. With a step disturbance, 

/ ,T s a sd ( ) =  we have

 
15

25 14.5 265
.1 3 2( ) =

−
+ + +

X s
a

s s ks k
 (3.109)

The final value theorem gives

 lim lim 0,1
0

1( ) ( )= =
→∞ →

x t sX s
t s

 (3.110)

and thus the steady-state value of 1( )x t  is zero. We need to use a realistic value for k 
in the range 1 40.≤ ≤k  For an average value of 20=k , we have

15
25 290 5300

1 3 2( ) =
−

+ + +
X s

a
s s s

 
15

22.56 2.44 234.93
.

2( )( )
=

−
+ + +

a
s s s

 (3.111)

The characteristic equation has one real root and two complex roots. The partial 
fraction expansion yields

 
22.56 1.22 15.28

,1
2 2

( )
( ) ( )

=
+

+
+

+ +

X s
a

A
s

Bs C

s
 (3.112)

where we find 0.0218,   0.0218,= − =A B  and 0.4381.= −C  Clearly with these 
small residues, the response to the unit disturbance is relatively small. Because A 
and B are small compared to C, we may approximate 1( )X s  as

0.4381

1.22 15.28
.1

2 2
X s

a s

( )
( ) ( )

≅
−

+ +

Taking the inverse Laplace transform, we obtain

 0.0287  sin 15.28 .1 1.22( )
≅ − −x t

a
e tt  (3.113)

The actual response of 1x  is shown in Figure 3.30. This system will reduce the 
effect of the unwanted disturbance to a relatively small magnitude. Thus we have 
achieved our design objective.
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3.9 ANALYSIS OF STATE VARIABLE MODELS USING CONTROL DESIGN SOFTWARE

The time-domain method utilizes a state-space representation of the system model, 
given by

 � ( ) ( ) ( ) ( ) ( ) ( )= + = +t t u t y t t u tx Ax B Cx Dand .  (3.114)

The vector x(t) is the state of the system, A is the constant ×n n  system matrix, B 
is the constant ×n m  input matrix, C is the constant ×p n output matrix, and D is a 
constant ×p m matrix. The number of inputs, m, and the number of outputs, p, are 
taken to be one, since we are considering only single-input, single-output (SISO) 
problems. Therefore ( )y t  and u(t) are not bold (matrix) variables.

The main elements of the state-space representation in Equation (3.114) are 
the state vector x(t) and the constant matrices (A, B, C, D). Two new functions cov-
ered in this section are ss and Isim. We also consider the use of the expm function 
to calculate the state transition matrix.

Given a transfer function, we can obtain an equivalent state-space representation 
and vice versa. The function tf can be used to convert a state-space representation 
to a transfer function representation; the function ss can be used to convert a trans-
fer function representation to a state-space representation. These functions are 
shown in Figure 3.31, where sys_tf represents a transfer function model and sys_ss 
is a state-space representation.

For instance, consider the third-order system

 
2 8 6

8 16 6
.

2

3 2( ) ( )
( )

= =
+ +

+ + +
T s

Y s
R s

s s
s s s

 (3.115)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

- 0.04

- 0.03

- 0.02

- 0.01

0

0.02

0.03

0.01

x1(t)
a

FIGURE 3.30
Response of 

( )1x t  to a step 
 disturbance: peak 

= −0.0325.value ■
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Section 3.9  Analysis of State Variable Models Using Control Design Software 229

We can obtain a state-space representation using the ss function, as shown in 
Figure 3.32. A state-space representation of Equation (3.115) is given by Equation 
(3.114), where

=
− − −



































A B
8 4 1.5
4 0 0
0 1 0

, =
2
0
0

,

= =[ 1 1 0.75 ] , and [0].C D

The state-space representation of the transfer function in Equation (3.115) is 
depicted in Figure 3.33.

% Convert G(s) = (2s^2+8s+6)/(s^3+8s^2+16s+6)
% to a state-space representation
%
num=[2 8 6]; den=[1 8 16 6]; sys_tf=tf(num,den);
sys_ss=ss(sys_tf);

convert.m

(a) (b)

>>convert
a =

 x1
 x2
 x3

2

x2
-4
0
1

x3
-1.5

0
0

0
0

b =
u1

0
u1

1
x1

1
x2

0.75
x3

c =

d =

y1

x1
x2
x3

y1

x1
-8
4
0

FIGURE 3.32
Conversion of 
Equation (3.115) 
to a state-space 
representation. 
(a) m-file script. 
(b) Output printout.

x = Ax + Bu
y = Cx + Du

Y(s) = G(s)U(s)

sys_tf=tf(sys_ss)

sys_ss=ss(sys_tf)

x = Ax + Bu
y = Cx + Du

Y(s) = G(s)U(s)
.

.

sys=ss(A,B,C,D)

x = Ax + Bu
y = Cx + Du

State-space object
.

(a) (b)

FIGURE 3.31
(a) The ss function. 
(b) Linear system 
model conversion.
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230 Chapter 3  State Variable Models

R(s) Y(s)
2 1

X3(s)X2(s)X1(s)1
s

4 0.75

-1.5

1

1

1
s

-8

-4

1
s

FIGURE 3.33 Block diagram with X1(s) defined as the leftmost state variable.

The state variable representation is not unique. For example, another equally 
valid state variable representation is given by

=
− − −



































= =A B C D
8 2 0.75
8 0 0
0 1 0

, =
0.125

0
0

,   [ 16 8 6 ],   [0].

It is possible that when using the ss function, the state variable representation  
provided by your control design software will be different from the above two  
examples depending on the specific software and version.

The time response of the system in Equation (3.114) is given by the solution to 
the vector integral equation

 exp( )x 0 exp[ ]   . 
0

t t t u d
t

x A A B∫ τ τ τ( ) ( ) ( ) ( )= + −  (3.116)

The matrix exponential function in Equation (3.116) is the state transition matrix, 
,tΦ( )  where

exp( ).t tAΦ( ) =

We can use the function expm to compute the transition matrix for a given time, as 
illustrated in Figure 3.34. The expm(A) function computes the matrix exponential. 
In contrast, the exp(A) function calculates eaij  for each of the elements .aij A∈

For example, let us consider the RLC network of Figure 3.3 described by the 
state-space representation of Equation (3.18) with

0 2
1 3

, 2
0

, [ 1 0 ], and 0.A B C D= −
−











 =











 = =
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Section 3.9  Analysis of State Variable Models Using Control Design Software 231

The initial conditions are 0 0 11 2( ) ( )= =x x  and the input 0.( ) =u t  At 0.2,=t  the 
state transition matrix is as given in Figure 3.34. The state at 0.2=t  is predicted by 
the state transition methods to be












= −






















=











= =

x

x

x

x
t t

0.9671 0.2968
0.1484 0.5219

0.6703
0.6703

.1

2
0.2

1

2
0

The time response of the system of Equation (3.115) can also be obtained by using 
the Isim function. The Isim function can accept as input nonzero initial conditions as 
well as an input function, as shown in Figure 3.35. Using the Isim function, we can 
calculate the response for the RLC network as shown in Figure 3.36.

The state at 0.2=t  is predicted with the Isim function to be x1 (0.2) =  
x ( ) =0.2 0.6703.2  If we can compare the results obtained by the Isim function and 
by multiplying the initial condition state vector by the state transition matrix, we 
find identical results.

>>A=[0 -2; 1 -3]; dt=0.2; Phi=expm(A*dt)

Phi =

    0.9671     -0.2968
    0.1484       0.5219

State transition matrix
for a ¢t of 0.2 second

FIGURE 3.34
Computing the 
state transition 
 matrix for a given 
time, .∆ =t dt

x = Ax + Bu
y = Cx + Du

.

u(t) y (t)

Arbitrary
input

Output

System

t t

t = times at which
       response is
       computed

Initial
conditions
(optional)

u = input

y(t) = output response at t
T: time vector
x(t) = state response at t

[y,T,x]=lsim(sys,u,t,x0)

(a)

(b)

FIGURE 3.35
The Isim function 
for calculating the 
output and state 
response.
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232 Chapter 3  State Variable Models

3.10 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

Advanced disks have as many as 8000 tracks per cm. These tracks are typically 
1  mµ  wide. Thus, there are stringent requirements on the accuracy of the reader 
head position and of the movement from one track to another. In this chapter, we 
will develop a state variable model of the disk drive system that will include the 
effect of the flexure mount.

Since we want a lightweight arm and flexure for rapid movement, we must 
consider the effect of the flexure, which is a very thin mount made of spring steel. 
Again, we wish to accurately control the position of the head y(t) as shown in Figure 
3.37(a). We will attempt to derive a model for the system shown in Figure 3.37(a). 
Here we identify the motor mass as 1M  and the head mount mass as .2M  The flex-
ure spring is represented by the spring constant k. The force u(t) to drive the mass 

1M  is generated by the DC motor. If the spring is absolutely rigid (nonspringy), 
then we obtain the simplified model shown in Figure 3.37(b). Typical parameters 
for the two-mass system are given in Table 3.1.

Let us obtain the transfer function model of the simplified system of 
Figure 3.37(b). Note that 20.5  0.0205 kg.1 2M M M g= + = =  Then we have

 .
2

2 1
( ) ( ) ( )+ =M

d y t
dt

b
dy t

dt
u t  (3.117)

A=[0 -2;1 -3]; B=[2;0]; C=[1 0]; D=[0];
sys=ss(A,B,C,D);
x0=[1 1];
t=[0:0.01:1];
u=0*t;
[y,T,x]=lsim(sys,u,t,x0);
subplot(121), plot(T,x(:,1))
xlabel('Time (s)'), ylabel('x_1')
subplot(122), plot(T,x(:,2))
xlabel('Time (s)'), ylabel('x_2')

State-space model
Initial conditions

Zero input

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

x 2x 1

Time (s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Time (s)

FIGURE 3.36
Computing the 
time response 
for  nonzero initial 
 conditions and zero 
input using Isim.
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Section 3.10 Sequential Design Example: Disk Drive Read System 233

Therefore, the transfer function model is

1
.

1

( )
( ) ( )

=
+

Y s
U s s Ms b

For the parameters of Table 3.1, we obtain

1
0.0205 0.410

48.78
20

.
( )
( ) ( ) ( )

=
+

=
+

Y s
U s s s s s

The transfer function model of the head reader, including the effect of the motor coil, 
is shown in Figure 3.38. When 1  ,   1 mH,= Ω =R L  and Km = 0.1025, we obtain

 
5000

20 1000
.( ) ( )

( ) ( )( )
= =

+ +
G s

Y s
V s s s s

 (3.118)

Table 3.1 Typical Parameters of the Two-Mass Model

Parameter Symbol Value

Motor mass M1 20 g 0.02 kg=

Flexure spring k ≤ ≤ ∞k10

Head mounting mass M2 0.5  0.0005 kgg =

Head position ( )x t2 variable in mm

Friction at mass 1 b1 ( )× / /−410 10  N m s3

Field resistance R Ω1 

Field inductance L 1 mH

Motor constant Km 0.1025 N m/A

Friction at mass 2 b2 ( )× / /−4.1 10  N m s3

(a) (b)

y(t)

b1

q(t)

k
M1

Flexure spring

Head
mass

Motor
mass

u(t)
Force

Head
position

M2

b2 b1

u(t)

y(t)

M = M1  +  M2

FIGURE 3.37
(a) Model of 
the two-mass 
system with a 
spring  flexure. 
(b) Simplified model 
with a rigid spring.

Y(s)
U(s)

Force

1
s(Ms + b1)

Km

Ls + R
V(s)

Motor
coil Mass

FIGURE 3.38
Transfer function 
model of head 
reader device with 
a rigid spring.
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234 Chapter 3  State Variable Models

Now let us obtain the state variable model of the two-mass system shown in 
Figure 3.37(a). Write the differential equations as

Mass  :  1 1

2

2 1M M
d q t

dt
b

dq t
dt

kq t ky t u t
( ) ( )

( ) ( ) ( )+ + − =

M M
d y t

dt
b

dy t
dt

ky t kq t
( ) ( )

( ) ( )+ + − =Mass  :   0.2 2

2

2 2

To develop the state variable model, we choose the state variables as 1( ) ( )=x t q t  
and .2 ( ) ( )=x t y t  Then we have

and .3 4( ) ( ) ( ) ( )
= =x t

dq t
dt

x t
dy t

dt

Then, in matrix form,

t t u tx Ax B( ) ( ) ( )= + ,�

and we have

=













=























�

�

t

q t

y t

q t

y t

M
x B( )

( )

( )

( )

( )

,

0
0

1/
0

.
1

and

 

0 0 1 0
0 0 0 1
/ / / 0

/ / 0 /

.
1 1 1 1

2 2 2 2

k M k M b M

k M k M b M

A = − −

− −

























 (3.119)

Note that the output is .4�( ) ( )=y t x t  Also, for 0=L  or negligible inductance, then 
u t K tmυ( ) ( )= . For the typical parameters and for 10,=k  we have

B A=























=
− + −

+ − −























0
0
50
0

and

0 0 1 0
0 0 0 1
500 500 20.5 0

20000 20000 0 8.2

.

The response of �( )y t  for 1,   0( ) = >u t t  is shown in Figure 3.39. This response is 
quite oscillatory, and it is clear that we want a very rigid flexure with 100.>k
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Section 3.11  Summary 235

3.11 SUMMARY

In this chapter, we have considered the description and analysis of systems in the 
time domain. The concept of the state of a system and the definition of the state 
variables of a system were discussed. The selection of a set of state variables of 
a system was examined, and the nonuniqueness of the state variables was noted. 
The state differential equation and the solution for x(t) were discussed. Alternative 
signal-flow graph and block diagram model structures were considered for repre-
senting the transfer function (or differential equation) of a system. Using Mason’s 
signal-flow gain formula, we noted the ease of obtaining the flow graph model. The 
state differential equation representing the flow graph and block diagram models 
was also examined. The time response of a linear system and its associated transi-
tion matrix was discussed, and the utility of Mason’s signal-flow gain formula for 
obtaining the transition matrix was illustrated. A detailed analysis of a space sta-
tion model development was presented for a realistic scenario where the attitude 
control is accomplished in conjunction with minimizing the actuator control. The 
relationship between modeling with state variable forms and control system design 
was established. The use of control design software to convert a transfer function 
to state variable form and calculate the state transition matrix was discussed and 
illustrated. The chapter concluded with the development of a state variable model 
for the Sequential Design Example: Disk Drive Read System.

0 0.5 1 1.5

2.5

3

2

1.5

1

0.5

0

y 
do

t (
m

/s
)

Time (s)

% Model Parameters
k=10;
M1=0.02; M2=0.0005;
b1=410e-03; b2=4.1e-03;
t=[0:0.001:1.5];
% State Space Model
A=[0 0 1 0;0 0 0 1;-k/M1 k/M1 -b1/M1 0; k/M2 -k/M2 0 -b2/M2];
B=[0;0;1/M1;0]; C=[0 0 0 1]; D=[0]; sys=ss(A,B,C,D);
% Simulated Step Response
y=step(sys,t); plot(t,y); grid
xlabel('Time (s)'), ylabel('y dot (m/s)')

Units
k: kg/m
b: kg/m/s
m: kg

Mass 2
position rate

FIGURE 3.39
Response of y for 
a step input for the 
two-mass model 
with 10.=k
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236 Chapter 3  State Variable Models

SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or False, 
Multiple Choice, and Word Match. To obtain direct feedback, check your answers with the 
answer key provided at the conclusion of the end-of-chapter problems.

In the following True or False and Multiple Choice problems, circle the correct answer.

1. The state variables of a system comprise a set of variables that  
describe the future response of the system, when given the present  
state, all future excitation inputs, and the mathematical model  
describing the dynamics. True or False

2. The matrix exponential function describes the unforced response of  
the system and is called the state transition matrix. True or False

3. The outputs of a linear system can be related to the state variables  
and the input signals by the state differential equation. True or False

4. A time-invariant control system is a system for which one or more  
of the parameters of the system may vary as a function of time. True or False

5. A state variable representation of a system can always be written  
in diagonal form. True or False

6. Consider a system with the mathematical model given by the differential equation:

5 10 5 2 .
3

3

2

2
( ) ( ) ( )

( ) ( )+ + + =
d y t

dt
d y t

dt
dy t

dt
y t u t

A state variable representation of the system is:

a. 
� t t u t( ) ( ) ( )=

− − −

















+



















x x
2 1 0.4
1 0 0
0 1 0

1
0
0

[0 0 0.2 ]y t tx( ) ( )=

b. � t t u t( ) ( ) ( )=
− − −

−



















+
−

















x x
5 1 0.7
1 0 0
0 1 0

1
0
0

[0 0 0.2]y t tx( ) ( )=

c. � t t u t( ) ( ) ( )= − −
−











 +











x x2 1

1 0
1
0

[1 0 ]y t tx( ) ( )=

d. 
� t t u t( ) ( ) ( )=

− − −

















+



















x x
2 1 0.4
1 0 0
0 1 0

1
0
0

[ 0 0 0.2 ]y t tx( ) ( )=

For Problems 7 and 8, consider the system represented by

� ( )= +t u tx Ax B( ) (t) ,

where

=










 =











A B0 5

0 0
and 1

0
.
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7. The associated state-transition matrix is:

a. Φ( ) =t t[ 5 ]

b. Φ( ) =












1 5
0 1

t t

c. Φ( ) =












1 5
1 1

t t

d. Φ( ) =





















1 5
0 1
0 0 1

2

t
t t

t

8. For the initial conditions 0 0 11 2( ) ( )= =x x , the response ( )x t  for the zero-input 
response is:

a. 1 ,   11 2( ) ( ) ( )= + =x t t x t  for 0≥t

b. 5 ,  1 2( ) ( ) ( )= + =x t t x t t  for 0≥t

c. 5 1 ,   11 2( ) ( ) ( )= + =x t t x t  for 0≥t

d. 11 2( ) ( )= =x t x t  for 0≥t

9. A single-input, single-output system has the state variable representation

( ) ( ) ( )= −
− −











 +











x x� 0 1

5 10
1
0

t t u t

[ 0 10 ]y t tx( ) ( )=

The transfer function of the system /T s Y s U s( ) ( ) ( )=  is:

a. 50
5 503 2( ) =
−

+ +
T s

s s s

b. ( ) =
+

+ −
10

10 52
T s

s
s s

c. 5
5

( ) =
−
+

T s
s

d. 50
5 52( ) =

−
+ +

T s
s s

10. The differential equation model for two first-order systems in series is

4 3 ,�� �( ) ( ) ( ) ( )+ + =x t x t x t u t

where ( )u t  is the input of the first system and x(t) is the output of the second system. The 
response ( )x t  of the system to a unit impulse ( )u t  is:

a. 2 2( ) = −− −x t e et t

b. 1
2

1
3

2 3( ) = −− −x t e et t

c. 1
2

1
2

3( ) = −− −x t e et t

d. 3( ) = −− −x t e et t

11. A first-order dynamic system is represented by the differential equation

5 .�( ) ( ) ( )+ =x t x t u t
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238 Chapter 3  State Variable Models

The corresponding transfer function and state-space representation are

a. ( ) =
+

= − +
=

G s
s

x x u
y x

�1
1 5

and  0.2 0.2

b. �10
1 5

and  0.2G s
s

x x u
y x

( ) =
+

= − +
=

c. �1
5

and  5G s
s

x x u
y x

( ) =
+

= − +
=

d. None of the above

Consider the block diagram in Figure 3.40 for Problems 12 through 14:

12. The effect of the input ( )R s  and the disturbance ( )T sd  on the output ( )Y s  can be con-
sidered independently of each other because:
a. This is a linear system, therefore we can apply the principle of superposition.
b. The input ( )R s  does not influence the disturbance ( )T sd .
c. The disturbance ( )T sd  occurs at high frequency, while the input ( )R s  occurs at 

low frequency.
d. The system is causal.

13. The state-space representation of the closed-loop system from ( )R s  to ( )Y s  is:

a. �( ) = − +

=

x t x t Kr t

y t x t

10 ( ) 10 ( )

( ) ( )

b. �( ) = − + +

=

x t K x t r t

y t x t

(10 10 ) ( ) ( )

( ) 10 ( )

c. �( ) = − + +

=

x t K x t Kr t

y t x t

(10 10 ) ( ) 10 ( )

( ) ( )

d. None of the above

14. The steady-state error ( ) ( ) ( )= −E s Y s R s  due to a unit step disturbance 1 /( ) =T s sd  is:

a. limss ( )= = ∞
→∞

e e t
t

b. lim 1ss ( )= =
→∞

e e t
t

c. lim
1

1ss ( )= =
+→∞

e e t
Kt

d. lim 1ss ( )= = +
→∞

e e t K
t

15. A system is represented by the transfer function

5 10
10 20 50

.
3 2

( )
( )

( )
( )

= =
+

+ + +
Y s
R s

T s
s

s s s

-

+ +

+
R(s) Y(s)

Controller

K

Process

Td(s)

Ea(s)

s + 10

10

FIGURE 3.40 Block diagram for the Skills Check.
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A state variable representation is:

a. ( ) ( ) ( )=
− − −
−

−



















+



















x x�
10 20 50
1 0 0

0 1 0

1
1
0

t t u t

( ) ( )=y t tx[ 0 5 50 ] 

b. ( ) ( ) ( )=
− − −

−
−



















+



















x x�
10 20 50

1 0 0
0 1 0

1
0
0

t t u t

( ) ( )=y t tx[ 0 5 50 ] 

c. ( ) ( ) ( )=
− − −

















+



















x x�
10 20 50
1 0 0
0 1 0

1
1
0

t t u t

( ) ( )=y t tx[ 0 5 50 ] 

d. ( ) ( )= − −
−











 +











� t t u tx x( ) 10 20

0 1
1
0

( ) ( )=y t tx[ 0 5 ] 

In the following Word Match problems, match the term with the definition by writing the 
correct letter in the space provided.

a. State vector The differential equation for the state vector x
. 
(t) = Ax(t) + Bu(t). ____

b.  State of a  
system

The matrix exponential function that describes the unforced re-
sponse of the system. ____

c.  Time-varying 
system

The mathematical domain that incorporates the time response 
and the description of a system in terms of time, t. ____

d.  Transition  
matrix

Vector containing all n state variables, x1, x2, . . . xn.
____

e.  State  
variables

A set of numbers such that the knowledge of these numbers  
and the input function will, with the equations describing the 
 dynamics, provide the future state of the system. ____

f.  State  
differential 
equation

A system for which one or more parameters may vary with time.

____

g. Time domain The set of variables that describe the system. ____

EXERCISES

E3.1 For the spring-mass-damper model shown  
in Figure E3.1, identify a set of state variables.

E3.2 The voltage-current relationship for a series RLC 
circuit can be represented by the differential equation

t Ri t L
di t

dt
tcυ υ( ) ( )

( )
( )= + + ,

where tυ( ) is the voltage source, i t( ) is the current, 
and υ ( )tc  is the voltage across the capacitor. Put the 
equations in state variable form, and set up the ma-
trix 1.= = =R L C

y(t)
b

k k

b

M m

x(t)

FIGURE E3.1 Spring-mass-damper model.
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240 Chapter 3  State Variable Models

E3.9 A multi-loop block diagram is shown in Figure E3.9. 
The state variables are denoted by 1( )x t  and .2 ( )x t  
(a) Determine a state variable representation of the 
closed-loop system where the output is denoted by 

( )y t  and the input is r(t). (b) Determine the charac-
teristic equation.

E3.3 The system in E3.3 can be represented by the state 
vector differential equation

� ,t t u tx Ax B( ) ( ) ( )= +

where
0 1
1 1

=
− −











A

Find the (a) characteristic equation and (b) character-
istic roots of the system.

Answer:  (a) 1 0; (b) 0.5 0.866 ,2λ + λ + = − + i  
0.5 0.866− − i

E3.4 Obtain a state variable matrix for a system with a 
differential equation

d y t

dt

d y t

dt
y t u t

( ) ( )
( ) ( )= + + .

4

4

2

2

E3.5 A system is represented by a block diagram as shown 
in Figure E3.5. Write the state equations in the form

� t t u t( ) ( ) ( )= +x Ax B

y t t u t( ) ( ) ( )= +Cx D

U(s) Y(s)
X2(s)

1
s a

df

b

k

1
s

++
+

-

- X1(s)

FIGURE E3.5 Block diagram.

E3.6 Consider the system

t tx x( ) ( )=












0 1
0 0

.�

(a) Find the state transition matrix tΦ( ).  (b) For the 
initial conditions 0 0 1,1 2( ) ( )= =x x  find x(t).

Answer: (b) 1 ,   1,   01 2( ) ( )= + = ≥x t t x t t

E3.7 Consider the spring and mass shown in Figure 3.3 
where = =M k1 kg,  100 N/m,  and =b 20 Ns/m.  
(a) Find the state vector differential equation. (b) Find 
the roots of the characteristic equation for this system.

Answer:
(a) �( ) 0 1

100 20
0
1

( ) ( )=
− −











 +











t t u tx x

(b) 10,   10= − −s

E3.8 Consider the system

( ) ( )=
− −



















� t tx x
0 1 0
0 0 1
0 8 2

.

Find the characteristic equation, and the roots of the 
characteristic equation.

E3.13 A system is described by the two differential 
equations

2 0,
( )

( ) ( ) ( )+ − + =
dy t

dt
y t u t aw t

+

-

+

-

R = 3 æ L = 0.2 H

C = 800 mFVin VC
'

FIGURE E3.12 RLC series circuit.

-

--

+
Y(s)

X1(s)

X2(s)

R(s)

1
s

2
s

1
4

FIGURE E3.9 Multi-loop feedback control system.

E3.10 A hovering vehicle control system is represented 
by two state variables, and [13]

( ) ( )=
− −

















+










� t t u tx x( )

 0  6

1 5
0
1

.

(a) Find the roots of the characteristic equation.
(b) Find the state transition matrix tΦ( ).

Answer:
(a) 3,   2= − −s

(b) t
e e e e

e e e e

t t t t

t t t t
Φ( ) = − − +

− −

















− − − −

− − − −

3 2 6 6

3 2

2 3 3 2

3 2 3 2

E3.11 Determine a state variable representation for the 
system described by the transfer function

4 3
2 6

.( )
( )
( )

( )
( )( )

= =
+

+ +
T s

Y s
R s

s
s s

E3.12 Use a state variable model to describe the circuit 
of Figure E3.12. Obtain the response to an input unit 
step when the initial current is zero, and the initial ca-
pacitor voltage is zero.
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and

4 0,
( )

( ) ( )− + =
dw t

dt
by t u t

where w(t) and ( )y t  are functions of time, and u(t) is 
an input. (a) Select a set of state variables. (b) Write 
the matrix differential equation and specify the ele-
ments of the matrices. (c) Find the characteristic roots 
of the system in terms of the parameters a and b.

Answer: (c) 1 2 1 4 2= − / ± − /s ab

E3.14 Develop the state-space representation of a radio-
active material of mass M to which additional radioac-
tive material is added at the rate ,( ) ( )=r t Ku t  where 
K is a constant. Identify the state variables. Assume 
that the mass decay is proportional to the mass present.

E3.15 Consider the case of the two masses connected 
as shown in Figure E3.15. The sliding friction of each 
mass has the constant b. Determine a state variable 
matrix differential equation.

E3.18 Consider a system represented by the following 
differential equations:

1 1
1 υ υ( )
( )

( ) ( )+ + =Ri t L
di t

dt
t ta

2
2 υ υ

( )
( ) ( )+ =L

di t
dt

t tb

1 2
υ

( ) ( )
( )

+ =i t i t C
d t

dt

where R, ,  1 2L L , and C are given constants, and υ ( )ta  
and υ ( )tb  are inputs. Let the state variables be de-
fined as ,   ,1 1 2 2( ) ( ) ( ) ( )= =x t i t x t i t  and .3 υ( ) ( )=x t t  
Obtain a state variable representation of the system 
where the output is .3( )x t

E3.19 A single-input, single-output system has the matrix 
equations

t t u tx x( ) ( ) ( )=
− −











 +













0 1
4 7

0
1

�

and

y t tx( ) ( )= [4 0] .

Determine the transfer function .( ) ( ) ( )= /G s Y s U s

E3.20 For the simple pendulum shown in Figure E3.20, 
the nonlinear equations of motion are given by

 sin    0,�� �θ θ θ( ) ( ) ( )+ + =t
g
L

t
k
m

t

where g is gravity, L is the length of the pendulum, 
m is the mass attached at the end of the pendulum 
(assume the rod is massless), and k is the coefficient of 
friction at the pivot point.
(a) Linearize the equations of motion about the equi-

librium condition 0°.0θ =
(b) Obtain a state variable representation of the 

system. The system output is the angle .θ( )t

x(t) q(t)

k k1 k

Sliding friction constant b

m m

FIGURE E3.15 Two-mass system.

E3.16 Two carts with negligible rolling friction are con-
nected as shown in Figure E3.16. An input force is u(t). 
The output is the position of cart 2, that is, .( ) ( )=y t q t  
Determine a state space representation of the system.

E3.17 Determine a state variable differential matrix 
equation for the circuit shown in Figure E3.17:

x(t)

k1

q(t)

k2
u(t)

Input
force

m1 m2

b1 b2

FIGURE E3.16 Two carts with negligible rolling friction.

R1 R2 R3

C1 C2va(t) vb(t)v1 v2
-

+

-

+
+
-

+
-

FIGURE E3.17 RC circuit.

m, mass

L, length

Massless rod

u(t)

Pivot point

FIGURE E3.20 Simple pendulum.
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242 Chapter 3  State Variable Models

(a) Compute the transfer function G s Y s U s( ) ( ) ( )=   / .  
(b) Determine the poles and zeros of the system. (c) If 
possible, represent the system as a first-order system

�( ) ( ) ( )
( ) ( ) ( )

+ +

+ +

x t ax t bu t

y t cx t du t

where a, b, c, and d are scalars such that the transfer 
function is the same as obtained in (a).

E3.23 Consider a system modeled via the third-order dif-
ferential equation

3 3��� �� �( ) ( ) ( ) ( )+ + +x t x t x t x t

2 4 .��� �� �( ) ( ) ( ) ( )= + + +u t u t u t u t

Develop a state variable representation and obtain a 
block diagram of the system assuming the output is 
x(t) and the input is u(t).

E3.21 A single-input, single-output system is described by

� t t u t( ) ( ) ( )=
− −











 +











x x0 1

1 2
1
0

y t t( ) ( )= x[0 1]

Obtain the transfer function G s Y s U s( ) ( ) ( )= /  and 
determine the response of the system to a unit step 
input.

E3.22 Consider the system in state variable form

� ( ) ( ) ( )= +t t u tx Ax B

( ) ( ) ( )= +y t t u tCx D

with

=










 =

−











 = =3 2

3 4
,   1

1
,   [1 0],  and  [0].A B C D

P3.1 A spring-mass-damper system is shown in Figure P3.1. 
(a) Identify a suitable set of state variables. (b) Obtain 
the set of first-order differential equations in terms of the 
state variables. (c) Write the state differential equation.

P3.3 An RLC network is shown in Figure P3.3. Define 
the state variables as 1( ) ( )=x t i tL  and .2 υ( ) ( )=x t tc  
Obtain the state differential equation.

Partial answer:

L

C RC( )
=

/

− / − /

















A
0 1

1 1

PROBLEMS

P3.2 A balanced bridge network is shown in Figure P3.2.
(a) Show that the A and B matrices for this circuit are

R R C

R R R R L

( )
( )

( )

( )
=

− / +

− / +



















A
2 0

0 2

1 2

1 2 1 2

R R
C C

R L R L
( )= / +

/ /

/ − /

















B 1
1 1

.1 2
2 2

(b) Sketch the block diagram. The state variables are 
x t x t t i tc Lυ( ) ( )( ) ( ) ( ) ( )=,   ,   .1 2

Force
F(t)

y(t)

k b

M

FIGURE P3.1 Spring-mass-damper system.

+

-
-

+

L

R1

R2
R1

R2

vc(t)

iL(t)

C
v1(t) v2(t)

+

-
' '

FIGURE P3.2 Balanced bridge network.

+

-

+-

R

iL(t)

v1(t) v2(t)

L
vc(t)

ic(t)
C

'
+

-
'

FIGURE P3.3 RLC circuit.

P3.4 The transfer function of a system is

T s
Y s

R s
s s

s s s
( )

( )
( )

= =
+ +

+ + +
4 12

4 8 12
.

2

3 2

Sketch the block diagram and obtain a state variable 
model.

P3.5 A closed-loop control system is shown in Figure 
P3.5. (a) Determine the closed-loop transfer function 
T s Y s R s( ) ( ) ( )= /  .  (b) Determine a state variable 
model and sketch a block diagram model in phase vari-
able form.

P3.6 Determine the state variable matrix equa-
tion for the circuit shown in Figure P3.6. Let 

, ,1 1 2 2υ υ( ) ( ) ( ) ( )= =x t t x t t  and .3( ) ( )=x t i t
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P3.7 An automatic depth-control system for a robot sub-
marine is shown in Figure P3.7. The depth is measured 
by a pressure transducer. The gain of the stern plane 
actuator is 1=K  when the vertical velocity is 25 m/s. 
The submarine has the transfer function

G s
s

s
( )

( )
=

+
+

2
2

,
2

2

and the feedback transducer is H s s( ) = + 3.  
Determine a state variable representation for the 
system.

P3.8 The soft landing of a lunar module descending on 
the moon can be modeled as shown in Figure P3.8. 
Define the state variables as   ,1 ( ) ( )=x t y t  �x t y t x t m t( ) ( ) ( ) ( )= =  ,   2 3 
�x t y t x t m t( ) ( ) ( ) ( )= =  ,   2 3 , and the control as � ( )=u m t .  
Assume that g is the gravity constant on the moon. 
Find a state variable model for this system. Is this a 
linear model?

P3.9 A speed control system using fluid flow components 
is to be designed. The system is a pure fluid control 
system because it does not have any moving mechan-
ical parts. The fluid may be a gas or a liquid. A system 
is desired that maintains the speed within 0.5% of the 

desired speed by using a tuning fork reference and 
a valve actuator. Fluid control systems are insensi-
tive and reliable over a wide range of temperature, 
electromagnetic and nuclear radiation, acceleration, 
and vibration. The amplification within the system 
is achieved by using a fluid jet deflection amplifier. 
The system can be designed for a 500-kW steam tur-
bine with a speed of 12,000 rpm. The block diagram 
of the system is shown in Figure P3.9. In dimension-
less units, we have 0.1,   1,= =b J  and 0.5.1 =K   
(a) Determine the closed-loop transfer function

.
ω

( )
( )
( )

=T s
s

R s

(b)  Determine a state variable representation.  
(c)  Determine the characteristic equation obtained 
from the A matrix.

R(s)
-

+
Voltage

V1(s)
Velocity

V(s) Y(s)
Position

s + 2
s + 8

1
s - 3

1
s

Controller

FIGURE P3.5
Closed-loop 
system.

-

+

-

+

i

vi(t) v1(t) v2(t) is(t)

3 kÆ

1 kÆ

1 mH

0.25 mF 0.5 mF+
-

FIGURE P3.6
RLC circuit.

-

+ 1
s

R(s)
Desired
depth

K G(s)

H(s)

Y(s)
Depthds(s)

Pressure
measurement

Actuator

FIGURE P3.7 Submarine depth control.

Module

mg

Lunar surface

y(t)

–Thrust =  m(t)k

FIGURE P3.8 Lunar module landing control.
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244 Chapter 3  State Variable Models

P3.12 A system is described by its transfer function

8 5
12 44 48

.
3 2

( )
( )

( )
( )

= =
+

+ + +
Y s
R s

T s
s

s s s

(a) Determine a state variable model.
(b) Determine the state transition matrix, tΦ( ) .

P3.13 Consider again the spring-mass-damper system 
of Problem P3.1 when M =  1, b =  6, and k =  8. (a) 
Determine whether the system is stable by finding the 
characteristic equation with the aid of the A matrix. 
(b) Determine the state transition matrix of the sys-
tem. (c) When the initial velocity is 1 m/s and initial 
displacement is 1 m/s, determine the response of the 
system with F(t) =  0. 

P3.10 Many control systems must operate in two dimen-
sions, for example, the x- and the y-axes. A two-axis 
control system is shown in Figure P3.10, where a set of 
state variables is identified. The gain of each axis is 1K  
and ,2K  respectively. (a) Obtain the state differential 
equation. (b) Find the characteristic equation from the 
A matrix. (c) Determine the state transition matrix for 

11 =K  and 2.2 =K

P3.11 A system is described by

� t t( ) ( )=x Ax

where

=
− −











A 0 1

2 3

and   ( ) ( )= =x x0 1 and 0 0.1 2  Determine 1( )x t  and .2 ( )x t

-

+

+

+R(s)
Speed

reference

Td(s)
Disturbance

v(s)
Speed

Tuning fork
and error detector

10
s + 10

1
Js + b

1
s

K1

TurbineFilter
Valve

actuator

FIGURE P3.9
Steam turbine 
control.

R1(s)

R2(s) Y2(s)

Y1(s)
X1(s)

X2(s)

R1(s) Y1(s)

R2(s) Y2(s)

K2

K1

1

1 1 1

1

1

-1

-1

1

-1

1/s

1/s

(b)

K1
+ +

-

-

X1(s)

K2
+

+

+

- X2(s)

1
s

1
s

(a)

FIGURE P3.10
Two-axis system. 
(a) Signal-flow 
graph. (b) Block 
diagram model.
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P3.14 Determine a state variable representation for a 
system with the transfer function

50
12 10 34 50

.
4 3 2

( )
( )

( )= =
+

+ + + +
Y s
R s

T s
s

s s s s

P3.15 Obtain a block diagram and a state variable repre-
sentation of this system.

14 4
10 31 16

.
3 2

( )
( )

( )
( )

= =
+

+ + +
Y s
R s

T s
s

s s s

P3.16 The dynamics of a controlled submarine are sig-
nificantly different from those of an aircraft, missile, 
or surface ship. This difference results primarily from 
the moment in the vertical plane due to the buoyancy 
effect. Therefore, it is interesting to consider the control 
of the depth of a submarine. The equations describing 
the dynamics of a submarine can be obtained by using 
Newton’s laws and the angles defined in Figure P3.16. 
To simplify the equations, we will assume that θ( )t  is a 
small angle and the velocity v is constant and equal to 
25 ft/s. The state variables of the submarine, considering 
only vertical control, are ,    ,1 2

�θ θ( ) ( ) ( ) ( )= =x t t x t t  
and ,3 α( ) ( )=x t t  where α( )t  is the angle of attack. 
Thus the state vector differential equation for this sys-
tem, when the submarine has an Albacore type hull, is

t t u tx x( ) ( ) ( )= − −

−





















+ −
+



















 0  1  0

0.01 0.11  0.12

 0  0.07 0.3

0
0.1
0.1

,�

where ,δ( ) ( )=u t ts  the deflection of the stern 
plane. (a) Determine whether the system is stable. 
(b) Determine the response of the system to a stern 
plane step command of 0.285° with the initial condi-
tions equal to zero.

Control
surface

Center of
gravity

d(t)

a(t) u(t) Velocity
v

FIGURE P3.16 Submarine depth control.

P3.18 Consider the control of the robot shown in Figure 
P3.18. The motor turning at the elbow moves the 
wrist through the forearm, which has some flexibil-
ity as shown [16]. The spring has a spring constant k 
and friction-damping constant b. Let the state vari-
ables be 1 1 2φ φ( ) ( ) ( )= −x t t t  and x t tω ω( ) ( )= / ,2 1 0  
where

k J J
J J

ω
( )

=
+

.0
2 1 2

1 2

Write the state variable equation in matrix form 
when x t tω ω( ) ( )= / .3 2 0

i(t)

Current

Motor

Elbow Wrist

v1(t)

f2(t)f1(t)

J1 J2

k, b v2(t)

FIGURE P3.18 An industrial robot. (Courtesy of GCA 
Corporation.)

P3.19 Consider the system described by

� t t( ) ( )=
− −











x x0 1

4 4
,

where t ( )( ) ( ) ( )= x t , x t1 2
Tx . (a) Compute the state 

transition matrix tΦ( ),  0 .  (b) Using the state transition 
matrix from (a) and for the initial conditions 0 11( ) =x  
and 0 1,2 ( ) = −x  find the solution x(t) for 0.≥t

P3.20 A nuclear reactor that has been operating in equi-
librium at a high thermal-neutron flux level is suddenly 
shut down. At shutdown, the density X of xenon 135 
and the density I of iodine 135 are 7 1016×  and 3 1015×  
atoms per unit volume, respectively. The half-lives of  
I135  and Xe135 nucleides are 6.7 and 9.2 hours, respec-
tively. The decay equations are [15, 19]

0.693
6.7

  ,
0.693
9.2

  .� �( ) ( ) ( ) ( ) ( )= − = − −I t I t X t X t I t

Determine the concentrations of I135  and Xe135 as 
functions of time following shutdown by determin-
ing (a) the transition matrix and the system response. 
(b) Verify that the response of the system is that shown 
in Figure P3.20.

P3.21 Consider the block diagram in Figure P3.21.
(a) Verify that the transfer function is

.1 0 1 1
2

1 0
( )

( )
( )

= =
+ +
+ +

G s
Y s
U s

h s h a h
s a s a

(b) Show that a state variable model is given by

� t
a a

t
h

h
u t( ) ( ) ( )=

− −

















+
















x x
0 1

,
0 1

1

0

y t t( ) ( )= x[1 0] .

P3.17 A system is described by the state variable 
equations

� t t u t( ) ( ) ( )=
−

−



















+



















x x
1 1 1
4 3 0
2 1 10

0
0
4

,

y t t( ) ( )= x[1 0 0] .

Determine .( ) ( ) ( )= /G s Y s U s
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-

+

-

+
v(t)

+

-

v1(t)

v1(t)

v0(t)

v2(t)

v2(t)

R1 R2

R3
i(t)

C1 L C2
Output
voltage

+
-

FIGURE P3.22 RLC circuit.
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3

5

6

7

4

X, I

X
1016

X = Xenon 135
I = Iodine 135

FIGURE P3.20
Nuclear reactor
response.

+ +

+- -
U(s) s

1h0 Y(s)s
1

a0

h1

a1

FIGURE P3.21 Model of second-order system.

P3.22 Determine a state variable model for the circuit 
shown in Figure P3.22. The state variables are   ,     ,1 2 1υ( ) ( ) ( ) ( )= =x t i t x t t 
  ,     ,1 2 1υ( ) ( ) ( ) ( )= =x t i t x t t  and   .3 2υ( ) ( )=x t t  The output 
variable is .0υ ( )t

P3.23 The two-tank system shown in Figure P3.23(a) is 
controlled by a motor adjusting the input valve and 

ultimately varying the output flow rate. The system 
has the transfer function

1
10 29 20

0
3 2

( )
( )

( )= =
+ + +

Q s
I s

G s
s s s

for the block diagram shown in Figure P3.23(b). 
Obtain a state variable model.

1
s + 5

I(s)
Input
signal

I(s)
Input
signal

Motor and
valve Valve

Q2(s)

Q1(s)

Q1(s) Q2(s)

Qo(s)
Output
flow

Qo(s)
Output
flow

(a)

(b)

1
s + 1

1
s + 4

FIGURE P3.23 A two-tank system with the motor
current controlling the output flow rate. (a) Physical 
diagram. (b) Block diagram.
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P3.24 It is desirable to use well-designed controllers to 
maintain building temperature with solar collector 
space-heating systems. One solar heating system can 
be described by [10]

3 ,1
1 1 2

( )
( ) ( ) ( )= + +

dx t
dt

x t u t u t

and

2 ,2
2 2

( )
( ) ( ) ( )= + +

dx t
dt

x t u t d t

where temperature1( ) =x t  deviation from desired 
equilibrium, and temperature2 ( ) =x t  of the storage 
material (such as a water tank). Also, 1( )u t  and 2 ( )u t  
are the respective flow rates of conventional and solar 
heat, where the transport medium is forced air. A 
solar disturbance on the storage temperature (such as 
overcast skies) is represented by ( )d t . Write the ma-
trix equations and solve for the system response when 

0,   1,1 2( ) ( )= =u t u t  and 1,( ) =d t  with zero initial 
conditions.

P3.25 A system has the following differential equation:

� t t r t( ) ( ) ( )=
− −











 +











x x0 1

2 3
0
1

.

Determine tΦ( )  and its transform sΦ( )  for the 
system.

P3.26 A system has a block diagram as shown in Figure 
P3.26. Determine a state variable model and the state 
transition matrix sΦ( ).

- -

+
R(s) Y(s)

1
s + 3

3
25

1
s

25

FIGURE P3.26 Feedback system.

H

Spinning
wheel

Case

Gimbal

A
Input axis

B
Output axis

O

FIGURE P3.27 Gyroscope.

variable representation when the output variable is 
.2 ( )y t

k

Rolling friction constant = b

m1 m2

y1(t) y2(t)

u(t)
Force

FIGURE P3.28 Two-mass system.

P3.27 A gyroscope with a single degree of freedom is 
shown in Figure P3.27. Gyroscopes sense the angular 
motion of a system and are used in automatic flight 
control systems. The gimbal moves about the output 
axis OB. The input is measured around the input axis 
OA. The equation of motion about the output axis is 
obtained by equating the rate of change of angular 
momentum to the sum of torques. Obtain a state-
space representation of the gyro system.

P3.28 A two-mass system is shown in Figure P3.28. 
The rolling friction constant is b. Determine a state 

P3.29 There has been considerable engineering effort 
directed at finding ways to perform manipulative op-
erations in space—for example, assembling a space 
station and acquiring target satellites. To perform 
such tasks, space shuttles carry a remote manipulator 
system (RMS) in the cargo bay [4, 12, 21]. The RMS 
has proven its effectiveness on recent shuttle mis-
sions, but now a new design approach can be consid-
ered—a manipulator with inflatable arm segments. 
Such a design might reduce manipulator weight by 
a factor of four while producing a manipulator that, 
prior to inflation, occupies only one-eighth as much 
space in the cargo bay as the present RMS.

The use of an RMS for constructing a space structure 
in the shuttle bay is shown in Figure P3.29(a), and a 
model of the flexible RMS arm is shown in Figure 
P3.29(b), where J is the inertia of the drive motor 
and L is the distance to the center of gravity of the 
load component. Derive the state equations for this 
system.

P3.30 Obtain the state equations for the two-input and 
one-output circuit shown in Figure P3.30, where the 
output is .2 ( )i t

P3.31 Extenders are robot manipulators that extend 
(that is, increase) the strength of the human arm in 
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(a)

(b)

Space
structure

Multiarm
robot

Manipulator

Drive
motor

J

Load mass
I, M

u(t)
q2(t)

q1(t)k
L

FIGURE P3.29 Remote manipulator system.

load- maneuvering tasks (Figure P3.31) [19, 22]. The 
system is represented by the transfer function

30
4 3

,
2

( )
( )

( )= =
+ +

Y s
U s

G s
s s

where U(s) is the force of the human hand applied 
to the robot manipulator, and Y(s) is the force of the 

R2R1 R3

v2(t)v1(t)
-

+
iL(t) vc(t)

i2(t)

+
-

+
-

FIGURE P3.30 Two-input RLC circuit.

robot manipulator applied to the load. Determine a 
state variable model and the state transition matrix for 
the system.

P3.32 A drug taken orally is ingested at a rate r(t). The 
mass of the drug in the gastrointestinal tract is de-
noted by 1( )m t  and in the bloodstream by .2 ( )m t  The 
rate of change of the mass of the drug in the gastroin-
testinal tract is equal to the rate at which the drug is 
ingested minus the rate at which the drug enters the 
bloodstream, a rate that is taken to be proportional to 
the mass present. The rate of change of the mass in 
the bloodstream is proportional to the amount coming 
from the gastrointestinal tract minus the rate at which 
mass is lost by metabolism, which is proportional to 
the mass present in the blood. Develop a state space 
representation of this system.

For the special case where the coefficients of A are 
equal to 1 (with the appropriate sign), determine 
the  response when 0 11( ) =m  and 0 0.2 ( ) =m  Plot 
the  state variables versus time and on the 1 2−x x  
state plane.

P3.33 The attitude dynamics of a rocket are represented by

1
,

2
( )
( )

( )= =
Y s
U s

G s
s

and state variable feedback is used where 
,   ,1 2 �( ) ( ) ( ) ( )= =x t y t x t y t   and u(t) = x t( )−0.5 .1 x2 (t) x t( )−0.5 .1   

Determine the roots of the characteristic equation 
of this system and the response of the system when 
the initial conditions are 0 01( ) =x  and 0 1.2 ( ) =x  
The input U(s) is the applied torques, and Y(s) is the 
rocket attitude.

P3.34 A system has the transfer function

6
6 11 6

.
3 2

( )
( )

( )= =
+ + +

Y s
R s

T s
s s s

(a) Construct a state variable representation of the 
system.

(b) Determine the element 11φ ( )t  of the state transi-
tion matrix for this system.

P3.35 Determine a state-space representation for the 
system shown in Figure P3.35. The motor inductance 
is negligible, the motor constant is =Km 10, the back 
electromagnetic force constant is Kb = 0.0706, the 
motor friction is negligible. The motor and valve inertia 
is 0.006,=J  and the area of the tank is 50 m .2  Note 
that the motor is controlled by the armature current 

.( )i ta  Let ,   ,1 2 θ( ) ( ) ( ) ( )= =x t h t x t t  and .3
�θ( ) ( )=x t t  

Assume that 80 ,1 θ( ) ( )=q t t  where θ( )t  is the shaft 
angle. The output flow is 50 .0 ( ) ( )=q t h t

Gripper

Extender

Load

FIGURE P3.31 Extender for increasing the strength of 
the human arm in load maneuvering tasks.
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P3.36 Consider the two-mass system in Figure P3.36. Find 
a state variable representation of the system. Assume 
the output is ( )x t .

P3.37 Consider the block diagram in Figure P3.37. Using 
the block diagram as a guide, obtain the state variable 
model of the system in the form

� t t u t( ) ( ) ( )= +x Ax B

( ) ( ) ( )= +y t t u t .Cx D

Using the state variable model as a guide, obtain 
a third-order differential equation model for the 
system.

va(t)

R
ia(t)

u(t)

vb(t)

+
+

-
- qi(t)

q0(t)

Reservoir

Amplifier
Ka = 50

10 æ

Valvevi(t)

+

-

h(t)FIGURE P3.35
One-tank system.

M2

M1

x(t)

y(t)

k1

k2

b1

u(t)

FIGURE P3.36 Two-mass system with two springs and 
one damper.

Y(s)
+

+

+

+

-
- -

U(s)

3

5

12

4

10

FIGURE P3.37
A block diagram 
model of a third-
order system.
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250 Chapter 3  State Variable Models

AP3.1 Consider the electromagnetic suspension system 
shown in Figure AP3.1. An electromagnet is located 
at the upper part of the experimental system. Using 
the electromagnetic force f, we want to suspend the 
iron ball. Note that this simple electromagnetic sus-
pension system is essentially unworkable. Hence 
feedback control is indispensable. As a gap sensor, a 
standard induction probe of the type of eddy current 
is placed below the ball [20].

Assume that the state variables are x1 (t) = x(t), 
�x t x t( ) ( )= ,2  and .3( ) ( )=x t i t  The electromagnet  

has an inductance L = 0.508 H  and a resistance  
23.2  .= ΩR  Use a Taylor series approximation for the 

electromagnetic force. The current is ,1 0( ) ( )= +i t I i t  
where I = 1.06 A0  is the operating point and ( )i t  
is the variable. The mass m is equal to 1.75  kg. The 
gap is ,0( ) ( )= +x t X x tg  where X = 4.36 mm0  is 
the operating point and x(t) is the variable. The elec-
tromagnetic force is f t k i t x tg( )( ) ( ) ( )= / ,1

2
 where 

k = × /−2.9 10  N m A .4 2 2  Determine the matrix dif-
ferential equation and the equivalent transfer function 
X(s)/V(s).

ADVANCED PROBLEMS

v

i1(t)

x(t)

Force f (t)

mg

Iron ball

Electromagnet

Gap sensor

m

+
-(t)

FIGURE AP3.1 Electromagnetic suspension system.

AP3.2 A two-mass model of a robot arm is shown 
in Figure AP3.2. Determine the transfer function  
Y(s)/F(s), and use the transfer function to obtain a 
state-space representation of the system. 

AP3.3 The control of an autonomous vehicle motion 
from one point to another point depends on accurate 
control of the position of the vehicle [16]. The control 
of the autonomous vehicle position Y(s) is obtained 
by the system shown in Figure AP3.3. Obtain a state 
variable representation of the system.

y(t)

F(t)

k

b

M m

x(t)

FIGURE AP3.2 The spring-mass-damper system of a 
robot arm.

Y(s)
Position2s2 + 6s + 5

s + 1
1

(s + 1)(s + 2)

R(s)
Input

Vehicle
dynamicsController

FIGURE AP3.3 Position control.

AP3.4 Front suspensions have become standard equip-
ment on mountain bikes. Replacing the rigid fork 
that attaches the bicycle’s front tire to its frame, such 
suspensions absorb bump impact energy, shielding 
both frame and rider from jolts. Commonly used 
forks, however, use only one spring constant and 
treat bump impacts at high and low speeds—impacts 
that vary greatly in severity—essentially the same.

A suspension system with multiple settings that 
are adjustable while the bike is in motion would be 
attractive. One air and coil spring with an oil damper 
is available that permits an adjustment of the damp-
ing constant to the terrain as well as to the rider’s 
weight [17]. The suspension system model is shown 
in Figure AP3.4, where b is adjustable. Select the ap-
propriate value for b so that the bike accommodates 
(a) a large bump at high speeds and (b) a small bump 
at low speeds. Assume that 12 =k  and 2.1 =k

k1

b
q

y

k2

Mass
m

f (t)

(t)

(t)

FIGURE AP3.4 Shock absorber.
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z

x

D(t)

0

T
R(t)

m

mg

u(t)

FIGURE AP3.6 A crane moving in the x-direction while 
the mass moves in the z-direction.

x(t)

m

k
2

k
2

M

u(t)

FIGURE AP3.5 Mass suspended from cart.

(b)

(a)

Y(s)
x-position

-

+ 1

s(s2 + 9s + 27)
R(s) K

Top View

Filling
heads

Full
capsules

Tray of
empty capsules

Hose

Side View

x-axis

Platen Linear motor

Motor
with lead screw

FIGURE AP3.8 Automatic fluid dispenser.

AP3.5 Figure AP3.5 shows a mass M suspended from 
another mass m by means of a light rod of length L. 
Obtain a state variable model using a linear model 
assuming a small angle for .θ( )t  Assume the output 
is the angle, .θ( )t

AP3.6 Consider a crane moving in the x direction while 
the mass m moves in the z direction, as shown in 
Figure AP3.6. The trolley motor and the hoist motor 
are very powerful with respect to the mass of the trol-
ley, the hoist wire, and the load m. Consider the input 
control variables as the distances D(t) and R(t). Also 
assume that 50°.θ( ) <t  Determine a linear model, 
and describe the state variable differential equation.

AP3.7 Consider the single-input, single-output system 
described by

� t t u t( ) ( ) ( )= +x Ax B

y t t( ) ( )= Cx

where

1 1
0 0

, 0
1

, [ 2 1 ].= −









 =











 =A B C

Assume that the input is a linear combination of the 
states, that is,

u t t r t( ) ( ) ( )= − +Kx ,

where ( )r t  is the reference input. The matrix  
K K=K [ 1 2 ]  is known as the gain matrix. Substi-

tuting u(t) into the state variable equation gives the 
closed-loop system

( ) ( ) ( )= − +� t t r tx A BK x B[ ]

( ) ( )=y t t .Cx

The design process involves finding K so that the 
eigenvalues of A-BK are at desired locations in the 
left-half plane. Compute the characteristic polyno-
mial associated with the closed-loop system and de-
termine values of K so that the closed-loop eigenval-
ues are in the left-half plane.

AP3.8 A system for dispensing radioactive fluid into 
capsules is shown in Figure AP3.8(a). The horizon-
tal axis moving the tray of capsules is actuated by a 
linear motor. The x-axis control is shown in Figure 
AP3.8(b). (a) Obtain a state variable model of the 
closed-loop system with input ( )r t  and output ( )y t . 
(b) Determine the characteristic roots of the system 
and compute K such that the characteristic values 
are all co-located at 3,   3,  and s 31 2 3= − = − = −s s .  
(c) Determine analytically the unit step-response of 
the closed-loop system.
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252 Chapter 3  State Variable Models

t t u tz z( ) ( ) ( )=
− −











 +













0 1
10 2

1
1

,�

y t t( ) ( )= − z[1 1] .

Determine the parameters a, b, and d to yield the 
required diagonal matrix differential equation.

DP3.3 An aircraft arresting gear is used on an aircraft 
carrier as shown in Figure DP3.3. The linear 
model of each energy absorber has a drag force 
f t K x tD D( ) ( )= .3�  It is desired to halt the airplane 
within 30 m after engaging the arresting cable [13]. 
The speed of the aircraft on landing is 60 m/s. Select 
the required constant KD, and plot the response of the  
state variables.

DP3.4 The Mile-High Bungi Jumping Company wants 
you to design a bungi jumping system (that is a cord) 
so that the jumper cannot hit the ground when his 
or her mass is less than 100 kg, but greater than  
50 kg. Also, the company wants a hang time (the 
time a jumper is moving up and down) greater than 
25  seconds, but less than 40 seconds. Determine the 
characteristics of the cord. The jumper stands on a 
platform 90 m above the ground, and the cord will 
be attached to a fixed beam secured 10 m above the 
platform. Assume that the jumper is 2 m tall and the 
cord is  attached at the waist (1 m high).

CDP3.1 The traction drive uses the capstan drive sys-
tem shown in Figure CDP2.1. Neglect the effect of 
the motor inductance and determine a state variable 
model for the system. The parameters are given in 
Table CDP2.1. The friction of the slide is negligible.

DP3.1 A spring-mass-damper system, as shown in 
Figure 3.3, is used as a shock absorber for a large 
high-performance motorcycle. The original param-
eters selected are m b m= =1 kg,  9 N s/ ,  and 
k m= 20 N/ .  (a) Determine the system matrix, the 
characteristic roots, and the transition matrix .( )Φ t  The 
harsh initial conditions are assumed to be 0 1( ) =y  and 
dy dt t ==/ | 2.0  (b) Plot the response of ( )y t  and �( )y t  
for the first two seconds. (c) Redesign the shock ab-
sorber by changing the spring constant and the damp-
ing constant in order to reduce the effect of a high rate 
of acceleration force �( )y t  on the rider. The mass must 
remain constant at 1 kg.

DP3.2 A system has the state variable matrix equation 
in phase variable form

� t
a b

t
d

u t( ) ( ) ( )=
− −











 +











x x0 1 0

y t t( ) ( )= x[1 0] .

It is desired that the canonical diagonal form of the 
differential equation be

DESIGN PROBLEMS

FIGURE DP3.3 
Aircraft arresting gear.

Energy absorber piston
mass = m3 = 5

x3(0) = x2(0) = x1(0) = 0

x1(t) = 60 m/s

at x = 0, t = 0
h = 30 m

Moving carriage
mass = m2 = 10

Cable 2 spring constant
k2 = 1000

x1

x2(t)

k1

k2

h

x3(t)

m2
m3

Aircraft mass = m1
                          = 300

Aircraft carrier
runway

Cable 1 spring constant
k1 = 500

.

 (t)
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DP3.5 Consider the single-input, single-output system 
described by

� t t u t( ) ( ) ( )= +x Ax B

y t t( ) ( )= Cx

where
0 1
4 5

, 0
1

, [ 1 0 ].=
− −











 =











 =A B C

Assume that the input is a linear combination of the 
states, that is,

C

R L
+ +

- -

v2(t)v1(t)

i(t)

FIGURE CP3.3 RLC circuit.

u t t r t( ) ( ) ( )= − +Kx ,

where r(t) is the reference input. Determine 
K K=K  [ ]1 2  so that the closed-loop system

� t t r t( ) ( ) ( )= − +x A BK x B[ ]

y t t( ) ( )= Cx

possesses closed-loop eigenvalues at 1r  and .2r  
Note that if 1 σ ω= +r j  is a complex number, then 
2 σ ω= −r j  is its complex conjugate.

CP3.1 Determine a state variable representation for the 
following transfer functions (with unity feedback) 
using the ss function:

(a) 
1

1
( ) =

+
G s

s

(b) 
1

2 1

2

2
( ) =

+ +
+ +

G s
s s
s s

(c) 
1

3 2 13 2
( ) =

+
+ + +

G s
s

s s s

CP3.2 By using the tf function, determine the transfer 
function representation for the state variable  models 
based on your answers for CP3.1. Show that the 
transfer function is the same.

CP3.3 Consider the RLC circuit shown in Figure CP3.3. 
Determine the transfer function .2 1( ) ( )/V s V s  
(a) Determine the state variable representation 

when R L= Ω =1  ,   0.5 H,  and 1 F.=C
(b) Using the state variable representation from 

part (a), plot the unit step response with the 
step function.

CP3.4 Consider the system

�
0 1 0
0 0 1
4 1 6

0
0
1

,( ) ( ) ( )=
− − −



















+



















t t u tx x

y t t( ) ( )= x[1 0 0 ] .

(a) Using the tf function, determine the transfer 
function Y(s)/U(s).

(b) Plot the response of the system to the initial con-
dition Tx = −(0) [ 0 1 1 ]  for 0 20.≤ ≤t

(c) Compute the state transition matrix using the 
expm function, and determine x(t) at 20=t  for 
the initial condition given in part (b). Compare 
the result with the system response obtained in 
part (b).

CP3.5 Consider the two systems

� t t u t( ) ( )=
− − −



















+



















x x
0 1 0
0 0 1
4 5 8

0
0
4

( ),1 1

y t t( ) ( ) ( )= x[ 1 0 0 ] 11

and

� t t u t( ) ( ) ( )= − −
− − −



















+



















x x 
0.5000 0.5000 0.7071
0.5000 0.5000 0.7071
6.3640 0.7071 8.000

0
0
4

,2 2

y t t( ) ( ) ( )= − x[0.7071 0.7071 0] . 22

COMPUTER PROBLEMS

M03_DORF2374_14_GE_C03.indd   253M03_DORF2374_14_GE_C03.indd   253 14/09/21   9:59 AM14/09/21   9:59 AM



254 Chapter 3  State Variable Models

(a) Using the tf function, determine the transfer 
function Y(s)/U(s) for system (1).

(b) Repeat part (a) for system (2).
(c) Compare the results in parts (a) and (b) and 

comment.

CP3.6 Consider the closed-loop control system in Figure 
CP3.6.
(a) Determine a state variable representation of the 

controller.
(b) Repeat part (a) for the process.
(c) With the controller and process in state variable 

form, use the series and feedback functions to 
compute a closed-loop system representation in 
state variable form and plot the closed-loop sys-
tem impulse response.

CP3.7 Consider the following system:

� t t u t( ) ( ) ( )=
− −











 +











x x0 1

4 7
0
1

y t t( ) ( )= x[1 0 ]

-

+
R(s) Y(s)

3
s + 3

1
s2 + 2s + 5

Controller Process

FIGURE CP3.6 A closed-loop feedback control system.

with

( ) =










x 0 1
0

.

Using the Isim function obtain and plot the system 
response (for 1( )x t  and 2 ( )x t ) when 0.( ) =u t

CP3.8 Consider the state variable model with parameter 
K given by

� t
K

t u t( ) ( ) ( )=
− − −



















+



















x x
0 1 0
0 0 1
2 2

0
0
1

,

y t t( ) ( )= x[ 1 0 0 ] .

Plot the characteristic values of the system as a func-
tion of K in the range 0 100.≤ ≤K  Determine that 
range of K for which all the characteristic values lie 
in the left half-plane.

Canonical form A fundamental or basic form of the 
state variable model representation, including phase 
variable canonical form, input feedforward canonical 
form, diagonal canonical form, and Jordan canonical 
form.

Diagonal canonical form A decoupled canonical form 
displaying the n distinct system poles on the diagonal 
of the state variable representation A matrix.

Fundamental matrix See Transition matrix.

Input feedforward canonical form A canonical form 
described by n feedback loops involving the an  coef-
ficients of the nth order denominator polynomial of 
the transfer function and feedforward loops obtained 
by feeding forward the input signal.

Jordan canonical form A block diagonal canonical form 
for systems that do not possess distinct system poles.

TERMS AND CONCEPTS

ANSWERS TO SKILLS CHECK

True or False: (1) True; (2) True; (3) False; (4) False; 
(5) False

Multiple Choice: (6) a; (7) b; (8) c; (9) b; (10) c; (11)  
a; (12) a; (13) c; (14) c; (15) c

Word Match (in order, top to bottom): f, d, g, a, b, c, e
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State of a system A set of numbers such that the knowl-
edge of these numbers and the input function will, 
with the equations describing the dynamics, provide 
the future state of the system.

State-space representation A time-domain model com-
prising the state differential equation � = +x Ax Bu  
and the output equation, = +y Cx Du.

State variables The set of variables that describe the system.

State vector The vector containing all n state variables, 
,   , ,   .1 2 …x x xn

Time domain The mathematical domain that incor-
porates the time response and the description of a 
system in terms of time t.

Time-varying system A system for which one or more 
parameters may vary with time.

Transition matrix tΦ( )  The matrix exponential function 
that describes the unforced response of the system.

Matrix exponential function An important matrix fun-
ction, defined as = + + / + +�e t ttA A AI ( ) 2!2  
(At)k/k! + …, that plays a role in the solution of lin-
ear constant coefficient differential equations.

Output equation The algebraic equation that relates 
the state vector x and the inputs u to the outputs y 
through the relationship = +y Cx Du.

Phase variable canonical form A canonical form de-
scribed by n feedback loops involving the an  coef-
ficients of the nth order denominator polynomial of 
the transfer function and m feedforward loops in-
volving the bm coefficients of the mth order numera-
tor polynomial of the transfer function.

Phase variables The state variables associated with the 
phase variable canonical form.

Physical variables The state variables representing the 
physical variables of the system.

State differential equation The differential equation for 
the state vector: � = +x Ax Bu.
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PREVIEW

In this chapter, we explore the role of error signals to characterize feedback  
control system performance, including the reduction of sensitivity to model uncer-
tainties, disturbance rejection, measurement noise attenuation, steady-state errors, 
and transient response characteristics. The error signal is employed in the feed-
back control system via negative feedback. We discuss the sensitivity of a  system 
to parameter changes, since it is desirable to minimize the effects of  parameter 
variations and uncertainties. We also wish to diminish the effect of  unwanted 
 disturbances and measurement noise on the ability of the system to track a desired 
input. We then describe the transient and steady-state performance of a feedback 
system and show how this performance can be readily improved with feedback. 
The chapter concludes with a system performance analysis of the Sequential 
Design Example: Disk Drive Read System.

DESIRED OUTCOMES

Upon completion of Chapter 4, students should be able to:

	❏ Explain the central role of error signals in analysis of control systems.

	❏ Identify the improvements afforded by feedback control in reducing system 
 sensitivity to parameter changes, disturbance rejection, and measurement noise 
attenuation.

	❏ Describe the differences between controlling the transient response and the 
 steady-state response of a system.

	❏ State the benefits and costs of feedback in the control design process.
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Section 4.1  Introduction 257

4.1 INTRODUCTION

A control system is defined as an interconnection of components forming a system 
that will provide a desired system response. Because the desired system response is 
known, a signal proportional to the error between the desired and the actual  response 
is generated. The use of this signal to control the process results in a closed-loop  
sequence of operations that is called a feedback system. This closed-loop  sequence 
of operations is shown in Figure 4.1. The introduction of feedback to improve the 
control system is often necessary. It is interesting that this is also the case for sys-
tems in nature, such as biological and physiological systems; feedback is inherent 
in these systems. For example, the human heart rate control system is a feedback 
control  system. To illustrate the characteristics and advantages of introducing feed-
back, we consider a single-loop feedback system. Although many control systems 
are  multiloop, a thorough comprehension of the benefits of feedback can best be 
obtained from the single-loop system and then extended to multiloop systems.

An open-loop system, or a system without feedback, is shown in Figure 4.2. The 
disturbance, T sd ( ),  directly influences the output, Y s( ). In the absence of feedback, 
the control system is highly sensitive to disturbances and to both knowledge of and 
variations in parameters of G s( ).

If the open-loop system does not provide a satisfactory response, then a suitable 
cascade controller, G s( )c , can be inserted preceding the process, G s( ), as shown in 
Figure 4.3. Then it is necessary to design the cascade transfer function, G s G s( ) ( )c , 
so that the resulting transfer function provides the desired transient response. This is 
known as open-loop control.

Controller Process

Output

Comparison MeasurementFIGURE 4.1
A closed-loop 
system.

(b)(a)

R(s)
+

Y(s)

Process

G(s)

Td(s)

+
R(s) Y(s)

G(s)

Td(s)

1

1

FIGURE 4.2
An open-loop 
 system with a 
disturbance input, 

( )T sd  (a) Signal-flow 
graph. (b) Block 
diagram.
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258 Chapter 4  Feedback Control System Characteristics

By contrast, a closed-loop negative feedback control system is shown in Figure 4.4.

(b)(a)

R(s)
+

Y(s)

Process

G(s)

Controller

Gc(s)

Td(s)

+
R(s) Y(s)

G(s)Gc(s)

Td(s)

1

1

FIGURE 4.3 Open-loop control system (without feedback). (a) Signal-flow graph. (b) Block diagram.

An open-loop system operates without feedback and directly generates the 
output in response to an input signal.

A closed-loop system uses a measurement of the output signal and a 
 comparison with the desired output to generate an error signal that is used 

by the controller to adjust the actuator.

(b)

+

-

+

+

Controller

Gc(s)
+

+
N(s)

R(s) Y(s)

Process

G(s)

Td(s)

Ea(s)

Sensor

H(s)

(a)

R(s) Y(s)
G(s)

Td(s)

1

1

Gc(s)

N(s)

- H(s)

1

1

FIGURE 4.4
A closed-loop 
 control system.  
(a) Signal-flow 
graph. (b) Block 
diagram.
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Section 4.2  Error Signal Analysis 259

Despite the cost and increased system complexity, closed-loop feedback  
control has the following advantages:

	■ Decreased sensitivity of the system to variations in the parameters of the process.

	■ Improved rejection of the disturbances.

	■ Improved measurement noise attenuation.

	■ Improved reduction of the steady-state error of the system.

	■ Easy control and adjustment of the transient response of the system.

In this chapter, we examine how the application of feedback can result in the  
bene  fits listed above. Using the notion of a tracking error signal, it will be read-
ily appar  ent that it is possible to utilize feedback with a controller in the loop to 
 improve system performance.

4.2 ERROR SIGNAL ANALYSIS

The closed-loop feedback control system shown in Figure 4.4 has three  inputs— 
R s( ), T sd ( ),  and N s( )—and one output, Y s( ). The signals T sd ( ) and N s( )  
are the  disturbance and measurement noise signals, respectively. Define the 
tracking error as

 E s R s Y s( ) ( ) ( )= − . (4.1)

For ease of discussion, we will consider a unity feedback system, that is, H s( ) = 1,  
in Figure 4.4. The influence of a nonunity feedback element in the loop will be con-
sidered later.

After some block diagram manipulation, we find that the output is given by

Y s
G s G s

G s G s
R s

G s
G s G s

T s
G s G s

G s G s
N sc

c c
d

c

c
( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )
( )=

+
+

+
−

+1
 

1
 

1
  . 

(4.2)

Therefore, with E s R s Y s( ) ( ) ( )= − ,  we have

E s
G s G s

R s
G s

G s G s
T s

G s G s
G s G s

N s
c c

d
c

c
( )

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )
( )=

+
−

+
+

+
1

1
 

1
 

1
  . (4.3)

Define the function

L s G s G sc( ) ( ) ( )= .

The function, L s( ), is known as the loop gain and plays a fundamental role in con-
trol system analysis [12]. In terms of L s( ), the tracking error is given by

 E s
L s

R s
G s

L s
T s

L s
L s

N sd( )
( )

( ) ( )
( )

( ) ( )
( )

( )=
+

−
+

+
+

1
1

 
1

 
1

  . (4.4)

We can define the function

F s L s( ) ( )= +1 .
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260 Chapter 4  Feedback Control System Characteristics

Then, in terms of F s( ), we define the sensitivity function as

 S s
F s L s

( )
( ) ( )

= =
+

1 1
1

.  (4.5)

Similarly, in terms of the loop gain, we define the complementary sensitivity function as

 C s
L s

L s
( ) ( )

( )
=

+1
. (4.6)

In terms of the functions S s( ) and C s( ), we can write the tracking error as

 E s S s R s S s G s T s C s N sd( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= − + . (4.7)

Examining Equation (4.7), we see that (for a given G s( )), if we want to minimize the 
tracking error, we want both S s( ) and C s( ) to be small. Remember that S s( ) and 
C s( ) are both functions of the controller, G sc ( ), which the control engineer designs. 
However, the following special relationship between S s( ) and C s( ) holds

 S s C s( ) ( )+ = 1. (4.8)

Clearly, we cannot simultaneously make S s( ) and C s( ) small, hence design compro-
mises must be made.

To analyze the tracking error equation, we need to understand what it means for 
a transfer function to be “large” or to be “small.” The discussion of magnitude of a 
transfer function is the subject of Chapters 8 and 9 on frequency response  methods. 
However, for our purposes here, we describe the magnitude of the loop gain L s( ) by 
considering the magnitude ω( )L j  over the range of frequencies, ω,  of interest.

Considering the tracking error in Equation (4.4), it is evident that, for a given 
G s( ), to reduce the influence of the disturbance, T sd ( ), on the tracking error, E s( ),  
we desire L s( ) to be large over the range of frequencies that characterize the distur -
bances. That way, the transfer function /(1 )( ) ( )+G s L s  will be small, thereby 
reducing the influence of T sd ( ). Since L s G s G sc ,( ) ( ) ( )=  this implies that we 
need to design the controller G sc ( ) to have a large magnitude over the import-
ant range of frequencies. Conversely, to attenuate the measurement noise, N s( ),  
and reduce the influence on the tracking error, we desire L s( ) to be small over 
the range of frequencies that characterize the measurement noise. The transfer 
function L s L s/(1 ))( ) ( )+  will be small, thereby reducing the influence of N s( ).  
Again, since L s G s G sc( ) ( ) ( )= ,  that implies that we need to design the controller 
G sc ( ) to have a small magnitude over the important range of frequencies. Fortunately, 
the apparent conflict between wanting to make G sc ( ) large to reject disturbances and 
the wanting to make G sc ( ) small to attenuate measurement noise can be addressed 
in the design phase by making the loop gain, L s( ), large at low  frequencies ( generally 
associated with the frequency range of disturbances), and making L s( ) small at high 
frequencies (generally associated with measurement noise).

More discussion on disturbance rejection and measurement noise attenuation 
follows in the subsequent sections. Next, we discuss how we can use feedback to re-
duce the sensitivity of the system to variations and uncertainty in parameters in the 
process, G s( ). This is accomplished by analyzing the tracking error in Equation (4.2) 
when T s N sd ( ) ( )= = 0.
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Section 4.3  Sensitivity of Control Systems to Parameter Variations 261

4.3 SENSITIVITY OF CONTROL SYSTEMS TO PARAMETER VARIATIONS

A process, represented by the transfer function G s( ) is subject to a changing envi-
ronment, aging, uncertainty in the exact values of the process parameters, and other 
factors that affect a control process. In the open-loop system, all these errors and 
changes result in a changing and inaccurate output. However, a closed-loop system 
senses the change in the output due to the process changes and attempts to correct 
the output. The sensitivity of a control system to parameter variations is of prime 
importance. A primary advantage of a closed-loop feedback control system is its 
ability to reduce the system’s sensitivity [1–4, 18].

For the closed-loop case, if G s G sc �( ) ( ) 1 for all complex frequencies of inter-
est, we can use Equation (4.2) to obtain (letting T sd ( ) = 0 and N s( ) = 0)

Y s R s( ) ( )≅ .

The output is approximately equal to the input. However, the condition 1�( ) ( )G s G sc  
may cause the system response to be highly oscillatory and even unstable. But the fact 
that increasing the magnitude of the loop gain reduces the effect of G s( ) on the out-
put is a useful result. Therefore, the first advantage of a feedback system is that the 
effect of the variation of the parameters of the process, G s( ), is reduced.

Suppose the process (or plant) G s( ) undergoes a change such that the true 
plant model is G s G s .( ) ( )+ ∆  The change in the plant may be due to a changing 
external environment or it may represent the uncertainty in certain plant parame-
ters. We consider the effect on the tracking error E s( ) due to .( )∆G s  Utilizing the 
principle of superposition, we let T s N sd ( ) ( )= = 0 and consider only the reference 
input R s( ). From Equation (4.3), it follows that

1
1 ( )

  .( ) ( )
( ) ( ) ( )

( )+ ∆ =
+ + ∆

E s E s
G s G s G s

R s
c

Then the change in the tracking error is

(1 )(1 )
  .( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )∆ =

− ∆
+ + ∆ +

E s
G s G s

G s G s G s G s G s G s
R sc

c c c

Since we usually find that G s G s G s G sc c( ) ( ) ( ) ( )∆ ,�  we have

(1 )
  .

2( ) ( ) ( )
( )

( )∆ ≈
− ∆

+
E s

G s G s
L s

R sc

We see that the change in the tracking error is reduced by the factor L s( )+1 , which 
is generally greater than 1 over the range of frequencies of interest.

For large L s( ), we have L s L s( ) ( )+ ≈1 , and we can approximate the change 
in the tracking error by

 
1

    .( )
( )

( )
( )

( )∆ ≈ −
∆

E s
L s

G s
G s

R s  (4.9)

Larger magnitude L s( ) translates into smaller changes in the tracking error (that is, 
reduced sensitivity to changes in ( )∆G s  in the process). Also, larger L s( ) implies 
smaller sensitivity, S s( ). The question arises, how do we define sensitivity?
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262 Chapter 4  Feedback Control System Characteristics

The sensitivity of the open-loop system to changes in the plant G s( ) is equal to 1. 
The sensitivity of the closed-loop is readily obtained by using Equation (4.12). The 
system transfer function of the closed-loop system is

T s
G s G s

G s G s
c

c
( ) ( ) ( )

( ) ( )
=

+1
.

Therefore, the sensitivity of the feedback system is

( ) ( )
=

∂
∂

⋅ =
+

⋅
+

S
T
G

G
T

G

G G

G
GG G GG

TT c

c c c1 / 12

or

 
( ) ( )

=
+

S
G s G sG

TT

c

1
1

.  (4.13)

We find that the sensitivity of the system may be reduced below that of the open-
loop system by increasing L s G s G sc( ) ( ) ( )=  over the frequency range of interest. 
Note that SG

T  in Equation (4.12) is exactly the same as the sensitivity function S s( ) 
given in Equation (4.5).

Often, we seek to determine αST ,  where α is a parameter within the transfer 
function, G s( ). Using the chain rule yields

 =α αS S STT
G
TT G .  (4.14)

The system sensitivity is defined as the ratio of the percentage change in the 
system transfer function to the percentage change of the process transfer function. 
The system transfer function is

 T s
Y s
R s

( ) ( )
( )

= ,  (4.10)

and therefore the sensitivity is defined as

 S
T s T s
G s G s

( ) ( )
( ) ( )

=
∆
∆

/
/

.  (4.11)

In the limit, for small incremental changes, Equation (4.11) becomes

 S
T T
G G

=
∂
∂

=
∂
∂

/
/

 ln T
 ln G

.  (4.12)

System sensitivity is the ratio of the change in the system transfer  function 
to the change of a process transfer function (or parameter) for a small 

 incremental change.
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Section 4.3  Sensitivity of Control Systems to Parameter Variations 263

Very often, the transfer function of the system ( )T s  is a fraction of the form [1]

 T s
N s
D s

α
α
α

( ) ( )
( )

=,  
,  
,  

, (4.15)

where α is a parameter that may be subject to variation due to the environment. 
Then we may obtain the sensitivity to α by rewriting Equation (4.11) as

 S S ST N D

α α α
=

∂
∂

=
∂
∂

−
∂
∂

= −α
α α α α

α α
= =

 ln T
 ln 

 ln N
 ln 

 ln D
 ln 

,
0 0

 (4.16)

where α0  is the nominal value of the parameter.
An important advantage of feedback control systems is the ability to reduce the 

effect of the variation of parameters of a control system by adding a feedback loop. 
To obtain highly accurate open-loop systems, the components of the open-loop, 
G s( ), must be selected carefully in order to meet the exact specifications. However, 
a closed-loop system allows G s( ) to be less accurately specified because the sensi-
tivity to changes or errors in G s( ) is reduced by the loop gain L s( ). This benefit of 
closed-loop systems is a profound advantage. A simple example will illustrate the 
value of feedback for reducing sensitivity.

EXAMPLE 4.1 Feedback amplifier

An amplifier used in many applications has a gain Ka− ,  as shown in Figure 4.5(a). 
The output voltage is

 ( )= −V s K V sa( ) .o in  (4.17)

We often add feedback using a potentiometer Rp,  as shown in Figure 4.5(b). The 
transfer function of the amplifier without feedback is

 T s Ka( ) = − ,  (4.18)

and the sensitivity to changes in the amplifier gain is

 =SK
TT

a
1.  (4.19)

The block diagram model of the amplifier with feedback is shown in Figure 4.6, 
where

 
R
R

β = 2

1
 (4.20)

(a)

-

+

-

+

Vin(s) Vo(s)
Gain
- Ka

(b)

Vin(s) Vo(s)

Gain
- Ka

Rp

R1

R2

FIGURE 4.5
(a) Open-loop  
amplifier. 
(b) Amplifier with 
feedback.

M04_DORF2374_14_GE_C04.indd   263M04_DORF2374_14_GE_C04.indd   263 17/09/21   2:18 PM17/09/21   2:18 PM



264 Chapter 4  Feedback Control System Characteristics

and

 R R Rp = + .1 2  (4.21)

The closed-loop transfer function of the feedback amplifier is

 T s
K
K

a

aβ
( ) =

−
+1

. (4.22)

The sensitivity of the closed-loop feedback amplifier is

 
β

= =
+

S S S
KK

TT
G
TT

K
G

a
a a

1
1

.  (4.23)

If Ka  is large, the sensitivity is low. For example, if

 Ka β= =10 and 0.1,4  (4.24)

we have

 =
+

≈SK
TT

a

1
1 10

1
1000

,
3

 (4.25)

or the magnitude is one-thousandth of the magnitude of the open-loop amplifier.
We shall return to the concept of sensitivity in subsequent chapters. These 

chapters will emphasize the importance of sensitivity in the design and analysis of 
control systems. ■

4.4 DISTURBANCE SIGNALS IN A FEEDBACK CONTROL SYSTEM

Many control systems are subject to extraneous disturbance signals that cause the 
system to provide an inaccurate output. Electronic amplifiers have inherent noise 
generated within the integrated circuits or transistors; radar antennas are subjected 
to wind gusts; and many systems generate unwanted distortion signals due to non-
linear elements. An important effect of feedback in a control system is the reduction 

(a) (b)

1

-1

Vo(s)Vin(s)

- Ka

1 + Ka(b + 1) +

-

Ea(s)
Vo(s)Vin(s)

- Ka

1 + Ka(b + 1)

FIGURE 4.6 Block diagram model of feedback amplifier assuming � 0R Rp  of the amplifier.
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 Section 4.4  Disturbance Signals in a Feedback Control System 265

of the effect of disturbance signals. A disturbance signal is an unwanted input signal 
that affects the output signal. The benefit of feedback systems is that the effect of 
distortion, noise, and unwanted disturbances can be effectively reduced.

Disturbance Rejection
When R s N s( ) ( )= = 0,  it follows from Equation (4.4) that

E s S s G s T s
G s

L s
T sd d( ) ( ) ( ) ( ) ( )

( )
( )= − = −

+1
  .

For a fixed G s( ) and a given T sd ( ), as the loop gain L s( ) increases, the effect of T sd ( ) 
on the tracking error decreases. In other words, the sensitivity function S s( ) is small 
when the loop gain is large. We say that large loop gain leads to good disturbance 
 rejection. More precisely, for good disturbance rejection, we require a large loop gain 
over the frequencies of interest associated with the expected disturbance signals.

In practice, the disturbance signals are often low frequency. When that is the 
case, we say that we want the loop gain to be large at low frequencies. This is equiv-
alent to stating that we want to design the controller G sc ( ) so that the sensitivity 
function S s( ) is small at low frequencies.

As a specific example of a system with an unwanted disturbance, let us consider 
again the speed control system for a steel rolling mill [19]. The rolls, which process 
steel, are subjected to large load changes or disturbances. As a steel bar approaches 
the rolls (see Figure 4.7), the rolls are empty. However, when the bar engages in the 
rolls, the load on the rolls increases immediately to a large value. This loading effect 
can be approximated by a step change of disturbance torque.

The transfer function model of an armature-controlled DC motor with a load 
torque disturbance was determined in Example 2.5 and is shown in Figure 4.8, 
where it is assumed that La  is negligible. Let R s( ) = 0  and examine E s sω( ) ( )= − , 
for a disturbance T sd ( ).

Steel bar

Conveyor

Rolls

FIGURE 4.7
Steel rolling mill.

-

+ -

+
1

Js + b

Kb

Tm(s) TL(s) v(s)
Speed

Va(s)
Ia(s)

Motor back electromotive force

1
Ra

Km

Disturbance
Td(s)

FIGURE 4.8
Open-loop speed 
control system 
(without tachometer 
feedback).
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266 Chapter 4  Feedback Control System Characteristics

The change in speed due to the load disturbance is then

 E s s
Js b K K R

T s
m b a

dω( ) ( ) ( )= − =
+ + /

1
  .  (4.26)

The steady-state error in speed due to the load torque, ( ) = /T s D sd , is found by 
using the final-value theorem. Therefore, for the open-loop system, we have

E t sE s s
Js b K K R

D
st s s m b a

( ) ( )= =
+ + /







→∞ → →

lim lim lim  
1

 
0 0

D
b K K Rm b a

ω ( )=
+ /

= − ∞ .0  (4.27)

The closed-loop speed control system is shown in block diagram form in Figure 4.9. 
The closed-loop system is shown in signal-flow graph and block diagram form in  
 Fig ure  4.10, where  ( ) ( ) ( )= / = / +G s K K R G s Js ba m a ,   1 ,1 2  and ( ) = + /H s K K Kt b a .  
The error, E s sω( ) ( )= − , of the closed-loop system of Figure 4.10 is:

 E s s
G s

G s G s H s
T sdω( ) ( ) ( )

( ) ( ) ( )
( )= − =

+1
  .2

1 2
 (4.28)

Then, if G G H s( )1 2  is much greater than 1 over the range of s, we obtain the approx-
imate result

 E s
G s H s

T sd( )
( ) ( )

( )≈
1

  .
1

 (4.29)

Therefore, if G s H s( ) ( )1  is made sufficiently large, the effect of the disturbance can 
be decreased by closed-loop feedback. Note that

G s H s
K K

R
K

K
K

K K K
R

a m

a
t

b

a

a m t

a
( ) ( ) = +









 ≈  ,1

-

+

-

+ -

+
R(s)

1
Js + b

Km

Ra

Vt(s)

Ampli�er
Ea(s)

Ka

Kb

Kt

Tm(s)

Td(s)

TL(s)
v(s)

TachometerFIGURE 4.9
Closed-loop speed 
tachometer control 
system.

M04_DORF2374_14_GE_C04.indd   266M04_DORF2374_14_GE_C04.indd   266 17/09/21   2:18 PM17/09/21   2:18 PM



Section 4.4  Disturbance Signals in a Feedback Control System 267

since K Ka b� .  Thus, we seek a large amplifier gain, Ka , while minimizing Ra .  The 
error for the system shown in Figure 4.10 is

E s R s sω( ) ( ) ( )= − ,

and R s sdω( ) ( )= ,  the desired speed. Let R s( ) = 0  and examine sω( ) yielding

 s
Js b K R K K K

T s
m a t a b

dω
( )

( )
( )

( )=
−

+ + / +
1

  .  (4.30)

The steady-state output is obtained by utilizing the final-value theorem, and we 
have

 t s s
b K R K K K

D
t s m a t a b

ω ω
( )

( ) ( )
( )

= =
−

+ / +→∞ →
lim lim( )

1
  ;

0
 (4.31)

when the amplifier gain Ka  is sufficiently high, we have

 
R

K K K
Da

a m t
cω ω( ) ( )∞ ≈

−
= ∞  .  (4.32)

The ratio of closed-loop to open-loop steady-state speed output due to an undesired 
disturbance is

 
R b K K

K K K
c a m b

a m t

ω
ω

( )
( )
∞
∞

=
+

0
 (4.33)

and is usually less than 0.02.

Measurement Noise Attenuation
When R s T sd( ) ( )= = 0, it follows from Equation (4.4) that

E s C s N s
L s

L s
N s( ) ( ) ( ) ( )

( )
( )= =

+1
  .

(b)(a)

R(s)
Ea(s)

-

+ -

+
G2(s)

Td(s)

G1(s)

H(s)

v(s)

Td(s)

-1

- H(s)

R(s)
G2(s)G1(s)1 Ea(s)

v(s)

FIGURE 4.10 Closed-loop system. (a) Signal-flow graph model. (b) Block diagram model.
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268 Chapter 4  Feedback Control System Characteristics

As the loop gain L s( ) decreases, the effect of N s( ) on the tracking error decreases. 
In other words, the complementary sensitivity function C s( ) is small when the loop 
gain L s( ) is small. If we design G sc ( ) such that L s �( ) 1, then the noise is attenu-
ated because

C s L s( ) ( )≈ .

We see that small loop gain leads to good noise attenuation. More precisely, for 
effective measurement noise attenuation, we need a small loop gain over the fre-
quencies associated with the expected noise signals.

In practice, measurement noise signals are often high frequency. Thus we want 
the loop gain to be low at high frequencies. This is equivalent to a small comple-
mentary sensitivity function at high frequencies. The separation of disturbances 
(at low frequencies) and measurement noise (at high frequencies) is very fortunate  
because it gives the control system designer a way to approach the design process: 
the controller should be high gain at low frequencies and low gain at high frequen-
cies. Remember that by low and high we mean that the loop gain magnitude is 
low/high at the various high/low frequencies. It is not always the case that the dis-
turbances are low frequency or that the measurement noise is high frequency. If 
the frequency separation does not exist, the design process usually becomes more 
involved (for example, we may have to use notch filters to reject disturbances at 
known high  frequencies). A noise signal that is prevalent in many systems is the 
noise generated by the measurement sensor. This noise, N s( ), can be represented as 
shown in Figure 4.4. The effect of the noise on the output is

 Y s
G s G s
G s G s

N sc

c
( ) ( ) ( )

( ) ( )
( )=

−
+1

  ,  (4.34)

which is approximately

 Y s N s�( ) ( )− ,  (4.35)

for large loop gain L s G s G sc( ) ( ) ( )= . This is consistent with the earlier discussion 
that smaller loop gain leads to measurement noise attentuation. Clearly, the designer 
must shape the loop gain appropriately.

The equivalency of sensitivity, SG
T , and the response of the closed-loop system 

tracking error to a reference input can be illustrated by considering Figure 4.4. The 
sensitivity of the system to G s( ) is

 
( ) ( ) ( )

=
+

=
+

S
G s G s L sG

TT

c

1
1

1
1

.  (4.36)

The effect of the reference on the tracking error (with T sd ( ) = 0 and N s( ) = 0) is

 
E s
R s G s G s L sc

( )
( ) ( ) ( ) ( )

=
+

=
+

1
1

1
1

. (4.37)

In both cases, we find that the undesired effects can be alleviated by increasing 
the loop gain. Feedback in control systems primarily reduces the sensitivity of the 
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Section 4.5  Control of the Transient Response 269

system to parameter variations and the effect of disturbance inputs. Note that the 
measures taken to reduce the effects of parameter variations or disturbances are 
equivalent, and fortunately, they reduce simultaneously. As a final illustration, con-
sider the effect of the noise on the tracking error,

 
E s
T s

G s G s
G s G s

L s
L sd

c

c

( )
( )

( ) ( )
( ) ( )

( )
( )

=
+

=
+1 1

. (4.38)

We find that the undesired effects of measurement noise can be alleviated by  
decreasing the loop gain. Keeping in mind the relationship

S s C s( ) ( )+ = 1,

the trade-off in the design process is evident.

4.5 CONTROL OF THE TRANSIENT RESPONSE

One of the most important characteristics of control systems is their transient 
 response. The transient response is the response of a system as a function of time 
before steady-state. Because the purpose of control systems is to provide a desired 
response, the transient response often must be adjusted until it is satisfactory. If an 
open-loop control system does not provide a satisfactory response, then the loop 
transfer function, G s G sc ( ) ( ), must be adjusted. To make this concept more compre-
hensible, consider a specific control system which may be operated in an open- or 
closed-loop manner. A speed control system, as shown in Figure 4.11, is often used 
in industrial processes to move materials and products. The transfer function of the 
open-loop system (without feedback) is given by

 
s

V s
G s

K
sa

ω
τ

( )
( )

( )= =
+ 1

,1

1
 (4.39)

where

K
K

R b K K
R J

R b K K
m

a b m

a

a b m
τ=

+
=

+
and .1 1

-

+
k2

Ra

Va

Ia

Speed
v(t)

J, b
Load

if = Constant �eld current

EFIGURE 4.11
Open-loop speed 
control system 
(without feedback).
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270 Chapter 4  Feedback Control System Characteristics

In the case of a steel mill, the inertia of the rolls is quite large, and a large 
 armature-controlled motor is required. If the steel rolls are subjected to a step command

 R s
k E

s
( ) = ,2  (4.40)

the output response of the open-loop control system shown in Figure 4.12(a)

 s K G s R saω( ) ( ) ( )= .  (4.41)

The transient speed change is then

 t K K k E ea
tω ( )( ) ( )= − τ−1 .1 2
/ 1  (4.42)

If this transient response is too slow, we must choose another motor with a 
different time constant τ ,1  if possible. However, because τ1  is dominated by the 
load inertia, J, it may not be possible to achieve much alteration of the transient 
response.

A closed-loop speed control system is easily obtained by using a tachometer 
to generate a voltage proportional to the speed, as shown in Figure 4.12(b). This 
 voltage is subtracted from the potentiometer voltage and amplified as shown in 
Figure 4.12. The closed-loop transfer function is

 
s

R s
K G s
K K G s

K K
s K K K

a

a t

a

a t

ω τ
τ

( )
( )

( )
( ) ( )

=
+

=
/

+ + /1 1
.1 1

1 1
 (4.43)

The amplifier gain, Ka , may be adjusted to meet the required transient response 
specifications. Also, the tachometer gain constant, Kt ,  may be varied, if necessary.

The transient response to a step change in the input command is

 t
K K
K K K

k E ea

a t

ptω ( )( ) ( )=
+

− −
1

  1 ,1

1
2  (4.44)

(a)

Speed
v(s)

Ampli�er
Ka

Va(s) Motor
G(s)

R(s) = k2E
s

(b)

-

+ Speed
v(s)

Ampli�er
Ka

Va(s)

Vt(s)

Motor
G(s)

Tachometer
Kt

R(s) = k2E
s

FIGURE 4.12
(a) Open-loop 
speed control 
 system.  
(b) Closed-loop 
speed control 
system.
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Section 4.5  Control of the Transient Response 271

where p K K Ka t τ( )= +1 / .1 1  Because the load inertia is assumed to be very large, 
we alter the response by increasing Ka . Thus, we have the approximate response

 t
K

k E
K K K t

t

a tω
τ

( ) ( )
( )

≈ −
−





















1
  1 exp2

1

1
. (4.45)

For a typical application, the open-loop pole might be 1/ 0.10,1τ =  whereas the 
closed-loop pole could be at least K K Ka t τ( ) =/ 10,1 1  a factor of one hundred in 
the improvement of the speed of response. To attain the gain K K Ka t ,1  the am-
plifier gain Ka  must be reasonably large, and the armature voltage signal to the 
motor and its associated torque signal must be larger for the closed-loop than for 
the open-loop operation. Therefore, a higher-power motor will be required to avoid 
saturation of the motor. The responses of the closed-loop system and the open-loop 
system are shown in Figure 4.13. Note the rapid response of the closed-loop system 
relative to the open-loop system.

While we are considering this speed control system, it will be worthwhile to  
determine the sensitivity of the open- and closed-loop systems. As before, the sensitiv-
ity of the open-loop system to a variation in the motor constant or the potentiometer 
constant k2 is unity. The sensitivity of the closed-loop system to a variation in Km  is

S S S
s

s K K KK
T

G
T

K
G

a t
m m

τ
τ

( )
( )

= ≈
+ /

+ + /
[ 1 ]

1
.1

1 1

Using the typical values given in the previous paragraph, we have

( )
≈

+
+

S
s
sK

TT
m

0.10
10

.

We find that the sensitivity is a function of s and must be evaluated for various 
values of frequency. This type of frequency analysis is straightforward but will 

Closed-loop

Open-loop
(without feedback)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

v
(t

)

K
1k

2
E

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time (s)

FIGURE 4.13
The response of 
the open-loop and 
closed-loop speed 
control system 
when τ = 10  and 
K K Ka t = 100.1  The 
time to reach 98% 
of the final value for 
the open-loop and 
closed-loop  system 
is 40 seconds and 
0.4 seconds, 
respectively.
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272 Chapter 4  Feedback Control System Characteristics

be deferred until a later chapter. However, it is clearly seen that at a specific low 
 frequency—for example, s j jω= = 1—the magnitude of the sensitivity is approxi-
mately ≅SK

T
m

0.1.

4.6 STEADY-STATE ERROR

A feedback control system provides the engineer with the ability to adjust the tran-
sient response. In addition, as we have seen, the sensitivity of the system and the 
effect of disturbances can be reduced significantly. However, as a further require-
ment, we must examine and compare the final steady-state error for an open-loop 
and a closed-loop system. The steady-state error is the error after the transient  
response has decayed, leaving only the continuous response.

The error of the open-loop control system shown in Figure 4.3 is

 E s R s Y s G s G s R sc( ) ( ) ( ) ( ) ( ) ( )= − = −(1 ) ,0  (4.46)

when T sd ( ) = 0. Figure 4.4 shows the closed-loop system. When T sd ( ) = 0 and 
N s( ) = 0, and we let H s( ) = 1,  the tracking error is given by

 E s
G s G s

R sc
c

( )
( ) ( )

( )=
+

1
1

  . (4.47)

To calculate the steady-state error, we use the final-value theorem

 e t sE s
t s

( ) ( )=
→∞ →
lim lim .

0
 (4.48)

Therefore, using a unit step input as a comparable input, we obtain for the open-
loop system

 
lim 1

1
lim 1

1 (0) (0).
0 0

e s G s G s
s

G s G s

G G

o
s

c
s

c

c

( ) ( )( ) ( ) ( ) ( ) ( )∞ = −






 = −

= −
→ →

 (4.49)

For the closed-loop system we have

 ( )
( ) ( ) ( ) ( )

∞ =
+
















 =

+→
e s

G s G s s G G
c

s c c
lim

1
1

1 1
1 0 0

.
0

 (4.50)

The value of G s( )c G s( ) when s = 0 is often called the DC gain and is normally 
greater than one. Therefore, the open-loop control system will usually have a 
steady-state error of significant magnitude. By contrast, the closed-loop system with 
a reasonably large DC loop gain L G Gc( ) ( ) ( )=0 0 0  will have a small steady-state 
error.

Upon examination of Equation (4.49), we note that the open-loop control sys-
tem can possess a zero steady-state error by adjusting and calibrating the systems 
DC gain, G G( ) ( )0 0c , so that G Gc ( ) ( ) =0 0 1. Therefore, we may logically ask, What 
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Section 4.6  Steady-State Error 273

is the advantage of the closed-loop system in this case? To answer this  question, we 
return to the concept of the sensitivity of the system to parameter uncertainty in 
G s( ) and changes over time in those parameters. In the open-loop control system, 
we may calibrate the system so that G Gc ( ) ( ) =0 0 1, but during the operation of the 
system, it is inevitable that the parameters of G s( ) will change due to environmen-
tal changes and that the DC gain of the system will no longer be equal to 1. Because 
it is an open-loop control system, the steady-state error will not equal zero. By con-
trast, the closed-loop feedback system continually monitors the steady-state error 
and provides an actuating signal to reduce the steady-state error. Because systems 
are susceptible to parameter drift, environmental effects, and  calibration errors, 
negative feedback provides benefits.

The advantage of the closed-loop system is that it reduces the steady-state error 
 resulting from parameter changes and calibration errors. This may be illustrated by 
an example. Consider a unity feedback system with a process transfer function and 
controller

 G s
K

s
G s

K
s

c
a

τ τ
( ) ( )=

+
=

+1
  and 

1
,

1
 (4.51)

respectively. Which could represent a thermal control process, a voltage regulator, or 
a water-level control process. For a specific setting of the desired input variable, which 
may be represented by the normalized unit step input function, we have ( ) = /R s s1 .  
Then the steady-state error of the open-loop system is, as in Equation (4.49),

 e G G KKc a( ) ( ) ( )∞ = − = −1 0 0 10  (4.52)

when a consistent set of dimensional units is utilized for R s( ) and KKa. The error 
for the closed-loop system is

E s R s T s R sc ( ) ( ) ( ) ( )= −

where ( ) ( ) ( ) ( ) ( )= / +T s G s G s G s G sc c(1 ). The steady-state error is

e s T s
s

Tc
s

{ }( ) ( ) ( )∞ = − = −
→

lim 1
1

1 0 .
0

Then we have

 e
KK

KK KK
c

a

a a
( )∞ = −

+
=

+
1

1
1

1
.  (4.53)

For the open-loop control system, we would calibrate the system so that KKa = 1 
and the steady-state error is zero. For the closed-loop system, we would set a large 
gain KKa. If KKa = 100, the closed-loop system steady-state error is ( )∞ = /ec 1 101.

If the process gain drifts or changes by 0.1∆ / =K K  (a 10% change), the mag-
nitude of the open-loop steady-state error is 0.1.( )∆ ∞ =eo  Then the percent 
change from the calibrated setting is

 
( )

( )
∆ ∞

=
e

r t
o 0.10

1
,  (4.54)
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274 Chapter 4  Feedback Control System Characteristics

or 10%. By contrast, the steady-state error of the closed-loop system, with 
K K∆ =/ 0.1, is ec ( )∞ = 1/91 if the gain decreases. Thus, the change is

 ec ( )∆ ∞ = −
1

101
1
91

, (4.55)

and the relative change is

 
( )

( )
∆ ∞

=
e
r t
c 0.0011, (4.56)

or 0.11%. This is a significant improvement, since the closed-loop relative change is 
two orders of magnitude lower than that of the open-loop system.

4.7 THE COST OF FEEDBACK

The advantages of using feedback control have an attendant cost. The first cost of feed-
back is an increased number of components and complexity in the system. To add the 
feedback, it is necessary to consider several feedback components; the  measurement 
component (sensor) is the key one. The sensor is often the most expensive component 
in a control system. Furthermore, the sensor introduces noise into the system.

The second cost of feedback is the loss of gain. For example, in a single-loop 
system, the loop gain is G s G sc ( ) ( ) and is reduced to ( ) ( ) ( ) ( )+G s G s G s G s/(1 )c c  in  
a unity negative feedback system. The closed-loop gain is smaller by a factor of 

( ) ( )+ G s G s1/ (1 ),c  which is exactly the factor that reduces the sensitivity of the 
system to parameter variations and disturbances. Usually, we have extra loop gain 
available, and we are more than willing to trade it for increased control of the sys-
tem response.

The final cost of feedback is the introduction of the possibility of instability. 
Even when the open-loop system is stable, the closed-loop system may not be 
 always stable.

The addition of feedback to dynamic systems causes more challenges for the 
designer. However, for most cases, the advantages far outweigh the disadvantages, 
and a feedback system is desirable. Therefore, it is necessary to consider the addi-
tional complexity and the problem of stability when designing a control system.

We want the output of the system, Y s( ), to equal the input, R s( ). We might 
ask,  Why not set G s G sc ( ) ( ) = 1? (See Figure 4.3, assuming T sd ( ) = 0.) In other 
words, why not let G sc ( ) be the inverse of the process G s( ). The answer to this 
question becomes apparent once we recall that the process G s( ) represents a real 
process and possesses dynamics that may not appear directly in the transfer func-
tion model. Additionally, the parameter in G s( ) may be uncertain or vary with 
time. Hence, we cannot perfectly set G s G sc ( ) ( ) = 1 in practice. There are other 
issues that also arise, thus it is not advisable to design the open-loop  control system 
in this fashion.
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4.8 DESIGN EXAMPLES

In this section we present two illustrative examples: the English Channel boring 
machine and a blood pressure control problem during anesthesia. The English 
Channel boring machine example focuses on the closed-loop system response to 
disturbances. The example on blood pressure control is a more in-depth look at the 
control design problem. Since patient models in the form of transfer functions are 
difficult to obtain from basic biological and physical principles, a different approach 
using measured data is discussed. The positive impact of closed-loop feedback con-
trol is illustrated in the context of design.

EXAMPLE 4.2 English Channel boring machines

The tunnel under the English Channel from France to Great Britain is 23.5 miles 
long and is bored 250 feet below sea level at its lowest-point. The tunnel is a critical 
link between Europe and Great Britain, making it possible to travel from London 
to Paris in 2 hours and 15 minutes using the Channel Tunnel Rail Link (known as 
High Speed 1).

The boring machines, operating from both ends of the channel, bored toward 
the middle. To link up accurately in the middle of the channel, a laser guidance 
system kept the machines precisely aligned. A model of the boring machine control 
is shown in Figure 4.14, where Y s( ) is the actual angle of direction of travel of the 
boring machine and R s( ) is the desired angle. The effect of load on the machine is 
represented by the disturbance, T sd ( ).

The design objective is to select the gain K so that the response to input angle 
changes is desirable while we maintain minimal error due to the disturbance. The 
output due to the two inputs is

 Y s
K s

s s K
R s

s s K
T sd( ) ( ) ( )=

+
+ +

+
+ +

11
12

 
1

12
  .

2 2
 (4.57)

Thus, to reduce the effect of the disturbance, we wish to set the gain greater than 10. 
When we select K = 100  and let the disturbance be zero, we have the step response 
for a unit step input r t( ), as shown in Figure 4.15. When the input r t( ) = 0  and we 
determine the response to the unit step disturbance, we obtain y t( ) as shown in 
Figure 4.15. The effect of the disturbance is quite small. If we set the gain K equal 
to 20, we obtain the responses of y t( ) due to a unit step input r t( ) and disturbance 

1
s(s  1)

Ea(s)

Gc(s)
Controller

Td(s)

R(s)
Desired
angle

K  11s
Y(s)

Angle

G(s)
Boring machine

+
+FIGURE 4.14

A block diagram 
model of a boring 
machine control 
system.
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276 Chapter 4  Feedback Control System Characteristics

T td ( ) displayed together in Figure 4.16. When K = 100, the percent overshoot is 
22% and the settling time is 0.7 s. When K = 20, the percent overshoot is 3.9% and 
the settling time is 0.9 s.

The steady-state error of the system to a unit step input ( ) =R s s1/  is

 ( )

( )

=
+

+
+









=
→∞ →

e t s
K s
s s s

t s
lim lim   

1

1
11

1
 

1
0.

0
 (4.58)

The steady-state value of y t( ) when the disturbance is a unit step, ( ) =T s sd 1/ , 
and the desired value is r t( ) = 0  is

 lim lim
1
12

1
.

0
y t

s s K Kt s
( )

( )
=

+ +












=
→∞ →

 (4.59)

Thus, the steady-state value is 0.01 and 0.05 for K = 100  and 20, respectively.
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The response y t( )  
to a unit input step 
input (solid line) and 
a unit disturbance 
step (dashed line) 
with T s sd ( ) = 1 /  
for K = 100.
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Finally, we examine the sensitivity of the system to a change in the process G s( ) 
using Equation (4.12). Then

 
( )

( )
=

+
+ +

S
s s

s s KG
T 1

12
.  (4.60)

For low frequencies ( 1),s <  the sensitivity can be approximated by

 �S
s
KG

T ,  (4.61)

where K ≥ 20. Thus, the sensitivity of the system is reduced by increasing the gain, K.  
In this case, we choose K = 20 for a reasonable design compromise. ■

EXAMPLE 4.3 Blood pressure control during anesthesia

The objectives of anethesia are to eliminate pain, awareness, and natural reflexes so 
that surgery can be conducted safely. Before about 150 years ago, alcohol, opium, 
and cannabis were used to achieve these goals, but they proved inadequate [23]. 
Pain relief was insufficient both in magnitude and duration; too little pain medica-
tion and the patient felt great pain, too much medication and the patient died or 
became comatose. In the 1850s ether was used successfully in the United States in 
tooth extractions, and shortly thereafter other means of achieving unconsciousness 
safely were developed, including the use of chloroform and nitrous oxide.

In a modern operating room, the depth of anesthesia is the responsibility of the 
anesthetist. Many vital parameters, such as blood pressure, heart rate, temperature, 
blood oxygenation, and exhaled carbon dioxide, are controlled within acceptable 
bounds by the anesthetist. Of course, to ensure patient safety, adequate anesthesia 
must be maintained during the entire surgical procedure. Any assistance that the 
anesthetist can obtain automatically will increase the safety margins by freeing the 
anesthetist to attend to other functions not easily automated. This is an example of 
human computer interaction for the overall control of a process. Clearly, patient 
safety is the ultimate objective. Our control goal then is to develop an automated 
system to regulate the depth of anesthesia. This function is amenable to automatic 
control and in fact is in routine use in clinical applications [24, 25].

We consider how to measure the depth of anesthesia. Many anesthetists 
 regard mean arterial pressure (MAP) as the most reliable measure of the depth of 
 anesthesia [26]. The level of the MAP serves as a guide for the delivery of inhaled 
 anesthesia. Based on clinical experience and the procedures followed by the anes-
thetist, we determine that the variable to be controlled is the mean arterial pressure.

The elements of the control system design process emphasized in this example 
are illustrated in Figure 4.17. From the control system design perspective, the con-
trol goal can be stated in more concrete terms:

Control Goal
Regulate the mean arterial pressure to any desired set-point and maintain 
the prescribed set-point in the presence of unwanted disturbances.
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278 Chapter 4  Feedback Control System Characteristics

Associated with the stated control goal, we identify the variable to be controlled:

Variable to Be Controlled
Mean arterial pressure (MAP).

Because it is our desire to develop a system that will be used in clinical appli-
cations, it is essential to establish realistic design specifications. In general terms 
the control system should have minimal complexity while satisfying the control 
specifications. Minimal complexity translates into increased system reliability and 
decreased cost.

The closed-loop system should respond rapidly and smoothly to changes in the 
MAP set-point (made by the anesthetist) without excessive overshoot. The closed-
loop system should minimize the effects of unwanted disturbances. There are two 
important categories of disturbances: surgical disturbances, such as skin incisions 
and measurement errors, such as calibration errors and random stochastic noise. 

Three PID controllers given.
See Equation (4.65) and Table 4.1.

Regulate the mean arterial
pressure to any given set point.

Mean arterial pressure.

Five speci cations:
    DS1: settling time
    DS2: percent overshoot
    DS3: tracking error
    DS4: disturbance rejection
    DS5: system sensitivity 

See Figure  4.18.
   Controller, pump, patient,
   and sensor.

See Equations: (4.62)–(4.64).

This chapter deals
with analysis only.

Establish the system con guration

Obtain a model of the process, the
actuator, and the sensor

If the performance meets the speci cations,
then  nalize the design.

If the performance does not meet the
speci cations, then iterate the con guration. 

Identify the variables to be controlled

Establish the control goals

Topics emphasized in this example

Write the speci cations

Optimize the parameters and
analyze the performance

Describe a controller and select key
parameters to be adjusted

FIGURE 4.17 Elements of the control system design process emphasized in the blood pressure 
control example.
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For example, a skin incision can increase the MAP rapidly by 10 mmHg [26]. Finally, 
since we want to apply the same control system to many different patients and we 
cannot (for practical reasons) have a separate model for each patient, we must have 
a closed-loop system that is insensitive to changes in the process parameters (that is, 
it meets the specifications for many different people).

Based on clinical experience [24], we can explicitly state the control specifica-
tions as follows:

Control Design Specifications
DS1  Settling time less than 20 minutes for a 10% step change from the MAP set-point.

DS2  Percent overshoot less than 15% for a 10% step change from the MAP set-point.

DS3 Zero steady-state tracking error to a step change from the MAP set-point.

DS4  Zero steady-state error to a step surgical disturbance input (of magnitude 
d t 50( ) ≤ ) with a maximum response less than ±5% of the MAP set-point.

DS5 Minimum sensitivity to process parameter changes.

We cover the notion of percent overshoot (DS1) and settling time (DS2) more thor-
oughly in Chapter 5. They fall more naturally in the category of system  performance. 
The remaining three design specifications, DS3–DS5, covering steady-state track-
ing errors (DS3), disturbance rejection (DS4), and system sensitivity to parameter 
changes (DS5) are the main topics of this chapter. The last specification, DS5, is 
somewhat vague; however, this is a characteristic of many real-world specifications. 
In the system configuration, Figure 4.18, we identify the major system elements as 
the controller, anesthesia pump/vaporizer, sensor, and patient.

The system input R s( ) is the desired mean arterial pressure change, and the 
output Y s( ) is the actual pressure change. The difference between the desired 
and the measured blood pressure change forms a signal used by the controller to  
determine value settings to the pump/vaporizer that delivers anesthesia vapor to 
the patient.

+

-

-
+

Surgical
disturbance

Td(s)

R(s)
Desired blood

pressure

Y(s)
Actual blood

pressure

Controller

Gc(s)

Patient

G(s)

+

+

N(s)
Measurement

noiseSensor

H(s)

Pump

Gp(s)

Measured blood
pressure change

V(s)

U(s)

Valve
setting

Vapor

FIGURE 4.18 Blood pressure control system configuration.
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280 Chapter 4  Feedback Control System Characteristics

The model of the pump/vaporizer depends directly on the mechanical design. 
We will assume a simple pump/vaporizer, where the rate of change of the output 
vapor is equal to the input valve setting, or

u t t˙ .υ( ) ( )=

The transfer function of the pump is thus given by

 G s
U s
V s s

p( ) ( )
( )

= =
1

. (4.62)

This is equivalent to saying that, from an input–output perspective, the pump has 
the impulse response

h t t( ) = ≥1 0.

Developing an accurate model of a patient is much more involved. Because 
the physiological systems in the patient (especially in a sick patient) are not eas-
ily modeled, a modeling procedure based on knowledge of the underlying physical 
processes is not practical. Even if such a model could be developed, it would, in 
general, be a nonlinear, time-varying, multi-input, multi-output model. This type 
of model is not directly applicable here in our linear, time-invariant, single-input, 
single-output system setting.

On the other hand, if we view the patient as a system and take an input–output 
perspective, we can use the familiar concept of an impulse response. Then if we 
restrict ourselves to small changes in blood pressure from a given set-point (such as 
100 mmHg), we might make the case that in a small region around the set-point the 
patient behaves in a linear time-invariant fashion. This approach fits well into our 
requirement to maintain the blood pressure around a given set-point (or baseline). 
The impulse response approach to modeling the patient response to anesthesia has 
been used successfully in the past [27].

Suppose that we take a black-box approach and obtain the impulse response 
in Figure 4.19 for a hypothetical patient. Notice that the impulse response initially 
has a time delay. This reflects the fact that it takes a finite amount of time for the 
patient MAP to respond to the infusion of anesthesia vapor. We ignore the time- 
delay in our design and analysis, but we do so with caution. In subsequent chapters 
we will learn to handle time delays. We keep in mind that the delay does exist and 
should be considered in the analysis at some point.

A reasonable fit of the data shown in Figure 4.19 is given by

y t te tpt( ) = ≥− 0,

where p = 2 and time t( ) is measured in minutes. Different patients are associated 
with different values of the parameter p. The corresponding transfer function is

 G s
s p( )

( ) =
+

1
.

2
 (4.63)

For the sensor we assume a perfect noise-free measurement and

 H s( ) = 1. (4.64)

Therefore, we have a unity feedback system.
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A good controller for this application is a proportional-integral-derivative 
(PID) controller:

 G s K sK
K
s

K s K s K
s

c P D
I D P I( ) = + + =

+ +
,

2
 (4.65)

where K KP D,   , and KI  are the controller gains to be determined to satisfy all  
design specifications. The selected key parameters are as follows:

Select Key Tuning Parameters
Controller gains K KP D,   ,  and KI .

We begin the analysis by considering the steady-state errors. The tracking error 
(shown in Figure 4.18 with T sd ( ) = 0 and N s( ) = 0) is

E s R s Y s
G s G s G s

R s
c p

( ) ( ) ( )
( ) ( ) ( )

( )= − =
+

1
1

  ,

or

E s
s ps p s

s ps p K s K s K
R s

D P I( )
( ) ( )=

+ +

+ + + + +

2

2
  .

4 3 2 2

4 3 2 2

Using the final-value theorem, we determine that the steady-state tracking error is

sE s
R s ps p s

s ps p K s K s Ks s D P I

( )
( )

( ) =
+ +

+ + + + +
=

→ →
lim lim  

2

2
0,

0 0

0
4 3 2 2

4 3 2 2
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FIGURE 4.19
Mean arterial 
pressure (MAP) 
impulse response 
for a  hypothetical 
patient.
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282 Chapter 4  Feedback Control System Characteristics

where ( ) = /R s R s0  is a step input of magnitude R .0  Therefore,

e t
t

( ) =
→∞
lim 0.

With a PID controller, we expect a zero steady-state tracking error (to a step input) 
for any nonzero values of K KP D,   , and KI . The integral term, K sI/ , in the PID 
controller is the reason that the steady-state error to a unit step is zero. Thus design 
specification DS3 is satisfied.

When considering the effect of a step disturbance input, we let R s( ) = 0  and 
N s( ) = 0. We want the steady-state output Y s( ) to be zero for a step disturbance. 
The transfer function from the disturbance T sd ( ) to the output Y s( ) is

Y s
G s

G s G s G s
T s

c p
d( ) ( )

( ) ( ) ( )
( )=

−
+1

 

s

s ps p K s K s K
T s

D P I
d

( )
( )=

−

+ + + + +2
  .

2

4 3 2 2

When

T s
D
s

d ( ) = ,0

we find that

sY s
D s

s ps p K s K s Ks s D P I( )
( ) =

−
+ + + + +

=
→ →

lim lim  
2

0.
0 0

0
2

4 3 2 2

Therefore,

y t
t

( ) =
→∞
lim 0.

Thus a step disturbance of magnitude D0  will produce no output in the steady-state, 
as desired.

The sensitivity of the closed-loop transfer function to changes in p is given by

=S S Sp
T

G
TT

p
G .

We compute Sp
G as follows:

( )
( )

=
∂

∂
=

−
+

S
G s

p
p

G s
p

s p
p
G  

2
,

and

1
1 2

.
2 2

4 3 2 2
S

G s G s G s

s s p

s ps p K s K s K
G
T

c p D P I( )
( )

( ) ( ) ( )
=

+
=

+

+ + + + +

Therefore,

 
2

2
.

2

4 3 2 2
S S S

p s p s

s ps p K s K s K
p
T

G
T

p
G

D P I( )
( )

= = −
+

+ + + + +
 (4.66)

M04_DORF2374_14_GE_C04.indd   282M04_DORF2374_14_GE_C04.indd   282 17/09/21   2:18 PM17/09/21   2:18 PM



Section 4.8  Design Examples 283

We must evaluate the sensitivity function Sp
T ,  at various values of frequency. For 

low frequencies we can approximate the system sensitivity Sp
T  by

S
p s
K

p
T

I
≈

2
.

2 2

So at low frequencies and for a given p we can reduce the system sensitivity to vari-
ations in p by increasing the PID gain, KI . Suppose that three PID gain sets have 
been proposed, as shown in Table 4.1. With p = 2 and the PID gains given as the 
cases 1–3 in Table 4.1, we can plot the magnitude of the sensitivity Sp

T  as a function 
of frequency for each PID controller. The result is shown in Figure 4.20. We see that 
by using the PID 3 controller with the gains K KP D= =6,   4, and KI = 4, we have 
the smallest system sensitivity (at low frequencies) to changes in the process param-
eter, p. PID 3 is the controller with the largest gain KI . As the frequency increases 
we see in Figure 4.20 that the sensitivity increases, and that PID 3 has the highest 
peak sensitivity.

Table 4.1 PID Controller Gains and System Performance Results

 PID KP KD KI

Input response 
overshoot (%)

Settling  
time (min)

Disturbance response 
overshoot (%)

1 6 4 1 14.0 10.9 5.25
2 5 7 2 14.2  8.7 4.39
3 6 4 4 39.7 11.1 5.16

10-1 100 101
0

0.5
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1.5
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2.5

3

Frequency (rad/min)

Se
ns

iti
vi

ty
 m

ag
ni

tu
de

PID 1

PID 2

PID 3

FIGURE 4.20
System sensitivity 
to variations in the 
parameter p.
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284 Chapter 4  Feedback Control System Characteristics

Now we consider the transient response. Suppose we want to reduce the MAP 
by a 10% step change. The associated input is

R s
R
s s

( ) = =
10

.0

The step response for each PID controller is shown in Figure 4.21. PID 1 and PID 2 
meet the settling time and overshoot specifications; however PID 3 has excessive 
overshoot. The overshoot is the amount the system output exceeds the desired steady-
state response. In this case the desired steady-state response is a 10% decrease in the 
baseline MAP. When a 15% overshoot is realized, the MAP is decreased by 11.5%, 
as illustrated in Figure 4.21. The settling time is the time required for the system out-
put to settle within a certain percentage (for example, 2%) of the desired steady-state 
output amplitude. We cover the notions of overshoot and settling time more thor-
oughly in Chapter 5. The overshoot and settling times are summarized in Table 4.1.

We conclude the analysis by considering the disturbance response. From previ-
ous analysis we know that the transfer function from the disturbance input T sd ( ) to 
the output Y s( ) is

Y s
G s

G s G s G s
T s

c p
d( ) ( )

( ) ( ) ( )
( )=

−
+1

 

s
s ps p K s K s K

T s
D P I

d( )
( )=

−
+ + + + +2

  .
2

4 3 2 2

To investigate design specification DS4, we compute the disturbance step response with

T s
D
s s

d ( ) = =
50
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FIGURE 4.21
Mean arterial 
 pressure (MAP) 
step input response 
with R s s( ) = 10/ .
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Section 4.9  Control System Characteristics Using Control Design Software 285

This is the maximum magnitude disturbance ( 50).0T t Dd ( ) = =  Since any step 

disturbance of smaller magnitude (that is, ( ) = <T t Dd 500 ) will result in a smaller 
maximum output response, we need only to consider the maximum magnitude step 
disturbance input when determining whether design specification DS4 is satisfied.

The unit step disturbance for each PID controller is shown in Figure 4.22. 
Controller PID 2 meets design specification DS4 with a maximum response less 
than +−5% of the MAP set-point, while controllers PID 1 and 3 nearly meet the 
 specification. The peak output values for each controller are summarized in Table 4.1.

In summary, given the three PID controllers, we would select PID 2 as the con-
troller of choice. It meets all the design specifications while providing a reasonable 
insensitivity to changes in the plant parameter. ■

4.9 CONTROL SYSTEM CHARACTERISTICS USING CONTROL DESIGN SOFTWARE

In this section, the advantages of feedback will be illustrated with two examples. In 
the first example, we will introduce feedback control to a speed tachometer system 
in an effort to reject disturbances. The tachometer speed control system example 
can be found in Section 4.5. The reduction in system sensitivity to process varia-
tions, adjustment of the transient response, and reduction in steady-state error will 
be demonstrated using the English Channel boring machine example of Section 4.8.

EXAMPLE 4.4 Speed control system

The open-loop block diagram description of the armature-controlled DC motor 
with a load torque disturbance T sd ( ) is shown in Figure 4.8. The values for the vari-
ous parameters are given in Table 4.2. We have two inputs to our system, V sa ( ) and 
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FIGURE 4.22
Mean arterial 
pressure (MAP) 
disturbance step 
response.
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286 Chapter 4  Feedback Control System Characteristics

T sd ( ). Relying on the principle of superposition, which applies to our linear system, 
we consider each input separately. To investigate the effects of disturbances on the 
system, we let V sa ( ) = 0  and consider only the disturbance T sd ( ). Conversely, to 
investigate the response of the system to a reference input, we let T sd ( ) = 0 and 
consider only the input V sa ( ).

The closed-loop speed tachometer control system block diagram is shown in 
Figure 4.9. The values for Ka  and Kt  are given in Table 4.2.

If our system displays good disturbance rejection, then we expect the 
 disturbance T sd ( ) to have a small effect on the output sω( ). Consider the open-loop 
 system in Figure 4.8 first. We can compute the transfer function from T sd ( ) to sω( ) 
and evaluate the output response to a unit step disturbance (that is, T s sd ( ) = 1 / ). 
The time response to a unit step disturbance is shown in Figure 4.23(a). The script 
shown in Figure 4.23(b) is used to analyze the open-loop speed tachometer system.

Change sign of transfer function since the
disturbance has negative sign in the diagram.

Compute response to
step disturbance.

last value of output yo.Steady-state error

(b)

(a)

Open-Loop Disturbance Step Response

Time (s)

0 1 2 3 4 5 6 7

0

- 0.1

- 0.2

- 0.3

- 0.4

- 0.5

- 0.6

- 0.7

v
0

Steady-state error

FIGURE 4.23
Analysis of the 
open-loop speed 
control system. 
(a) Response. 
(b) m-file script.

Table 4.2 Tachometer Control System Parameters

Ra Km J b Kb Ka  Kt

1 Ω 10 Nm/A 2 kg m2 0.5 Nm s 0.1 Vs 54 1 Vs
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The open-loop transfer function (from Equation (4.26)) is

ω( )
( )

=
−
+

=
s

T s sd

1
2 1.5

sys _ o,

where sys_o represents the open-loop transfer function in the script. Since our 
 desired value of tω( ) is zero (remember that V sa ( ) = 0), the steady-state error is 
just the final value of tω( ),  which we denote by toω ( ) to indicate open-loop. The 
steady-state error, shown on the plot in Figure 4.23(a), is approximately the value 
of the speed when t = 7 s. We can obtain an approximate value of the steady-state 
error by looking at the last value in the output vector oy , which we computed in 
the process of generating the plot in Figure 4.23(a). The approximate steady-state 
value of oω  is

o oω ω( ) ( )∞ ≈ = − /7 0.66 rad s.

The plot verifies that we have reached steady state.
In a similar fashion, we begin the closed-loop system analysis by computing 

the closed-loop transfer function from T sd ( ) to sω( ) and then generating the time- 
response of tω( ) to a unit step disturbance input. The output response and the script 
are shown in Figure 4.24. The closed-loop transfer function from the disturbance 
input (from Equation (4.30)) is

s
T s s

c
d

ω( )
( )

=
−

+
=

1
2 541.5

sys _ .

As before, the steady-state error is just the final value of tω( ),  which we denote 
by tcω ( ) to indicate that it is a closed-loop. The steady-state error is shown on the 
plot in Figure 4.24(a). We can obtain an approximate value of the steady-state 
error by looking at the last value in the output vector cy ,  which we computed in 
the process of generating the plot in Figure 4.24(a). The approximate steady-state 
value of ω  is

ω ω( ) ( )∞ ≈ = − /sc c 0.02 0.002 rad .

We generally expect that c o/ 0.02.ω ω( ) ( )∞ ∞ <  In this example, the ratio of closed-
loop to open-loop steady-state speed output due to a unit step disturbance input is

c

o

ω
ω

( )
( )
∞
∞

= 0.003.

We have achieved a remarkable improvement in disturbance rejection. It is clear 
that the addition of the negative feedback loop reduced the effect of the disturbance 
on the output. This demonstrates the disturbance rejection property of closed-loop 
feedback systems.
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288 Chapter 4  Feedback Control System Characteristics

EXAMPLE 4.5 English Channel boring machines

The block diagram description of the English Channel boring machines is shown in 
Figure 4.14. The transfer function of the output due to the two inputs is (Equation (4.57))

Y s
K s

s s K
R s

s s K
T sd( ) ( ) ( )=

+
+ +

+
+ +

11
12

 
1

12
  .

2 2

The effect of the control gain, K, on the transient response is shown in Figure 4.25 
along with the script used to generate the plots. Comparing the two plots in parts (a) 
and (b), it is apparent that decreasing K decreases the overshoot. Although it is not 
as obvious from the plots in Figure 4.25, it is also true that decreasing K increases 

Change sign of transfer function since the
disturbance has negative sign in the diagram.

Compute response to
step disturbance.

Block diagram reduction.

last value of output yc.Steady-state error

(b)

(a)

Closed-Loop Disturbance Step Response
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FIGURE 4.24
Analysis of the 
closed-loop speed 
control system. 
(a) Response. 
(b) m-file script.  ■
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the settling time. This can be verified by taking a closer look at the data used to 
generate the plots. This example demonstrates how the transient response can be 
altered by feedback control gain, K. Based on our analysis thus far, we would pre-
fer to use K = 20. Other considerations must be taken into account before we can 
establish the final design.

(c)

Closed-loop
transfer functions.

Create subplots
with x and y 
axis labels.

Choose time interval.

(a)

(b)

Step Response for K = 100

y(
t)

Time (s)

0 0.2 0.4 0.6 0.8 1.2 1.41.0 1.6 1.8 2.0
0

1.0

0.5

1.5

Overshoot

Settling time

Step Response for K = 20

Time (s)

0 0.2 0.4 0.6 0.8 1.2 1.41.0 1.6 1.8 2.0
0

1.0

0.5y(
t)

Overshoot Settling time

FIGURE 4.25
The response to a 
step input when (a) 
K = 100  and (b) 
K = 20.  (c) m-file 
script.
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290 Chapter 4  Feedback Control System Characteristics

Before making the final choice of K, it is important to consider the system re-
sponse to a unit step disturbance, as shown in Figure 4.26. We see that increasing K 
reduces the steady-state response of y t( ) to the step disturbance. The steady-state 
value of y t( ) is 0.05 and 0.01 for K = 20 and 100, respectively. The steady-state 

(c)

Closed-loop
transfer functions.

Create subplots with
x and y labels.

(a)

(b)

Disturbance Response for K = 20
0.05

Disturbance Response for K = 100

y(
t)

Time (s)

0 0.5 1.0 1.5 2.0 2.5
0

0.008

0.006

0.002

0.004

0.012

0.010

Time (s)

0 0.5 1.0 1.5 2.0 2.5
0

0.04

0.03

0.02

0.01

y(
t)

FIGURE 4.26
The response to a 
step disturbance 
when (a) = 100K  
and (b) = 20.K  
(c) m-file script.
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errors, percent overshoot, and settling times (2% criteria) are summarized in 
Table 4.3. The steady-state values are predicted from the final-value theorem for a 
unit disturbance input as follows:

( )
( )

=
+ +












=

→∞ →
y t s

s s K s Kt s
lim lim

1
12

1 1
.

0

If our only design consideration is disturbance rejection, we would prefer to use 
K = 100.

We have just experienced a common trade-off situation in control system 
 design. In this particular example, increasing K leads to better disturbance rejec-
tion, whereas decreasing K leads to better performance (that is, less overshoot). 
The final decision on how to choose K rests with the designer. Although control 
design software can certainly assist in the control system design, it cannot replace 
the engineer’s decision-making capability and intuition.

The final step in the analysis is to look at the system sensitivity to changes in the 
process. The system sensitivity is given by (Equation 4.60),

( )
( )

=
+

+ +
S

s s
s s KG

T 1
12

.

We can compute the values of ( )S sG
T  for different values of s and generate a plot of the 

system sensitivity. For low frequencies, we can approximate the system sensitivity by

�S
s
KG

TT .

Increasing the gain K reduces the system sensitivity. The system sensitivity plots 
when s jω=  are shown in Figure 4.27 for K = 20. ■

4.10 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

The design of a disk drive system is an exercise in compromise and optimiza-
tion. The disk drive must accurately position the head reader while being able 
to reduce the effects of parameter changes and external shocks and vibrations. 

Table 4.3 Response of the Boring Machine Control System 
for = 20K  and = 100K

K = 20 K = 100

Step Response
 P.O. 4% 22%

 Ts  1.0 s 0.7 s

Disturbance Response

 ess
5% 1%
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292 Chapter 4  Feedback Control System Characteristics

The mechanical arm and flexure will resonate at frequencies that may be caused 
by excitations such as a shock to a notebook computer. Disturbances to the op-
eration of the disk drive include physical shocks, wear or wobble in the spindle 
bearings, and parameter changes due to component changes. In this section, we 
will examine the performance of the disk drive system in response to disturbances 
and changes in system parameters. In addition, we examine the steady-state error 
of the system for a step command and the transient response as the amplifier gain 
Ka  is adjusted.

Let us consider the system shown in Figure 4.28. This closed-loop system uses 
an amplifier with a variable gain as the controller, and the transfer functions are 

(b)

System sensitivity.

Approximate sensitivity.

Set  up vector of s = jv
to evaluate the sensitivity.

(a)

System Sensitivity to Plant Variations

Real (S)

- 0.2 0 0.2 0.4 0.6 0.8 1.0

v (rad/s)

10-1 100 101 102 103

0

0.6

0.4

0.2

10-4

10-2

100

102

A
bs

(S
)

Im
ag

(S
)

S(s) M s
K

S(s) = s(s + 1)
s2 + 12s + K

FIGURE 4.27
(a) System 
 sensitivity to plant 
variations s jω( )= .  
(b) m-file script.
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Section 4.10  Sequential Design Example: Disk Drive Read System 293

shown in Figure 4.29. First, we will determine the steady states for a unit step input, 
R s s1/ ,( ) =  when T sd ( ) = 0. When H s( ) = 1,  we obtain

E s R s Y s
K G s G s

R s
a

( ) ( ) ( )
( ) ( )

( )= − =
+

1
1

  .
1 2

Therefore,

 e t s
K G s G s st s a

( )
( ) ( )

=
+











→∞ →

lim lim
1

1
1

.
0 1 2

 (4.67)

Then the steady-state error is e ∞ =( ) 0  for a step input. This performance is ob-
tained in spite of changes in the system parameters.

Now let us determine the transient performance of the system as Ka  is adjusted. 
The closed-loop transfer function (with T sd ( ) = 0) is

T s
Y s
R s

K G s G s
K G s G s

a

a
( ) ( )

( )
( ) ( )

( ) ( )
= =

+1
1 2

1 2

 
K

s s s K
a

a
=

+ + +
5000 

1020 20000 5000
.

3 2
 (4.68)

Using the script shown in Figure 4.30(a), we obtain the response of the system for 
Ka = 10 and Ka = 80, shown in Figure 4.30(b). Clearly, the system is faster in 
 responding to the command input when Ka = 80, but the response is unacceptably 
oscillatory.

Now let us determine the effect of the disturbance ( ) = /T s sd 1  when R s( ) = 0. 
We wish to decrease the effect of the disturbance to an insignificant level. Using 

-

+ -

+
1

s(Js + b)
Km

R + Ls

V(s)
Ampli�er Coil LoadR(s)

Desired
head

position

Y(s)
Actual

position
Ka

H(s) = 1

Disturbance
Td(s)

SensorFIGURE 4.28
Control system for 
disk drive head 
reader.

-

+ -

+
R(s) G1(s) = 5000

s  + 1000
G2(s) = 1

s(s + 20)

Coil Load

Ka

Disturbance
Td (s)

Y(s)
FIGURE 4.29
Disk drive head 
control system 
with the typical 
parameters.
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294 Chapter 4  Feedback Control System Characteristics

the system of Figure 4.29, we obtain the response Y s( ) for the input T sd ( ) when 
Ka = 80 as

 Y s
G s

K G s G s
T s

a
d( ) ( )

( ) ( )
( )=

+1
  .2

1 2
 (4.69)

Using the script shown in Figure 4.31(a), we obtain the response of the system when 
Ka = 80 and ( ) = /T s sd 1 ,  as shown in Figure 4.31(b). In order to further reduce 
the effect of the disturbance, we would need to raise Ka above 80. However, the 
response to a step command r t t( ) = >1,   0 is unacceptably oscillatory. In the next 
chapter, we attempt to determine the best value for Ka , given our requirement for a 
quick, yet nonoscillatory response.

0 0.2 0.4 0.6 10.8 1.61.41.2 21.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

(a)

Select Ka.

(b)

Ka = 10. 

Ka = 80.

y
t

FIGURE 4.30
Closed-loop 
 response. (a) m-file 
script. (b) Step 
 response for 
Ka = 10  and 
Ka = 80.
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Section 4.11  Summary 295

4.11 SUMMARY

The fundamental reasons for using feedback, despite its cost and additional com-
plexity, are as follows:

1. Decrease in the sensitivity of the system to variations in the parameters of the process.

2. Improvement in the rejection of the disturbances.

3. Improvement in the attenuation of measurement noise.

4. Improvement in the reduction of the steady-state error of the system.

5. Ease of control and adjustment of the transient response of the system.

The loop gain L s G s G sc( ) ( ) ( )=  plays a fundamental role in control system 
analysis. Associated with the loop gain we can define the sensitivity and comple-
mentary sensitivity functions as

S s
L s

s
L s

L s
( )

( )
( ) ( )

( )
=

+
=

+
1

1
 and C

1
,

(a)

(b)

Select Ka.

Disturbance enters
summer with a
negative sign.

Time (s)

0 0.2 0.4 0.6 1.0 1.4 1.80.8 1.2 1.6 2.0
- 3

- 1.5

- 2

- 2.5

- 0.5

0
: 10-3

- 1

y(
t)

Ka = 80.

FIGURE 4.31
Disturbance 
step response. 
(a) m-file script. 
(b) Disturbance 
 response for 
Ka = 80.
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296 Chapter 4  Feedback Control System Characteristics

respectively. The tracking error is given by

E s S s R s S s G s T s C s N sd( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= − + .

In order to minimize the tracking error, E s( ), we desire to make S s( ) and C s( ) 
small. Because the sensitivity and complementary sensitivity functions satisfy the 
constraint

S s C s( ) ( )+ = 1,

we are faced with the fundamental trade-off in control system design between re-
jecting disturbances and reducing sensitivity to plant changes on the one hand, and 
attenuating measurement noise on the other hand.

Feedback control systems possess many beneficial characteristics. Thus, it is 
not surprising that there is a multitude of feedback control systems in industry, 
 government, and nature.

SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or False, 
Multiple Choice, and Word Match. To obtain direct feedback, check your answers with the 
answer key provided at the conclusion of the end-of-chapter problems. Use the block diagram 
in Figure 4.32 as specified in the various problem statements.

-

+ +

+
R(s) Y(s)

Controller

Gc(s)

Process

G(s)

Td(s)

Ea(s)

FIGURE 4.32 Block diagram for the Skills Check.

In the following True or False and Multiple Choice problems, circle the correct answer.

1. One of the most important characteristics of control systems is their  
transient response. True or False

2. The system sensitivity is the ratio of the change in the system transfer  
function to the change of a process transfer function for a small 
incremental change. True or False

3. A primary advantage of an open-loop control system is the ability to  
reduce the system’s sensitivity. True or False

4. A disturbance is a desired input signal that affects the system output  
signal. True or False
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5. An advantage of using feedback is a decreased sensitivity of the system 
to variations in the parameters of the process. True or False

6. The loop transfer function of the system in Figure 4.32 is

50
10

.G s G s
sc τ

( ) ( ) =
+

The sensitivity of the closed-loop system to small changes in τ  is:

a. S s
s

s
T

60
τ

τ
( ) = −

+τ

b. S s
s

T

10
τ

τ
( ) =

+τ

c. S s
s

T

60
τ

τ
( ) =

+τ

d. S s
s

s
T

10
τ

τ
( ) = −

+τ

7. Consider the two systems in Figure 4.33.

(i)

K1 K2R(s) Y(s)
-

+

0.0099

(ii)

+ +
K1 K2R(s) Y(s)

- -

0.09 0.09

FIGURE 4.33 Two feedback systems with gains K1  and K2 .

These systems have the same transfer function when K K 100.1 2= =  Which system is most 
sensitive to variations in the parameter K1? Compute the sensitivity using the nominal values 
K K 1001 2= = .

a. System (i) is more sensitive and 0.01
1

SK
T =

b. System (ii) is more sensitive and 0.1
1

SK
T =

c. System (ii) is more sensitive and 0.01
1

SK
T =

d. Both systems are equally sensitive to changes in K1.

8. Consider the closed-loop transfer function

T s
A kA
A kA

,1 2

3 4
( ) =

+
+

where A1, A2, A3, and A4  are constants. Compute the sensitivity of the system to varia-
tions in the parameter k.

a. 2 3 1 4

3 4 1 2
S

k A A A A
A kA A kAk

T ( )
( )( )

=
−

+ +

b. 2 3 1 4

3 4 1 2
S

k A A A A
A kA A kAk

T ( )
( )( )

=
+

+ +
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c. S
k A kA

A kAk
T 1 2

3 4( )
( )

=
+

+

d. S
k A kA

A kAk
T 3 4

1 2

( )
( )

=
+

+

Consider the block diagram in Figure 4.32 for Problems 9–12 where G s Kc 1( ) =  and 

G s
K

s K K1 2
( ) =

+
.

( ) =T sd 0.

9. The closed-loop transfer function is:

a. T s
KK

s K K K( )
( ) =

+ +
1
2

1 2

b. T s
KK

s K K K
1

1 2( )
( ) =

+ +

c. T s
KK

s K K K
1

1 2( )
( ) =

− +

d. T s
KK

s K Ks K K
1

2
1 1 2

( ) =
+ +

10. The sensitivity ST
K1

 of the closed-loop system to variations in K1  is:

a. S s
Ks

s K K KK
T

( )
( ) =

+ +( )1 2
21

b. S s
s

s K K KK
T

( )
( ) =

+ +
2

1 2
1

c. S s
s

s K K KK
T

( )
( ) =

+ +1 2
1

d. S s
K s K K

s K K KK
T ( )

( )
( ) =

+
+ +( )

1 1 2

1 2
21

11. The sensitivity ST
K  of the closed-loop system to variations in K  is:

a. S s
s K K

s K K KK
T

( )
( ) =

+
+ +

1 2

1 2

b. S s
Ks

s K K KK
T

( )
( ) =

+ +( )1 2
2

c. S s
s KK
s K KK

T( ) =
+
+

1

1 2

d. S s
K s K K

s K K KK
T ( )

( )
( ) =

+
+ +( )

1 1 2

1 2
2

12. The steady-state tracking error to a unit step input ( ) = /R s s1  with T sd 0( ) =  is:

a. e
K

K Kss
2

=
+

b. e
K

K Kss
2

2
=

+

c. e
K

K K Kss
2

1 2( )
=

+

d. e
K

K Kss
1

2
=

+
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Consider the block diagram in Figure 4.32 for Problems 13–14 with G s Kc( ) =  and 

G s
b

s 1
( ) =

+
.

13. The sensitivity Sb
T  is:

a. S
s Kbb

T =
+ +

1
1

b. S
s

s Kbb
T =

+
+ +

1
1

c. S
s

s Kbb
T =

+
+ +

1
2

d. S
s

s Kbb
T =

+ + 2

14. Compute the minimal value of K  so that the steady-state error due to a unit step distur-
bance is less than 10%.

a. K
b

1
1

= −

b. K b=

c. K
b

10
1

= −

d. The steady-state error is ∞  for any K.

15. A process is designed to follow a desired path described by

r t t t u t5 0.5 2( )( ) ( )= − +

where r t( )  is the desired response and u t( )  is a unit step function. Consider the unity 
feedback system in Figure 4.32. Compute the steady-state error ( E s R s Y s( ) ( ) ( )= −  
with T sd 0( ) = ) when the loop transfer function is

L s G s G s
s

s sc
10 1

5
.

2
( ) ( ) ( )

( )
( )

= =
+
+

a. ( )= → ∞
→∞

e e tss
t
lim

b. ( )= =
→∞

e e tss
t
lim 1

c. ( )= =
→∞

e e tss
t
lim 0.5

d. ( )= =
→∞

e e tss
t
lim 0

In the following Word Match problems, match the term with the definition by writ-
ing the correct letter in the space provided.

a. Instability An unwanted input signal that affects the system out-
put signal.

b.  Steady-state error The difference between the desired output, R s( ), and 
the actual output, Y s( ).

c.  System sensitivity A system without feedback that directly generates the 
output in response to an input signal.

d. Components The error when the time period is large and the tran-
sient response has decayed leaving the  continuous 
response.
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-

+

+

+
G(s)K1Vin(s) Vo(s)

Td(s)

Amplifier

FIGURE E4.1
Digital audio 
system.

e.  Disturbance 
signal

The ratio of the change in the system transfer function 
to the change of a process transfer function (or param-
eter) for a small incremental change.

f.  Transient 
response

The response of a system as a function of time.

g. Complexity A system with a measurement of the output signal and 
a comparison with the desired output to generate an 
error signal that is applied to the actuator.

h. Error signal A measure of the structure, intricateness, or behavior 
of a system that characterizes the relationships and 
interactions between various components.

i.  Closed-loop 
system

The parts, subsystems, or subassemblies that comprise 
a total system.

j. Loss of gain An attribute of a system that describes a tendency of 
the system to depart from the equilibrium condition 
when initially displaced.

k.  Open-loop 
system

A reduction in the amplitude of the ratio of the output 
signal to the input signal through a system, usually 
measured in decibels.

E4.1 A digital audio system is designed to minimize the 
effect of disturbances as shown in Figure E4.1. As 
an approximation, we may represent G s K .2( ) =  
(a)  Calculate the sensitivity of the system due to 
K .2  (b) Calculate the effect of the disturbance noise 
T sd ( ) on V s .o ( )  (c) What value would you select for 
K1  to minimize the effect of the disturbance?

E4.2 A closed-loop system is used to track the sun to 
 obtain maximum power from a photovoltaic array. 
The tracking system may be represented by a unity 
feedback control system and

100
1

,cG s G s
sτ

( ) ( ) =
+

where 3τ =  s nominally. (a) Calculate the sen-
sitivity of this system for a small change in .τ  (b) 
Calculate the time constant of the closed-loop system  
response.
Answers: S s s cτ( )= − + =3 / 3 101 ;   3/101 s

E4.3 A robotic arm and camera could be used to pick 
fruit, as shown in Figure E4.3(a). The camera is used 
to close the feedback loop to a microcomputer, which 

controls the arm [8, 9]. The transfer function for the 
process is

G s
K

s( )
( ) =

+ 5
.2

(a) Calculate the expected steady-state error of the 
gripper for a step command A as a function of K. 
(b) Name a possible disturbance signal for this system.

Answers: (a) e
A
Kss =

+1 /25
E4.4 A magnetic disk drive requires a motor to position 

a read/write head over tracks of data on a spinning 
disk, as shown in Figure E4.4. The motor and head 
may be represented by the transfer function

G s
s sτ

( )
( )

=
+

10
1

,

where 0.001 s.τ =  The controller takes the differ-
ence of the actual and desired positions and gener-
ates an error. This error is multiplied by an amplifier 
K. (a) What is the steady-state position error for 
a step change in the desired input? (b) Calculate  

EXERCISES
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(a)

(b)

Camera

Gripper

Y(s)
Gripper
position

R(s)
Desired
gripper

position

G(s)

Process

-

+

FIGURE E4.3 Robot fruit picker.

E4.6 A feedback system has the closed-loop transfer 
function given by

T s
s ps

s ps s p
20

4 1
.

2

3 2 ( )
( ) =

+ +
+ + + −

Compute the sensitivity of the closed-loop trans-
fer function to changes in the parameter p, where 
p 0.>  Compute the steady-state error to a unit step 

input as a function of the parameter p.

E4.7 In laser cutting, it is important for the focusing lens 
to be placed at an angle perpendicular to the laser, 
so that the laser beam can be focused. An unfocused 
laser beam causes an elliptical beam shape, a visual 
example of a steady-state error. Draw the block dia-
gram of an autofocus system, and describe how the 
system works.

E4.8 Four-wheel drive automobiles are popular in regions 
where winter road conditions are often slippery due 
to snow and ice. A four-wheel drive vehicle with anti-
lock brakes uses a sensor to keep each wheel rotat-
ing to maintain traction. One such system is shown in  
Figure E4.8. Find the closed-loop response of this sys-
tem as it attempts to maintain a constant speed of the 
wheel. Determine the response when R s A s/ .( ) =

Controller

Motor

Magnetic disk Read/write
head

Motor
input

Desired
position

Sensor signal

FIGURE E4.4 Disk drive control.

the required K in order to yield a steady-state error 
of 0.1 mm for a ramp input of 10 cm/s.
Answers: e Kss = =0;   100

E4.5 A unity feedback system has the loop transfer 
function

L s G s G s
K

s s bc( ) ( ) ( )
( )

= =
+

10
.

Determine the relationship between the steady-state 
error to a ramp input and the gain K and system 
 parameter b. For what values of K and b can we guar-
antee that the magnitude of the steady-state error to 
a ramp input is less than 0.1?

-

+ 5(s + 3)+
s(s + 15)

R(s) Y(s)
Wheel speed

FIGURE E4.8 Four-wheel drive auto.

E4.9 Submersibles with clear plastic hulls have the po-
tential to revolutionize underwater leisure. One small 
submersible vehicle has a depth-control system as il-
lustrated in Figure E4.9.
(a) Determine the closed-loop transfer function 

( ) ( ) ( )= /T s Y s R s .
(b) Determine the sensitivity 

1
SK

T  and .SK
T

(c) Determine the steady-state error due to a distur-
bance ( ) = /T s sd 1 .

(d) Calculate the response y t( )  for a step input 
( ) = /1R s s  when = =K K2 and 32  and  

1 < 10.1K <  Select K1  for the fastest response.

E4.10 Consider the feedback control system shown 
in  Fig ure  E4.10. (a) Determine the steady-state 
error for a step input in terms of the gain, K. (b) 
Determine the overshoot for the step response 
for K40 400.≤ ≤  (c)  Plot the overshoot and the 
steady-state error  versus K.

E4.11 Consider the closed-loop system in Figure E4.11, 
where

G s
K

s
H s

s s10
and

14
5 6

.
2

( ) ( )=
+

=
+ +
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-

+

-

+ -

+
K1

K2

1
s

R(s)
Desired
depth

K

K

E(s)

Sensor

Y(s)
Actual
depth

Disturbance
Td(s)

FIGURE E4.9
Depth control 
system.

-

+ 46.24

s2 + 16.7s + 72.9
R(s) Y(s)

425
s + 425

Sensor

K(s + 50)
s + 200

Controller Process

FIGURE E4.10
Feedback control 
system.

(a) Compute the transfer function ( ) ( ) ( )= /T s Y s R s  .
( ) ( ) ( )= /T s Y s R s  .

(b) Define the tracking error to be E s R s Y s    .( ) ( ) ( )= − 
E s R s Y s    .( ) ( ) ( )= −  Compute E s( )  and determine the steady-

state tracking error due to a unit step input, that 
is, let ( ) = /R s s1 .

(c) Compute the transfer function ( ) ( )/Y s T sd  and 
determine the steady-state error of the output 
due to a unit step disturbance input, that is, let 

( ) = /T s sd 1 .
(d) Compute the sensitivity SK

T .

E4.12 In Figure E4.12, consider the closed-loop system 
with measurement noise N s( ), where

100
100

, , and  
5

.1
2G s

s
G s K H s

K
sc( ) ( ) ( )=

+
= =

+
In the following analysis, the tracking error is defined 
to be ( ) ( ) ( )= − :E s R s Y s
(a) Compute the transfer function T s Y s R s  /( ) ( ) ( )=  

and determine the steady-state tracking error due 

to a unit step response, that is, let R s s1/( ) =  and 
assume that N s 0.( ) =

(b) Compute the transfer function Y s N s/( ) ( )  and  
 determine the steady-state tracking error due 
to a unit step disturbance response, that is, let  
N s s1/( ) =  and assume that R s 0.( ) =  Remem-
ber, in this case, the desired output is zero.

(c) If the goal is to track the input while rejecting the 
measurement noise (in other words, while mini-
mizing the effect of N s( )  on the output), how 
would you select the parameters K1  and ?2K

E4.13 A closed-loop system is used in a high-speed 
steel rolling mill to control the accuracy of the steel 
strip thickness. The transfer function for the process 
shown in Figure E4.13 can be represented as

G s
s s

( )
( )

=
+
1

20
.

Calculate the sensitivity of the closed-loop transfer 
function to changes in the controller gain K.

-

++ +
R(s) G(s)

H(s)

Td(s)

Y(s)

FIGURE E4.11 Closed-loop system with nonunity 
feedback.

-

+
R(s) Y(s)

+ +

N(s)

Gc(s) G(s)

H(s)

FIGURE E4.12 Closed-loop system with nonunity 
feedback and measurement noise.
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E4.14 Consider the unity feedback system shown in 
Figure E4.14. The system has two parameters, the con-
troller gain K and the constant K1  in the process.

(a) Calculate the sensitivity of the closed-loop 
transfer function to changes in K .1

(b) How would you select a value for K to min-
imize the effects of external disturbances, 
T sd ?( )

E4.15 Reconsider the unity feedback system discussed 
in E4.14. This time select K = 120  and K = 10.1  
The closed-loop system is depicted in Figure E4.15.
(a) Calculate the steady-state error of the closed-

loop system due to a unit step input, R s s1/ ,( ) =  
with T sd 0.( ) =  Recall that the tracking error is 
defined as E s R s Y s .( ) ( ) ( )= −

(b) Calculate the steady-state response, y y t
t
lim ,ss ( )=
→∞

 
y y t

t
lim ,ss ( )=
→∞

 when T s sd 1/( ) =  and R s 0.( ) =

(b)

(a)

+

-

+

+

Controller Process

G(s)

Td(s)

R(s)
Desired

thickness

Y(s)
Actual
thickness

K

R(s)
Desired

thickness

Y(s)
Actual
thickness

G(s)

Td(s)

1

1

K

- 1

FIGURE E4.13
Control system 
for a steel rolling 
mill. (a) Signal flow 
graph. (b) Block 
diagram.

Controller
++

- +
R(s) K

1
s(s+K1)

Y(s)

Td(s)

Process

FIGURE E4.14
Closed-loop 
 feedback sys-
tem with two 
 parameters, K  
and .1K

-

+ +

+
1

s(s + 10)

Controller

Td(s)

R(s) K = 120 Y(s)

Process

FIGURE E4.15
Closed-loop 
 feedback system 
with K = 120 and 
K =1 10.
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304 Chapter 4  Feedback Control System Characteristics

P4.1 The open-loop transfer function of a fluid-flow sys-
tem can be written as

G s
Q s

Q s s
1

1
,2

1 τ
( )

( )
( )

=
∆
∆

=
+

where RC,τ =  R is a constant equivalent to the resis-
tance offered by the orifice so that R kH1 ,1

2 0
1/2/ = / −  

and C the=  cross-sectional area of the tank. Since  
Δ =H RΔQ2, we have the following for the transfer 
function relating the head to the input change:

G s
H s

Q s
R

RCs 1
.1

1
( )

( )
( )

=
∆
∆

=
+

For a closed-loop feedback system, a float-level sen-
sor and valve may be used as shown in Figure P4.1. 
Assuming the float is a negligible mass, the valve is 
controlled so that a reduction in the flow rate, ΔQ ,1   
is proportional to an increase in head, ΔH,  or  
Δ 1 = −Q KΔH. Draw a signal flow graph or block 
diagram. Determine and compare the open-loop and 
closed-loop systems for (a) sensitivity to changes in the 
equivalent coefficient R and the feedback coefficient 
K, (b) the ability to reduce the effects of a disturbance 
in the level Δ ,( )H s  and (c) the steady-state error of 
the level (head) for a step change of the input Δ .1( )Q s

P4.2 It is important to ensure passenger comfort on 
ships by stabilizing the ship’s oscillations due to 

waves [13]. Most ship stabilization systems use fins 
or hydrofoils projecting into the water to generate 
a stabilization torque on the ship. A simple diagram 
of a ship stabilization system is shown in Figure P4.2. 
The rolling  motion of a ship can be regarded as an 
oscillating pendulum with a deviation from the ver-
tical of tθ( )  degrees and a typical period of 3 s. The 
transfer function of a typical ship is

G s
s s

n

n n2
,

2

2 2
ω

ζω ω
( ) =

+ +

where ω = /n 3.5 rad s and 0.3.ζ =  With this low 
damping factor ,ζ  the oscillations continue for sev-
eral cycles, and the rolling amplitude can reach 18° 
for the expected amplitude of waves in a normal sea. 
Determine and compare the open-loop and closed-
loop system for (a) sensitivity to changes in the  actuator 
constant Ka  and the roll sensor K ,1  and (b) the abil-
ity to reduce the effects of step disturbances of the 
waves. Note that the desired roll sdθ ( )  is zero degrees. 
(c)  Find a range of K1 and Ka such that the steady-state 
tracking error reduced by 90% or more than a step dis-
turbance magnitude where Td(s) = A/s .

P4.3 One of the most important variables that must 
be controlled in industrial and chemical systems is 
temperature. A simple representation of a thermal 
control system is shown in Figure P4.3 [14]. The tem-
perature  T  of the process is controlled by the heater 
with a resistance R. An approximate representation 
of the dynamic linearly relates the heat loss from 
the process to the temperature difference −T Te.  
This relation holds if the temperature difference is 
relatively small and the energy storage of the heater 
and the vessel walls is negligible. It is assumed that 
E s k E E sh a b ,( ) ( )=  where ka  is the constant of the 

PROBLEMS

Q1 + ¢Q1

Q2 + ¢Q2H + ¢H

FIGURE P4.1 Tank level control.

(a) (b)

-
ud (s)

Ea(s) Tf (s)

Wave e�ect
Td(s)

Fin
actuator

Ka

Ship
G(s)

u(s)
Roll

Roll
sensor

K1

+

++

u (t)Fin

Fin
FIGURE P4.2
Ship stabilization 
system. The effect 
of the waves is a 
torque ( )T sd  on  
the ship.
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actuator. The linearized open-loop response of the 
system is

T
T

s
k k E

s
E s

s

s
a b e

1
 

1
,1

τ τ
( ) ( )

( )
=

+
+

+

where

τ ρ( )= /MC A ,
M mass in tank,=
A surface area of tank,=

heat transfer constant,ρ =
=C specific heat constant, and

k a dimensionality constant.1 =

Determine and compare the open-loop and 
closed-loop systems for (a) sensitivity to changes 
in the constant K k k Ea b ;1=  (b) the ability to 
reduce the  effects of a step disturbance in the 
 environmental temperature T se ;( )∆  and (c) the 
steady-state error of the temperature controller 
for a step change in the input, E s .des ( )

P4.4 A control system has two forward paths, as 
shown in Figure P4.4. (a) Determine the overall 
transfer function ( ) ( ) ( )= /T s Y s R s .  (b) Calculate 
the sensitivity, SG

T ,  using Equation (4.16). (c) Does 
the sensitivity  depend on U s( )  or M s( )?

P4.5 Large microwave antennas have become 
 increasingly important for radio astronomy and 
satellite tracking. A large antenna with a diameter 
of 60 ft, for example, is susceptible to large wind 
gust torques. A proposed antenna is required to 
have an error of less than 20° in a 35 mph wind. 
Experiments show that this wind force exerts a 
maximum disturbance at the antenna of 200,000 ft 
lb at 35 mph, or the equivalent to 10 volts at the 
input T sd ( )  to the amplidyne. One problem of 
driving large antennas is the form of the system 
transfer function that possesses a structural reso-
nance. The antenna servosystem is shown in Figure 
P4.5. The transfer function of the antenna, drive 
motor, and  amplidyne is approximated by

G s
s s s

n

n n2
,

2

2 2

ω
ζω ω( )

( ) =
+ +

E(s)
Kth

Eb

Eh(s)kEb

Edes(s)

Actuator
Thermocouple

te(s)
Environment

+

+

-

-

Heater

R t(s)
Process

ka

FIGURE P4.3
Temperature 
 control system.

R(s)
Input

Y(s)
Output

+ +

- +
Q(s)

M(s)

1

G(s)U(s)

FIGURE P4.4
Two-path system.

Td(s)

Power
amplifier

G1(s)

Antenna, drive motor,
and amplidyne G(s)

u(s)
Position
(radians)

Sensor
ks = 1

-+

- +
R(s)

FIGURE P4.5
Antenna control 
system.
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306 Chapter 4  Feedback Control System Characteristics

where 0.707ζ =  and n 10.ω =  The transfer func-
tion of the power amplifier is approximately

G s
k
s

a

1
,1 τ

( ) =
+

where 0.2 s.τ =  (a) Determine the sensitivity of 
the system to a change of the parameter ka .  (b) The 
system is subjected to a disturbance ( ) = /T s sd 1 .  
Determine the required magnitude of ka  in order 
to maintain the steady-state error of the system less 
than 20° when the input R s( )  is zero. (c) Determine 
the error of the system when subjected to a dis-
turbance ( ) = /T s sd 10  when it is operating as an 
open-loop system ks 0( )=  with R s 0.( ) =

P4.6 An automatic speed control system will be neces-
sary for passenger cars traveling on the automatic 
highways of the future. A model of a feedback speed 
control system for a standard vehicle is shown in 
Figure P4.6. The load disturbance due to a percent 
grade T sd ( )∆  is also shown. The engine gain Ke  
varies within the range of 10 to 1000 for various mod-
els of automobiles. The  engine time constant eτ  is 20 
seconds. (a) Determine the sensitivity of the system 
to changes in the engine gain Ke .  (b) Determine the 
effect of the load torque on the speed. (c) Determine 
the constant percent grade ( )∆ = ∆ /T s d sd  for 
which the vehicle stalls (velocity V s 0( ) = ) in terms 
of the gain factors. Note that since the grade is con-
stant, the steady-state solution is sufficient. Assume 
that ( ) = / /R s s30  km hr  and that �K Ke 1.1  When 

/ =K Kg 2,1  what percent grade d∆  would cause 
the automobile to stall?

P4.7 A robot uses feedback to control the orienta-
tion of each joint axis. The load effect varies due to 
varying load objects and the extended position of 
the arm. The system will be deflected by the load 
carried in the gripper. Thus, the system may be rep-
resented by Figure P4.7, where the load torque is 

( ) = /T s D sd .  Assume R s 0( ) =  at the index posi-
tion. (a) What is the effect of T sd ( )  on Y s( )? (b) 
Determine the sensitivity of the closed loop to k .2  
(c) What is the steady-state error when ( ) = /R s s1  
and T sd 0?( ) =

P4.8 Extreme temperature changes result in many 
failures of electronic circuits [1]. Temperature 
 control feedback systems reduce the change of 
temperature by using a heater to overcome out-
door low  temperatures. A block diagram of one 
system is shown in Figure P4.8. The effect of a drop 
in environmental temperature is a step decrease in 
T sd .( )  The  actual temperature of the electronic 
circuit is Y s( ). The  dynamics of the electronic cir-
cuit temperature change are represented by the 
transfer function.

G s
s s

100
25 100

.
2

( ) =
+ +

(a) Determine the sensitivity of the system to K. 
(b) Obtain the effect of the disturbance T sd ( )  on 
the output Y s( ).
(c) Find the range of K such that the output Y(s) 
is less than 10% of the step disturbance input with 
magnitude A (that is,  Td(s) = A/s).

Tachometer

Kt = 1

-+

- +

R(s)
Speed
setting

Load torque
¢Td(s)

Kg

K1

t1s + 1
G1(s) =

Ke

tes + 1
G(s) = V(s)

Speed

Throttle controller Engine and vehicleThrottle
u(s)

FIGURE P4.6
Automobile speed 
control.

-+

- +

R(s)
Desired

joint
angle

k2

s(ts + 1)
k1

Controller

Load disturbance
Td(s)

Y(s)
Actual
joint
angle

k3 + k4s
FIGURE P4.7
Robot control 
system.
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P4.9 A useful unidirectional sensing device is the 
photoemitter sensor [15]. A light source is sensitive to 
the emitter current flowing and alters the resistance 
of the  photosensor. Both the light source and the 
photoconductor are packaged in a single four-terminal 
device. This  device provides a large gain and total 
isolation. A feedback circuit utilizing this device is shown 
in Figure P4.9(a), and a typical nonlinear resistance–
current characteristic is shown in Figure P4.9(b). The 
resistance curve can be represented by the equation

R
i

log  
0.175

0.005
,10 1/2( )

=
−

where i is the lamp current. The normal operating 
point is obtained when υ = 2.0 V,in  and υ = 35 Vo .  
(a) Determine the closed-loop transfer function of 

++

- +
R(s)

Td(s)

Y(s)G(s)

Heater control Electronic circuit

K
0.2s + 1

FIGURE P4.8
Temperature 
 control system.
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+

-

K
oin

R

R2 = 5000 Æ

Photoemitter
sensor

Constant current
source = I

i

s + 1

FIGURE P4.9
Photosensor 
system.

the system. (b) Determine the sensitivity of the sys-
tem to changes in the gain, K.

P4.10 For a paper processing plant, it is important to 
maintain a constant tension on the continuous sheet 
of paper between the wind-off and wind-up rolls. 
The tension varies as the widths of the rolls change, 
and an adjustment in the take-up motor speed is 
necessary, as shown in Figure P4.10. If the wind-up 
motor speed is uncontrolled, as the paper transfers 
from the wind-off roll to the wind-up roll, the ve-
locity v t0 ( )  decreases and the tension of the paper 
drops [10, 14]. The three-roller and spring combina-
tion provides a measure of the tension of the paper. 
The spring force is equal to k Y s ,1 ( )  and the linear 
differential transformer, rectifier, and amplifier may 
be represented by E s k Y s .0 2( ) ( )= −  Therefore, the 

LaRa

Linear
di�erential
transformer

Amplifier

MotorMotor

v1(t) v0(t)

v0(t)

e0(t)

y(t)

Wind-o�
roll

Wind-up
roll

Rectifier

-

+

FIGURE P4.10
Paper tension 
control.
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308 Chapter 4  Feedback Control System Characteristics

Determine (a) the closed-loop transfer function 
T s Y s R s/ ,( ) ( ) ( )=  (b) the sensitivity ,SK

T  and 
(c) the steady-state error for a step change in the 
 desired consistency R s A s/ .( ) =  (d) Calculate the 
value of K required for an allowable steady-state  
error of 2%.

P4.12 Two feedback systems are shown in Figures P4.12(a)  
and (b). (a) Evaluate the closed-loop transfer func-
tions T1  and T2  for each system. (b) Compare 
the  sensitivities of the two systems with respect 
to the  parameter K1  for the nominal values of 
K K 1.1 2= =

measure of the tension is described by the  relation 
T s k Y s2 ,1( ) ( )=  where Y s( )  is the deviation 

from the equilibrium condition, and T s( )  is the 
vertical component of the deviation in tension from 
the equilibrium condition. The time constant of the 
motor is L Ra a/ ,τ =  and the linear velocity of 
the wind-up roll is twice the angular velocity of the 
motor, that is, V s s2 .0 0ω( ) ( )=  The equation of the 
motor is then

E s
K

s s s k T s
m

1
 [ ]   ,0 0 0 3τ ω ω( ) ( ) ( ) ( )= + + ∆

where T s a( )∆ =  tension disturbance. (a) Draw 
the closed-loop block diagram for the system, 
 including the disturbance T s .( )∆  (b) Add the 
 effect of a  disturbance in the wind-off roll veloc-
ity V s1 ( )∆  to the block diagram. (c) Determine 
the sensitivity of the system to the motor constant 
Km .  (d) Determine the steady-state error in the 
tension when a step disturbance in the input veloc-
ity, V s A s/ ,1( )∆ =  occurs.

P4.11 One important objective of the paper-making 
process is to maintain uniform consistency of the 
stock output as it progresses to drying and rolling. 
A diagram of the thick stock consistency dilution 
control system is shown in Figure P4.11(a). The 
amount of water added determines the consistency. 
The block diagram of the system is shown in Figure 
P4.11(b). Let H s 1( ) =  and

G s
K

s
G s

sc( ) ( )=
+

=
+8 1

,
1

3 1
.

(b)

R(s)
U(s)

Y(s)

M(s)

-
Gc(s) G(s)

H(s)

+

(a)

Pulp
mixing

Water

Valve

Desired consistency = R(s)

U(s) M(s)
Controller

Consistency
measurement

To paper
making

FIGURE P4.11
Paper-making 
control.
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(b)

-
+

R(s) Y(s)
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K1
s + 4

K2
s - 1

-
+

-
+

R(s) Y(s)

2-2

K1
s + 4

K2
s - 1

FIGURE P4.12 Two feedback systems.
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P4.15 Figure P4.15 shows the model of a two-tank sys-
tem containing a heated liquid, where T s0 ( )  is the 
temperature of the fluid flowing into the first tank 
and T s2 ( )  is the temperature of the liquid flowing 
out of the second tank. The  system of two tanks has a 
heater in the first tank with a controllable heat input 
Q. The time constants are τ = 10 s1  and τ = 50 s.2  
(a) Determine T s2 ( )  in terms of T s0 ( )  and T sd .2 ( )  
(b) If T sd ,2 ( )  the desired output temperature, is 
changed instantaneously from T s A sd /2 ( ) =  to 
T s A sd 2 / ,2 ( ) =  where T s A s/ ,0 ( ) =  determine the 
transient response of T s2 ( )  when G s Kc 500.( ) = =  
(c) Find the steady-state error ess  for the system of 
part (b), where E s T s T sd .2 2( ) ( ) ( )= −

P4.16 The steering control of a modern ship may be 
represented by the system shown in Figure P4.16 
[16, 20]. (a) Find the steady-state effect of a constant 
wind force represented by T s sd 1/( ) =  for K 10=  
and K 25.=  Assume that the rudder input R s( )  

P4.13 One form of a closed-loop transfer function is

.1 2

3 4
T s

G s kG s
G s kG s

( )
( ) ( )
( ) ( )

=
+
+

(a) Show that

.2 3 1 4

3 4 1 2
S

k G G G G
G kG G kGk

T ( )
( )( )

=
−

+ +

(b) Determine the sensitivity of the system shown 
in Figure P4.13, using the equation verified in 
part (a).

P4.14 A proposed hypersonic plane would climb to 
80,000 feet, fly 3800 miles per hour, and cross the 
Pacific in 2 hours. Control of the aircraft speed 
could be represented by the model in Figure P4.14. 
(a) Find the sensitivity of the closed-loop transfer 
function T s( )  to a small change in the parameter a.  
(b) What is the range of the parameter a for a 
 stable closed-loop system?

-

+ +

+
R(s) U(s) G(s)k

H(s)

Y(s)

M(s)

FIGURE P4.13
Closed-loop 
system.

+

-
R(s)

10(s + 4)
s(s + a)(s + 1)

Y(s)
Flight
speedFIGURE P4.14

Hypersonic airplane 
speed control.
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FIGURE P4.15
Two-tank 
 temperature 
control.
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FIGURE P4.16
Ship steering 
control.
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310 Chapter 4  Feedback Control System Characteristics

control system is shown in part (c), where K R K K Jm f f i= = Ω = = =30,   1  ,   1,   0.1,
K R K K Jm f f i= = Ω = = =30,   1  ,   1,   0.1, and b 1.=  (a) 

Determine the response tθ( ) of the system to a 
step change in tdθ ( )  when K 20.=  (b)  Assuming 

td 0,θ ( ) =  find the effect of a load disturbance 
T s A sd / .( ) =  (c) Determine the steady-state error 
ess when the input is r t t t,   0.( ) = >  (Assume that 
T sd 0.( ) = )

is zero, without any disturbance, and has not been 
adjusted. (b) Show that the rudder can then be used 
to bring the ship deviation back to zero.

P4.17 A robot gripper, shown in part (a) of Figure 
P4.17, is to be controlled so that it closes to 
an angle θ  by using a DC motor control sys-
tem, as shown in part (b). The model of the 

(c)

-+

-

+ 1
s(Js + b)

Km

Rf
ud (s)

Td(s)

u(s)KKi

Kf

Power
amplifier

(a)

u

(b)

Control
knob

Potentiometer

Di�erence
amplifier

DC
motor

Potentiometer

V0

u

Power
amplifier

ud

V0

J

Feedback signal

FIGURE P4.17 Robot gripper control.

AP4.1 A tank level regulator control is shown in Figure 
AP4.1(a). It is desired to regulate the level H s( )  in 
response to a disturbance change ( ).3Q s  The block 
diagram shows small variable changes about the equi-
librium conditions so that the desired H sd 0.( ) =  
Determine the equation for the error E s( ), and 
 determine the steady-state error for a unit step dis-
turbance when (a) G s K( ) =  and (b) G s K s/ .( ) =

AP4.2 The shoulder joint of a robotic arm uses a DC 
motor with armature control and a set of gears on 
the output shaft. The model of the system is shown 
in Figure AP4.2 with a disturbance torque T sd ( )  
which represents the effect of the load. Determine 
the steady-state error when the desired angle input is 
a step so that s A s G s Kd c/ ,   ,θ ( ) ( )= =  and the dis-
turbance input is zero. When sd 0θ ( ) =  and the load 

ADVANCED PROBLEMS
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(a) Determine the steady-state error when R s( ) is 
the desired path as given and T sd 0.( ) =

(b) Plot the error e t( )  for the desired path for 
part (a) for t0 10 s.< ≤

(c) If R s 0,( ) =  find the steady-state error when 
( ) = /T s sd 1 .

(d) Plot the error e t( )  for part (c) for t0 10< ≤  s.

effect is T s M sd / ,( ) =  determine the steady-state 
error when (a) G s Kc( ) =  and (b) / .G s K sc( ) =

AP4.3 A machine tool is designed to follow a desired 
path so that

r t t u t1 ,( ) ( ) ( )= −

where u t( )  is the unit step function. The machine 
tool control system is shown in Figure AP4.3.

(a)

(b)

+

- +

+
R

RCs + 1

Hd(s) = 0
Desired
height

variation

H(s)
Height

variation

Error

Controller

E(s)
G(s)

Q3(s)

h

Controller
h(t)

Capacitance C

q1(t)

q0(t)

q3(t)

Constant = R

Orifice

FIGURE AP4.1
A tank level 
regulator.

+

- +

-
Controller

+

-

Km

Las + Ra

1
s(Js + b)

Gc(s)
Tm(s)

Desired
angle of 
rotation

n

Load
disturbance

Td(s)

Kb

Actual
angle

ud(s) u(s)

FIGURE AP4.2
Robot joint control.

-+

- +

Controller

4 + 2s
7

10
s(s + 5)

R(s)
Tool

command

Y(s)
Tool

position

Motor and
tool

Load e�ect
Td(s)

FIGURE AP4.3
Machine tool 
feedback.
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312 Chapter 4  Feedback Control System Characteristics

(c) Determine and plot the transient response  
V s( )2  for a step input V s s( ) = 1/ .1

AP4.7 A feedback control system with sensor noise 
and a disturbance input is shown in Figure AP4.7. 
The goal is to reduce the effects of the noise and the 
disturbance. Let R s 0.( ) =
(a) Determine the effect of the disturbance on ( )Y s .
(b) Determine the effect of the noise on ( )Y s .
(c) Choose gains K and K1 so that the effect of 

steady-state error due to the disturbance and 
the noise is minimized. Assume T s A sd / ,( ) =  
and N s B s/ .( ) =

AP4.8 The block diagram of a machine-tool control 
system is shown in Figure AP4.8. 
(a) Determine the transfer function T s Y s R s/ .( ) ( ) ( )=  

T s Y s R s/ .( ) ( ) ( )=
(b) Determine the sensitivity Sb

T .
(c) Select K and K1 so that the effects of a unit step 

disturbance are minimized.

AP4.4 An armature-controlled DC motor with 
feedback is shown in Figure AP4.4. Assume that 
K Jm 10,   1,= =  and R 1.=  Let the tracking 
error be E s V s K st ω( ) ( ) ( )= − .
(a) Determine the required gain, K, to restrict the 

steady-state error to a ramp input to 0.1 (as-
sume that T sd 0( ) = ).

(b) For the gain selected in part (a), determine 
and plot the error, e t( ) , due to a ramp distur-
bance for t0 5 s.≤ ≤

AP4.5 A system that controls the mean arterial pres-
sure during anesthesia has been designed and 
tested [12]. The level of arterial pressure is postu-
lated to be a proxy for depth of anesthesia during 
surgery. A block diagram of the system is shown in 
Figure AP4.5, where the impact of surgery is repre-
sented by the disturbance T sd .( )
(a) Determine the steady-state error due to a unit 

step disturbance.
(b) Determine the steady-state error for a ramp 

input.
(c) Select a suitable value of K less than or equal 

to 25, and plot the response for a unit step dis-
turbance input.

AP4.6 An active realization of a proportional integral 
controller using an operational amplifier is shown 
in Figure AP4.6.
(a) Determine the transfer function G s V s V s( ) ( ) ( )= / .2 1

G s V s V s( ) ( ) ( )= / .2 1
(b) Determine the sensitivity of G s( )  with re-

spect to the capacitance C.

+

-

-

-+

+ Km

Ra Js

V(s)
Control
voltage

Integrator
Power

Amplifier

Td(s)

K

Motor

v(s)
Speed

Kb = 0.1

Kt = 1.2

Sensor

1
s

FIGURE AP4.4
DC motor with 
feedback.

-+

- +
1
s

1

(s + 3)2

R(s)
Desired
blood

pressure

K

Valve
setting Vapor

Patient

Surgical
disturbance

Td(s)

Y(s)
Actual
blood

pressure
FIGURE AP4.5
Blood pressure 
control.

C

R

R

V1(s) V2(s)

+

-

+

-

+
-

FIGURE AP4.6 A proportional integral controller using 
an operational amplifier.
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-
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+

- +

+

Controller

K
s

1
s + 1

Disturbance
Td(s)

R(s) Y(s)

Dynamics

Sensor

N(s)
Sensor noise

K1

FIGURE AP4.7
Feedback system 
with noise.

Controller
-+

- +
R(s) K

b
s + 2 Y(s)

Td(s)

K1
Laser sensor

Machine

FIGURE AP4.8
Machine-tool 
control.

CDP4.1 A capstan drive for a table slide is described in 
CDP2.1. The position of the slide x is measured with 
a capacitance gauge, as shown in Figure CDP4.1, 
which is very linear and accurate. Sketch the model 
of the feedback system and determine the response 
of the system when the controller is an amplifier and 
H s( ) 1.=  Determine the step response for several 
 selected values of the amplifier gain .G s Kc a( ) =

DP4.1 A closed-loop speed control system is subjected 
to a disturbance due to a load, as shown in Figure 
DP4.1. The desired speed is t sd 100 rad / ,ω ( ) =  and 
the load disturbance is a unit step input T s sd 1/ .( ) =  
Assume that the speed has attained the no-load  
speed of 100 rad/s and is in steady state. (a) 
Determine the steady-state effect of the load dis-
turbance, and (b) plot (t) for the step disturbance 
for various values of gain K. Comment on the effect  

DESIGN PROBLEMS

-

+ -

+
R(s)

Controller Motor and slide

Gc(s) G1(s)

H(s) = 1

Td(s)

Capacitance sensor

K1

Tachometer

Switch
normally

open

1
s

u(s)

FIGURE CDP4.1
The model of the 
feedback system 
with a  capacitance 
measurement 
 sensor. The 
 tachometer may 
be mounted on 
the motor (optional), 
and the switch will 
normally be open.
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314 Chapter 4  Feedback Control System Characteristics

Many procedures use the retina as a laser target. 
The retina is the thin sensory tissue that rests on the 
inner surface of the back of the eye and is the actual 
 transducer of the eye, converting light energy into 
electrical pulses. On occasion, this layer will detach 
from the wall,  resulting in death of the detached area 
from lack of blood and leading to partial or total 
blindness in that eye. A laser can be used to “weld” 
the retina into its proper place on the inner wall.

Automated control of position enables the 
ophthalmologist to indicate to the controller where 
lesions should be inserted. The controller then 
monitors the retina and controls the laser’s position 
so that each lesion is placed at the proper location. 
A wide-angle video-camera system is required to 
monitor the movement of the retina, as shown in 
Figure DP4.4(a). If the eye moves during the ir-
radiation, the laser must be either redirected or 
turned off. The position-control system is shown 
in Figure DP4.4(b). Select an appropriate gain for 
the controller so that the transient response to a 
step change in R s( )  is satisfactory and the effect of 
the disturbance due to noise in the system is mini-
mized. Also, ensure that the steady-state error for a 
step input command is zero. Determine the largest 
value of K > 0 to ensure closed-loop stability.

of the gain K on the steady-state error due to the 
load disturbance.

DP4.2 The control of the roll angle of an airplane 
is achieved by using the torque developed by the 
ailerons. A linear model of the roll control system 
for a small experimental aircraft is shown in Figure 
DP4.2, where

G s
s s

1
5 10

.
2

( ) =
+ +

The goal is to maintain a small roll angle due to dis-
turbances. Select an appropriate gain KK1  that will 
reduce the effect of the disturbance while attaining a 
desirable transient response to a step disturbance. To 
obtain a desirable transient response, let KK 50.1 <

DP4.3 Consider the system shown in Figure DP4.3.
(a) Determine the range of K1  allowable so that 

the steady state tracking error is e 1%.ss ≤
(b) Determine a suitable value for K1  and K so that 

the magnitude of the steady-state error to a wind 
disturbance ( ) = / ≤ <T t t s td 2  mrad ,  0 5 s,  is 
less than 0.1 mrad.

DP4.4 Lasers have been used in eye surgery for many 
years. They can cut tissue or aid in coagulation [17]. 
The laser allows the ophthalmologist to apply heat 
to a location in the eye in a controlled manner. 

-+

- +

Controller

1
s + 4

vd(s)
Desired
speed

Load
disturbance

Td(s)

v(s)
Actual
speed

K

G(s)

FIGURE DP4.1
Speed control 
system.

-

+ +

+
G(s)K

K1

s

T (s)

Td (s)

ud(s) u(s)
Roll angle

FIGURE DP4.2
Control of the 
roll angle of an 
airplane.

-+

- +

K
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1
s + 5
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Speed
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FIGURE DP4.3
Speed control 
system.
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parameter J 0>  is the pitching moment of iner-
tia. (a) Suppose that .G s Kc( ) =  For what range of 
K is the system stable? (b) What is the steady-state 
error to a unit step disturbance when ( ) ?G s Kc =  
(c) Suppose that .G s K K sc p D( ) = +  For what 
range of Kp  and KD is the system stable? (d) What 
is the steady-state error to a unit step disturbance 
when ?G s K K sc p D( ) = +

DP4.7 Interest in unmanned underwater vehicles 
(UUVs) has been increasing recently, with a large 
number of possible applications being considered. 
These include intelligence-gathering, mine de-
tection, and surveillance applications. Regardless 
of the intended mission, a strong need exists for 
 reliable and robust control of the vehicle. The pro-
posed vehicle is shown in Figure DP4.7 (a) [28].

We want to control the vehicle through a 
range of operating conditions. The vehicle is 30 
feet long with a vertical sail near the front. The 
control  inputs are stern plane, rudder, and shaft 
speed commands. In this case, we wish to con-
trol the vehicle roll by using the stern planes. 
The control system is shown in Figure DP4.7(b), 
where R s 0( ) = , the desired roll  angle, and 
T s sd 1/ .( ) =  Suppose that the  controller is

2 .G s K sc( ) ( )= +

DP4.5 An op-amp circuit can be used to generate 
a rapidly exponentially decaying signal. The cir-
cuit shown in Figure DP4.5 can generate the signal 

t e ttυ ( ) = − >− ,   0,2
1000  when the input tυ ( )1  is a 

unit step input [6]. Select appropriate values for the 
resistors and capacitor. Assume an ideal op-amp.

(b)

2
s(s + 2)(s + 6)

Td(s)

R(s)
position

-
K Y(s)

Controller

Camera and
laser 

+ ++

(a)

Argon laser
Fiber optics

Laser
system

Camera

Patient

Ophthalmologist

Controller

FIGURE DP4.4
Laser eye surgery 
system.

R1

R2

V1(s) V2(s)

+

-

+

-

+
-

C

FIGURE DP4.5 Op-amp circuit.

DP4.6 A hydrobot is under consideration for remote 
exploration under the ice of Europa, a moon of the 
giant planet Jupiter. Figure DP4.6(a) shows one 
 artistic version of the mission. The hydrobot is a self- 
propelled underwater vehicle that would analyze 
the chemical composition of the water in a search 
for signs of life. An important aspect of the vehicle 
is a controlled vertical descent to depth in the pres-
ence of underwater currents. A simplified control 
feedback system is shown in Figure DP4.6(b). The 
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316 Chapter 4  Feedback Control System Characteristics

DP4.8 A new suspended, mobile, remote-controlled 
video camera system to bring three-dimensional 
mobility to professional football is shown in Figure 
DP4.8(a) [29]. The camera can be moved over the 
field, as well as up and down. The motor control on 

(a) Design the controller gain K such that the 
maximum roll angle error due the unit 
step disturbance input is less than 0.05. (b) 
Compute the steady-state roll angle error to 
the disturbance input and explain the result.

FIGURE DP4.6
(a) Europa 
 exploration under 
the ice. (Used 
with permission. 
Courtesy of NASA.) 
(b) Feedback 
system.

(a)

(b)

+ +

- +
ud(s)

Js2
1

u(s)Gc(s)

Td(s)

(a)

-

+ ++

(b)

Td(s)

R(s) = 0 Gc(s)
Y(s)
Roll
angle

1
s

1
s

Sail

Plane

Rudder

FIGURE DP4.7
Control of an 
 underwater vehicle.
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ST
1τ  and the sensitivity ST

2τ . (b) Design the con-
troller gain K such that the steady-state tracking 
error to a unit step disturbance is less than 0.05.

each pulley is represented by the system in Figure 
DP4.8(b), where the nominal values are 201τ =  
ms and 22τ =  ms. (a)  Compute the sensitivity 

(b)

(a)

K
-

+ ++

Td(s)

Y(s)R(s)
1

t1s + 1

1

s (t2s + 1)

Video
camera

Pulley

FIGURE DP4.8
Remote-controlled 
TV camera.

Controller
++

- +
R(s) K

1
s(s + 2.0)

Y(s)

Td(s)

Plant

Ea(s)

FIGURE CP4.4
Unity feedback 
 system with 
 controller gain K.

CP4.1 Consider a system with the following closed-loop 
transfer function

T s
s s

( ) =
+ +

1
2 2

.
2

Obtain the step response, and determine the percent 
overshoot. What is the steady-state error?

CP4.2 Consider the closed-loop transfer function 

T s
s s

( ) =
+ +

1
1

.
2

When the input is a unit ramp input, the desired 
steady-state error of the output is zero. Using the lsim 
function, show that the steady-state error to a unit 
ramp input is one.

CP4.3 Consider a unity feedback system with

G s
s s

s s s
( ) =

+ +
+ +

( 1)( 2)
( 3)( 4)

.
2

Show that the system will have a finite steady-state 
error to a parabolic input. Why does the system have 
a finite steady-state error?

CP4.4 Consider the feedback system in Figure CP4.4. 
Obtain the step responses for controller gain  
K = 1, 5, and 10. (a) Develop an m-file to compute 
the closed-loop transfer function ,( ) ( ) ( )= /T s Y s R s  
and plot the unit step response. (b) In the same m-file, 
compute the transfer function from the disturbance 

COMPUTER PROBLEMS
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318 Chapter 4  Feedback Control System Characteristics

The nominal value is used for design purposes only, 
since in reality the value is not precisely known. The 
objective of our analysis is to investigate the sensi-
tivity of the closed-loop system to the parameter a.

(a) When a 1,=  show analytically that the 
steady-state value of Y s( )  is equal to 2 when 
R s( )  is a unit step. Verify that the unit step 
response is within 2% of the final value after 
4 seconds.

(b) The sensitivity of the system to changes in the 
parameter a can be investigated by studying 
the effects of parameter changes on the tran-
sient response. Plot the unit step response for 
a 0.5,  2,=  and 5. Discuss the results.

CP4.7 Consider the torsional mechanical system in 
Figure CP4.7(a). The torque due to the twisting of 
the shaft is k s ;θ( )−  the damping torque due to the 
braking device is b s ;θ( )−  the disturbance torque is 
T sd ;( )  the input torque is R s( ) ; and the moment 
of inertia of the mechanical system is J. The trans-
fer function of the torsional mechanical system is

G s
J

s b J s k J
1 /

( / ) /
.

2( ) =
+ +

T sd ( ) to the output Y s( )  and plot the unit step 
disturbance response. (c) From the plots in (a) and 
(b) above, plot the combined steady-state tracking 
error to the unit step input and the steady-state 
tracking error to the unit step disturbance input 
for controller gain K = 1, 5, and 10. (d) From the 
plots in (c) above, estimate the maximum tracking 
error to the combined unit step input and unit step 
disturbance input. At what gain does the maximum 
tracking error occur?

CP4.5 Consider the closed-loop control system shown in 
Figure CP4.5. Develop an m-file script to assist in the 
search for a value of k so that the percent overshoot 
to a unit step input is approximately ≈P O. . 10% . 
The script should compute the closed-loop transfer 
function ( ) ( ) ( )= /T s Y s R s  and generate the step 
response. Verify graphically that the steady-state 
error to a unit step input is zero.

CP4.6 Consider the closed-loop control system shown 
in Figure CP4.6. The controller gain is K 2.=  The 
nominal value of the plant parameter is a 1.=  

-

+

Controller

20
s

1
s + k

R(s) Y(s)

Process

FIGURE CP4.5
A closed-loop 
negative feedback 
control system.

-

+
Controller Process

1
s - aKR(s) Y(s)FIGURE CP4.6

A closed-loop 
 control system 
with uncertain 
 parameter a.

-

+ + +
K0

Td(s)

ud(s)
R(s)

u(s)
1/J

s2 + 
b
J

s
k
J

+

Controller

Mechanical
system

(a) (b)

Elastic
shaft td(t), Disturbance

torque

Braking
device

u (t)

r(t), Input
torque

FIGURE CP4.7
(a) A torsional 
 mechanical system. 
(b) The torsional 
mechanical system 
feedback control 
system.
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A closed-loop control system for the system is 
shown in Figure CP4.7(b). Suppose the desired 
angle k bd 0°,   5,   0.9,θ = = =  and J 1.=
(a) Determine the open-loop response sθ( )  of 

the system for a unit step disturbance.
(b) With the controller gain K 50,0 =  determine 

the closed-loop response, sθ( ), to a unit step 
disturbance.

(c) Plot the open-loop versus the closed-loop 
response to the disturbance input. Discuss 
your results and make an argument for using 
closed-loop feedback control to improve the 
disturbance rejection properties of the system.

CP4.8 A negative feedback control system is depicted 
in Figure CP4.8. Suppose that our design objective 
is to find a controller G sc ( )  of minimal complexity 
such that our closed-loop system can track a unit 
step input with a steady-state error of zero.
(a) As a first try, consider a simple proportional 

controller

G s Kc ,( ) =

where K is a fixed gain. Let K 2.=  Plot the 
unit step response and determine the steady-
state error from the plot.

(b) Now consider a more complex controller

G s K
K
sc ,0
1( ) = +

where K 20 =  and K 20.1 =  This control-
ler is known as a proportional, integral (PI) 
 controller. Plot the unit step response, and de-
termine the steady-state error from the plot.

(c) Compare the results from parts (a) and (b), 
and discuss the trade-off between controller 
complexity and steady-state tracking error 
performance.

CP4.9 Consider the closed-loop system in Figure 
CP4.9, whose transfer function is

G s
s

s
H s

s
10

100
and

5
50

.( ) ( )=
+

=
+

(a) Obtain the closed-loop transfer function 
T s Y s R s    /( ) ( ) ( )=  and the unit step re-
sponse; that is, let R s s1/( ) =  and assume that 
N s 0.( ) =

-

+

Controller Process

10
s + 10

R(s) Y(s)Gc(s)FIGURE CP4.8
A simple single-loop 
feedback control 
system.

+

-
R(s) Y(s)

N(s)

G(s)

+

+
H(s)

FIGURE CP4.9 Closed-loop system with nonunity 
feedback and measurement noise.

(b) Obtain the disturbance response when

N s
s

100
1002

( ) =
+

is a sinusoidal input of frequency 10 rad s.ω = /  
Assume that R s 0.( ) =

(c) In the steady-state, what is the frequency and 
peak magnitude of the disturbance response 
from part (b)?

CP4.10 Consider the closed-loop system is depicted in 
Figure CP4.10. The controller gain K can be modified 
to meet the design specifications.

(a) Determine the closed-loop transfer function 
( ) ( ) ( )= /T s Y s R s .

(b) Plot the response of the closed-loop system for 
K 5,=  10, and 50.

(c) When the controller gain is K 10,=  determine 
the steady-state value of y t( )  when the distur-
bance is a unit step, that is, when ( ) = /T s sd 1  
and R s 0.( ) =

CP4.11 Consider the nonunity feedback system is de-
picted in Figure CP4.11.

(a) Determine the closed-loop transfer function 
( ) ( ) ( )= /T s Y s R s .

(b) For K 10,=  12, and 15, plot the unit step 
 responses. Determine the steady-state errors 
and the settling times from the plots.

For parts (a) and (b), develop a m-file that computes 
the closed-loop transfer function and generates the 
plots for varying K.

M04_DORF2374_14_GE_C04.indd   319M04_DORF2374_14_GE_C04.indd   319 17/09/21   2:20 PM17/09/21   2:20 PM



320 Chapter 4  Feedback Control System Characteristics

Controller
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FIGURE CP4.10
Closed-loop 
feedback  system 
with external 
disturbances.
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FIGURE CP4.11
Closed-loop system 
with a sensor in the 
feedback loop.

Closed-loop system A system with a measurement of 
the output signal and a comparison with the desired 
output to generate an error signal that is applied to 
the actuator.

Complexity A measure of the structure, intricateness, or 
behavior of a system that characterizes the relation-
ships and interactions between various components.

Components The parts, subsystems, or subassemblies 
that comprise a total system.

Disturbance signal An unwanted input signal that  
affects the system’s output signal.

Error signal The difference between the desired out-
put R s( )  and the actual output Y s( ). Therefore, 
E s R s Y s .( ) ( ) ( )= −

Instability An attribute of a system that describes a ten-
dency of the system to depart from the equilibrium 
condition when initially displaced.

Loop gain The ratio of the feedback signal to the con-
troller actuating signal. For a unity feedback system 
we have L s G s G sc( ) ( ) ( )= .

Loss of gain A reduction in the amplitude of the ratio 
of the output signal to the input signal through a sys-
tem, usually measured in decibels.

Open-loop system A system without feedback that  
directly generates the output in response to an input 
signal.

Steady-state error The error when the time period is 
large and the transient response has decayed, leaving 
the continuous response.

System sensitivity The ratio of the change in the system 
transfer function to the change of a process trans-
fer function (or parameter) for a small incremental 
change.

Tracking error See error signal.

Transient response The response of a system as a func-
tion of time before steady-state.

TERMS AND CONCEPTS

ANSWERS TO SKILLS CHECK
True or False: (1) True; (2) True; (3) False; (4)  False; 

(5) True
Multiple Choice: (6) a; (7) b; (8) a; (9) b; (10) c; (11) a; 

(12) b; (13) b; (14) c; (15) c

Word Match (in order, top to bottom): e, h, k, b, c, f, i, 
g, d, a, j
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PREVIEW

The ability to adjust the transient and steady-state response of a control system is 
a beneficial outcome of the design of control systems. In this chapter, we introduce 
the time- domain performance specifications and use key input signals to test the 
response of the control system. The correlation between the system performance 
and the location of the transfer function poles and zeros is discussed. We develop 
relationships between the performance specifications and the natural frequency 
and damping ratio for second- order systems. Relying on the notion of domi-
nant poles, we can extrapolate the ideas associated with second-order systems to 
those of higher order. The concept of a performance index is also considered. We 
 present a set of quantitative performance indices that adequately represent the 
performance of the control system. The chapter concludes with a performance 
analysis of the Sequential Design Example: Disk Drive Read System.

DESIRED OUTCOMES

Upon completion of Chapter 5, students should be able to:

	❏ Identify key test signals used in controls and describe the resulting transient response 
characteristics of second-order systems to test signal inputs.

	❏ Recognize the direct relationship between the pole locations of second-order systems 
and the transient response.

	❏ Identify the design formulas that relate the second-order pole locations to  percent 
overshoot, settling time, rise time, and time to peak.

	❏ Explain the impact of a zero and a third pole on the second-order system response.

	❏ Describe optimal control as measured with performance indices.
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322 Chapter 5  The Performance of Feedback Control Systems

5.1 INTRODUCTION

The ability to adjust the transient and steady-state performance is a distinct advantage 
of feedback control systems. To analyze and design a control system, we must define 
and measure its performance. Based on the desired performance of the control sys-
tem, the controller parameters are adjusted to provide the desired response. Because 
control systems are inherently dynamic, their performance is usually specified in terms 
of both the transient response and the steady-state response. The  transient  response 
is the response that disappears with time. The steady-state response is the response 
that exists for a long time following an input signal initiation.

The design specifications for control systems normally include several 
 time- response indices for a specified input command, as well as a desired steady-
state accuracy. In the course of the design, the specifications are often revised to 
effect a compromise. Therefore, specifications are seldom a rigid set of requirements, 
but rather an attempt to quantify the desired performance. The effective compro-
mise and adjustment of specifications are graphically illustrated in Figure 5.1. The 
parameter p may minimize the performance measure M2 if we select p as a very small 
value. However, this results in large measure M ,1  an undesirable situation. If the per-
formance measures are equally important, the crossover point at pmin provides the 
best compromise. This type of compromise is often encountered in feedback control 
system design. It is clear that if the original specifications called for both M1 and M2 
to be minimized, the specifications could not be simultaneously met; they would then 
have to be altered to allow for the compromise resulting with pmin [1, 10, 15, 20].

The specifications, which are stated in terms of the measures of performance, 
indicate the quality of the system to the designer. In other words, the performance 
measures help to answer the question, How well does the system perform the task 
for which it was designed?

5.2 TEST INPUT SIGNALS

Time-domain performance specifications are important indices because control 
 systems are inherently time-domain systems. The transient response is of prime 
 interest for control system designers. It is necessary to determine initially whether 

Performance
measure,  M1

Performance
measure,  M2

M1
M2

0 0
0 1 2 3 4 5pmin

Parameter,  p

FIGURE 5.1
Two performance 
measures versus 
parameter p.
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Section 5.2 Test Input Signals 323

the system is stable; we can achieve this goal by using the techniques of ensuing 
chapters. If the system is stable, the response to a specific input signal will  provide 
several measures of the performance. However, because the actual input signal 
of the system is usually unknown, a standard test input signal is normally chosen. 
This approach is quite useful because there is a reasonable correlation between the 
response of a system to a standard test input and the system’s ability to perform 
under normal operating conditions. Furthermore, using a standard input allows the 
designer to compare several competing designs. Many control systems experience 
input signals that are very similar to the standard test signals.

The standard test input signals commonly used are the step input, the ramp input, 
and the parabolic input. These inputs are shown in Figure 5.2. The equations repre-
senting these test signals are given in Table 5.1, where the Laplace transform can be 
obtained by using Table 2.3 and a more complete list of Laplace transform pairs can 
be found at the MCS website. The ramp signal is the integral of the step input, and 
the parabola is the integral of the ramp input. A unit impulse function is also useful 
for test signal purposes. The unit impulse is based on a rectangular function

f t
t

( ) =
/ − ≤ ≤










∈
∈ ∈

∈  
1 ,

2
 

2
;

0, otherwise,

where 0.>∈  As ∈  approaches zero, the function f t( )∈  approaches the unit impulse  
function δ( )t ,  which has the following properties

 ∫ ∫δ δ( ) ( ) ( ) ( )= − =
−∞

∞

−∞

∞
    1 and     .t dt t a g t dt g a  (5.1)

t

r(t)

A

0
0

(a) (b) (c)

t

r(t)

0
0

t

r(t)

0
0FIGURE 5.2

Test input signals: 
(a) step, (b) ramp, 
and (c) parabolic.

Table 5.1 Test Signal Inputs

Test Signal ( )r t ( )R s

Step ( ) = >,   0r t A t
= <0,   0t

( ) = /R s A s

Ramp ( ) = >,   0r t At t
= <0,   0t

( ) = / 2R s A s

Parabolic ( ) = >,   02r t At t
= <0,   0t

( ) = /2 3R s A s
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324 Chapter 5  The Performance of Feedback Control Systems

The impulse input is useful when we consider the convolution integral for the out-
put ( )y t  in terms of an input ( )r t , which is written as

 ∫ τ τ τ { }( ) ( ) ( ) ( ) ( )= − =
−

−

∞

l      .1y t g t r d G s R s
t

 (5.2)

The relationship in Equation (5.2) represents the open-loop input–output relation-
ship of a system ( )G s .  If the input is a unit impulse function, we have

 ∫ τ δ τ τ( ) ( ) ( )= −
−∞

    .y t g t d
t

 (5.3)

The integral has a value only at τ = 0; therefore,

( ) ( )=y t g t ,

the impulse response of the system ( )G s . The impulse response test signal can 
often be used for a dynamic system by subjecting the system to a large-amplitude, 
 narrow-width pulse of area A.

The standard test signals are of the general form

 ( ) =r t t n, (5.4)

and the Laplace transform is

 ( ) = +R s
n

sn

!
.

1
 (5.5)

Hence, the response to one test signal may be related to the response of another test 
signal of the form of Equation (5.4). The step input signal is the easiest to generate 
and evaluate and is usually chosen for performance tests.

Consider the response of a system G(s) for a unit step input, ( ) = /1 ,R s s  when

( ) =
+

G s
s

9
10

.

Then the output is

( )
( )

=
+

Y s
s s

9
10

,

the response during the transient period is

( )( ) = − −y t e t0.9 1 ,10

and the steady-state response is

( ) =∞y 0.9.

If the error is ,E s R s Y s( ) ( ) ( )= −  then the steady-state error is

( )= =
+

+
=

→ →
e sE s

s
ss s

lim   lim  
1

10
0.1.ss

0 0
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Section 5.3 Performance of Second-Order Systems 325

5.3 PERFORMANCE OF SECOND-ORDER SYSTEMS

Let us consider a single-loop second-order system and determine its response to a 
unit step input. A closed-loop feedback control system is shown in Figure 5.3. The 
closed-loop transfer function is

 
1

   .( )
( )

( )
( )=

+
Y s

G s
G s

R s  (5.6)

We may rewrite Equation (5.6) as

 
ω

ζω ω
( ) ( )=

+ +
Y s

s s
R sn

n n2
  .

2

2 2
 (5.7)

With a unit step input, we obtain

 
ω
ζω ω( )

( ) =
+ +

Y s
s s s

n

n n2
,

2

2 2
 (5.8)

from which it follows that

 1  
1

    sin   ,
β

ω β θ( ) ( )= − +ζω−y t e tt
nn  (5.9)

where β ζ θ ζ= − = −1 ,   cos   ,2 1  and ζ< <0 1. The response of this second- 
order system for various values of the damping ratio ζ  is shown in Figure 5.4. As 
ζ  decreases, the closed-loop poles approach the imaginary axis, and the response 
 becomes increasingly oscillatory.

The Laplace transform of the unit impulse is ( ) =R s 1, and therefore the output 
for an impulse is

 
ω

ζω ω
( ) =

+ +
Y s

s s
n

n n2
.

2

2 2
 (5.10)

The response for an impulse function input is then

    sin   ,
ω
β

ω β( ) ( )= ζω−y t e tn t
nn  (5.11)

(a) (b)

vn
2

s(s + 2zvn)
G(s) =

R(s) Y(s)
1

-1

vn
2

s(s + 2zvn)
G(s) =

+

-
R(s)

2nd-order system

Y(s)

FIGURE 5.3
Second-order 
closed-loop control 
system.
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326 Chapter 5  The Performance of Feedback Control Systems

which is the derivative of the response to a step input. The impulse response of the 
second-order system is shown in Figure 5.5 for several values of the damping ratio ζ .

Standard performance measures are often defined in terms of the step response 
of the closed-loop system as shown in Figure 5.6. The swiftness of the response is 
measured by the rise time Tr  and the peak time Tp.  For underdamped systems with 
an overshoot, the 0–100% rise time is a useful index. If the system is overdamped, 
then the peak time is not defined, and the 10–90% rise time Tr1 is normally used. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

y(t)

0 2 4 6 8 10 12 14
vn t

z = 0.1

0.2

0.4

0.7

2.0

1.0

FIGURE 5.4
Transient  response 
of a second- order 
system for a step 
input.

y(t)
vn
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0.0
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-0.6
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1.0

z = 0.10

vn t

 0.25
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FIGURE 5.5
Response of a 
 second-order 
 system for an 
 impulse input.
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Section 5.3 Performance of Second-Order Systems 327

The similarity with which the actual response matches the step input is measured 
by the percent overshoot and settling time Ts. The percent overshoot is defined as

 
υ

υ
=

−
×P O

M f
f

Pt. .
 

  100% (5.12)

for a unit step input, where Mpt  is the peak value of the time response, and υf  is the 
final value of the response. Normally, υf  is the magnitude of the input, but many 
systems have a final value significantly different from the desired input magnitude. 
For the system with a unit step represented by Equation (5.8), we have υ =f 1.

The settling time, Ts, is defined as the time required for the system to settle 
within a certain percentage δ  of the input amplitude. This band of δ±  is shown in 
Figure 5.6. For the second-order system with closed-loop damping constant ζωn  and 
a  response described by Equation (5.9), we seek to determine the time Ts for which 
the  response remains within 2% of the final value. This occurs approximately when

<ζω−e Tn s   0.02,

or

ζω ≅Tn s 4.

Therefore, we have

 τ
ζω

= =Ts
n

4
4

. (5.13)

Hence, we define the settling time as four time constants (that is, τ ζω= /1 )n  of the 
dominant roots of the characteristic equation. The steady-state error of the system 
may be measured on the step response of the system as shown in Figure 5.6.

Mpt

Overshoot
1.0 + d

1.0 - d

1.0

0.1
0

0.9
y(t)

y(t)

ess

fv

Tr1

Tr
Rise time

Tp
Peak
time

Ts
Settling

time

Time

FIGURE 5.6
Step response of 
a second-order 
system.
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328 Chapter 5  The Performance of Feedback Control Systems

The transient response of the system may be described in terms of two factors:

1. The swiftness of response, as represented by the rise time and the peak time.

2. The closeness of the response to the desired response, as represented by the overshoot 
and settling time.

As it turns out, these are often contradictory requirements; thus, a compromise 
must be obtained. To obtain an explicit relation for Mpt  and Tp  as a function of ζ , 
one can differentiate Equation (5.9) and set it equal to zero yielding

    sin 0,y t e tn J t
nn� ω

β
ω β( )( ) = =ω−

which is equal to zero when ,t nnω β π=  where =n 0,  1,  2,  . . .  . The first nonzero 
time this is equal to zero is when =n 1. Thus, we find that the peak time relation-
ship for this second-order system is

 Tp
n

π

ω ζ
=

−  1
,

2
 (5.14)

and the peak response is

 M ept = + ζπ ζ− / −1 1 2
. (5.15)

Therefore, the percent overshoot is

 = ζπ ζ− / −. . 100 .1 2
P O e  (5.16)

The percent overshoot versus the damping ratio, ζ , is shown in Figure 5.7. Also, 
the normalized peak time, Tn pω ,  is shown versus the damping ratio, ζ , in Figure 
5.7. Upon inspection of Figure 5.7, we see that we are confronted with a neces-
sary compromise between the swiftness of response and the allowable percent 
overshoot.
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Percent overshoot 
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damping ratio 
ζ  for a second- 
order  system 
(Equation 5.8).
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Section 5.3 Performance of Second-Order Systems 329
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FIGURE 5.8
Normalized rise 
time, Tr11, versus ζ  
for a second-order 
system.
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FIGURE 5.9
The step response 
for ζ = 0.2 for 
ω =n 1  and 
ω =n 10.

The swiftness of step response can be measured as the time it takes to rise from 
10% to 90% of the magnitude of the step input. This is the definition of the rise time, 
Tr ,1  shown in Figure 5.6. The normalized rise time, ω Tn r ,1  versus ζ ζ( )≤ ≤0.05 0.95  
is shown in Figure 5.8. Although it is difficult to obtain exact analytic expressions 
for Tr ,1  we can utilize the linear approximation

 
2.16 0.60

,1
ζ
ω

=
+

Tr
n

 (5.17)

which is accurate for ζ≤ ≤0.3 0.8. This linear approximation is shown in Figure 5.8.
The swiftness of a response to a step input as described by Equation (5.17) is 

dependent on ζ  and ωn. For a given ζ , the response is faster for larger ωn,  as shown 
in Figure 5.9. Note that the percent overshoot is independent of ωn.
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330 Chapter 5  The Performance of Feedback Control Systems

For a given ωn,  the response is faster for lower ζ , as shown in Figure 5.10. The 
swiftness of the response, however, will be limited by the overshoot that can be 
accepted.

5.4  EFFECTS OF A THIRD POLE AND A ZERO ON THE SECOND-ORDER 
SYSTEM RESPONSE

The curves presented in Figure 5.7 are exact only for the second-order system 
of Equation (5.8). However, they provide important information because many 
 systems possess a dominant pair of roots and the step response can be estimated 
by utilizing Figure 5.7. This approach, although an approximation, avoids the 
 evaluation of the inverse Laplace transformation in order to determine the percent 
overshoot and other performance measures. For example, for a third-order system 
with a closed-loop transfer function

 
ζ γ( )

( )
( )

=
+ + +

T s
s s s

1
2 1 1

,
2

 (5.18)

the s-plane diagram is shown in Figure 5.11. This third-order system is normalized 
with ω =n 1. The performance (as indicated by the percent overshoot, P.O., and the 
settling time, Ts), is adequately represented by the second-order system approxima-
tion when [4]

γ ζω/ ≥ n1 10 .

In other words, the response of a third-order system can be approximated by the 
dominant roots of the second-order system as long as the real part of the dominant 
roots is less than one tenth of the real part of the third root [15, 20].

Consider the third-order system

ζω γ( )
( )

( )
=

+ + +
T s

s s sn
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FIGURE 5.10
The step response 
for ω =n 5 with 
ζ = 0.7 and ζ = 1.
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Section 5.4  Effects of a Third Pole and a Zero on the Second-Order System Response 331

where ω =n 1.0, ζ = 0.45, and γ = 1.0. In this case, 1 10 nγ ζω/ ≥/ . The system  
poles are at = − ±s i0.45 0.891,2  and = −s 1.03 . As illustrated in Figure 5.12, the 
percent overshoot is =P O. . 10.9%, the settling time (to within 2% of the final 
value) is =Ts 8.84  s, and the rise time =Tr 2.161  s. Suppose that we have  another 
third-order system with ω =n 1.0, ζ = 0.45, and γ = 0.22. Then the system poles 
are at = − ±s i0.45 0.891,2  (the same as the first system) and = −s 4.5.3  In this case, 

γ ζω/ ≥ n1 10  and the complex poles pair are the dominant poles. As  illustrated in 
Figure 5.12, the percent overshoot is =P O. . 20.0%, the settling time is =Ts 8.56 s,  

= poles of the
 closed-loop
 system 1

jv

s
-z1

g
-

FIGURE 5.11
An s-plane diagram 
of a third-order 
system.
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1
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FIGURE 5.12
Comparison of two 
third-order systems 
with a  second-order 
 system (dashed 
line)  illustrating the 
concept of  dominant 
poles when 

γ ζω/ ≥ n1 10 .
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332 Chapter 5  The Performance of Feedback Control Systems

and the rise time =Tr 1.6 s1 . When  the complex pair of poles are the dominant 
poles, we can create the second-order system approximation

ˆ 1
2 1

1
0.9 12 2ζω

( ) =
+ +

=
+ +

T s
s s s sn

and we would expect the percent overshoot, settling time, and rise time to be P.O. =  

ζω= = / =ζπ ζ− / −100 20.5%,   4 8.891 2
e Ts n  s, and ζ ω( )= + / =2.16 0.61Tr n  1.57 s, 

respectively. In Figure 5.12, it is evident that for the third-order system satisfying 
the condition 1 10 nγ ζω/ ≥ , the step response more closely matches the response of 
the second-order system, as expected.

The performance measures associated with the second-order system in 
Equation (5.10) are precise only for transfer functions without finite zeros. If the 
transfer function of a system possesses a finite zero and it is located relatively 
near the dominant complex poles, then the zero will materially affect the transient 
 response of the system. In other words, the transient response of a system with one 
zero and two poles may be affected by the location of the zero [5]. Consider a sys-
tem with the system transfer function

ω

ζω ω
( )

( )
( )

=
/ +

+ +
T s

a s a

s s
n

n n2
.

2

2 2

We can investigate the response of the system compared to a second-order sys-
tem without the finite zero. Suppose that ζ = 0.45  and let ζω/ = 0.5,  1,  2a n , and 
10.0. The resulting unit step responses are shown in Figure 5.13. As the ratio ζω/a n  
 increases, the finite zero moves farther into the left half-plane and away from the 
poles, and the step response approaches the second-order system response, as 
expected.

The correlation of the time-domain response of a system with the s-plane 
 location of the poles of the closed-loop transfer function is a key concept in under-
standing system performance in the closed-loop.

EXAMPLE 5.1 Parameter selection

A single-loop feedback control system is shown in Figure 5.14. We need to select 
the controller gain K and the parameter p so that the time-domain specifications 
are satisfied. The transient response to a unit step is specified to have a percent 
overshoot of ≤P O. . 5% and a settling time to within 2% of the final value of 

≤ 4 sTs . For second-order systems, we know the relationship in Equation (5.16) 
between percent overshoot and ζ, and the relationship in Equation (5.13) be-
tween settling time and ζωn . Solving for ≤P O. . 5% yields ζ ≥ 0.69 and solving for 

≤ 4 sTs  yields ζω ≥n 1.
The region that will satisfy both time-domain requirements is shown on the  

s-plane of Figure 5.15. To meet the performance specifications, we can choose  
ζ ( )= =P O0.707  . . 4.3%  and ζω = =1 ( 4 s)Tn s . Hence, the desired closed-loop  
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poles are = − +r j1 11  and = − −r jˆ 1 11 . Therefore, ζ = /1 2  and ωn = ζ/ =1 2.  
The closed-loop transfer function is

T s
G s G s

G s G s
K

s ps K s s
c

c

n

n n

ω
ζω ω

( ) ( ) ( )
( ) ( )

=
+

=
+ +

=
+ +1 2  

.
2

2

2 2

Solving for K and p yields K nω= = 22  and ζω= =p n2 2.  Since this is exactly a 
second-order system of the form in Equation (5.7), the time-domain performance 
specifications will be precisely satisfied. 
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FIGURE 5.13
The response for 
the second-order 
transfer function 
with a zero for four 
values of the ratio 

ζω/ =a n 0.5,  1,  2,  
and 10.0 when 
ζ = 0.45.
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 feedback control 
system.
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334 Chapter 5  The Performance of Feedback Control Systems

EXAMPLE 5.2 Impact of a zero and an additional pole

Consider a system with a closed-loop transfer function

ω

ζω ω τ( )
( )
( )

( )
( )

( )
= =

+

+ + +
Y s
R s

T s a s a

s s s

n

n n

 

2 1
.

2

2 2

Both the zero and the real pole may affect the transient response. If ζω�a n    and 
τ ζω/� 1 ,n  then the pole and zero will have minimal effect on the step response.

Suppose that we have
1.6 2.5

6 25 0.16 1
.

2( )
( )

( )
( )

=
+

+ + +
T s

s
s s s

Note that the DC gain is ( ) =T 0 1, and we expect a zero steady-state error for a step 
input. Comparing the two transfer functions, we determine that ζω τ= =n 3,   0.16, 
and =a 2.5. The poles and the zero are shown on the s-plane in Figure 5.16. As an 
approximation, we neglect the real pole and zero to obtain

25
6 25

.2( ) ≈
+ +

T s
s s

FIGURE 5.15
Specifications and 
root locations on 
the s-plane.
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FIGURE 5.16
The poles and zeros 
on the s-plane for a 
third-order system.
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Section 5.5 The s-Plane Root Location and the Transient Response 335

We now have ζ = 0.6  and ω =n 5  for dominant poles. For this second-order system 
we expect

ζω
= = = =πζ ζ− / −T P O es

n

4
1.33 s and . . 9.5%.100 1 2

For the actual third-order system, we find that the =P O. . 38% and the Ts = 1.6 s.  
Thus, the effect of the third pole and zero of ( )T s  cannot be neglected. This is ex-
pected since ζω�a n and τ ζω/� 1 n. ■

The damping ratio plays a fundamental role in closed-loop system performance. 
As seen in the design formulas for settling time, percent overshoot, peak time, and 
rise time, the damping ratio is a key factor in determining the overall performance. 
In fact, for second-order systems, the damping ratio is the only factor determining 
the value of the percent overshoot to a step input. As it turns out, the damping 
ratio can be estimated from the response of a system to a step input [12]. The step 
response of a second-order system for a unit step input is given in Equation (5.9) 
yields the frequency of the damped sinusoidal term (for ζ < 1) of

  1   ,2 1 2
n nω ω ζ ω β( )= − =

/

and the number of cycles in 1 second is ω π( )/ 2 .
The time constant for the exponential decay is τ ζω( )= /1 n  in seconds. The 

number of cycles of the damped sinusoid during one time constant is

(cycles time)
2 2 2

.
n

n

n
τ

ω
πζω

ω β
πζω

β
πζ

/ × = = =

Assuming that the response decays in n visible time constants, we have

 
β

πζ
=

n
cycles visible

2
. (5.19)

For the second-order system, the response remains within 2% of the steady-state 
value after four time constants τ( )4 . Hence, =n 4, and

 
β
πζ

ζ

πζ ζ
( )

= =
−

/

�cycles visible
4
2

4 1  

2
 

0.6
 

2 1 2

 (5.20)

for ζ≤ ≤0.2 0.6.  From the step response, you count the number of cycles visible 
up to the settling time, and use Equation (5.20) to estimate ζ,

An alternative method of estimating ζ  is to determine the percent overshoot 
for the step response and use Equation (5.16) to estimate ζ .

5.5 THE s-PLANE ROOT LOCATION AND THE TRANSIENT RESPONSE

The transient response of a closed-loop feedback control system can be described in 
terms of the location of the poles of the transfer function. The closed-loop transfer 
function is written in general as

T s
Y s
R s

P s s

s
i i∑( ) ( )

( )
( ) ( )

( )
= =

∆

∆

 
,
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336 Chapter 5  The Performance of Feedback Control Systems

where ( )∆ =s 0 is the characteristic equation of the system. For a unity negative 
feedback  control system the characteristic equation reduces to ( ) ( )+ =G s G sc1 0. It 
is the poles and zeros of ( )T s  that determine the transient response. However, for 
a closed-loop system, the poles of ( )T s  are the roots of the characteristic equation 

( )∆ =s 0. The output of a system (with DC =gain 1) without repeated roots and a 
unit step input can be formulated as a partial fraction expansion as

 ∑ ∑σ α α ω( )
( ) = +

+
+

+
+ + += =

Y s
s

A
s

B s C
s si

M
i

i k

N
k k

k k k

1
2

,
1 1

2 2 2
 (5.21)

where the A Bi k,   ,  and Ck  are constants. The roots of the system must be either 
σ= −s i  or complex conjugate pairs such as α ω= − ±s jk k .  Then the inverse trans-

form results in the transient response as the sum of terms

 ∑ ∑ ω θ( ) ( )= + + +σ α

=

−

=

−y t A e D e t
i

M

i
t

k

N

k
t

k ki k1  sin ,
1 1

 (5.22)

where Dk  is a constant and depends on αB Ck k k,   ,   ,  and ωk .  The transient response 
is composed of the steady-state output, exponential terms, and damped sinusoidal 
terms. For the response to be stable—that is, bounded for a step input—the real part 
of the poles must be in the left-hand portion of the s-plane. The impulse response 
for various root locations is shown in Figure 5.17. The information imparted by the 
location of the roots is very descriptive.

It is important for the control system designer to understand the complete re-
lationship of the frequency domain representation of a linear system, the poles and 
zeros of its transfer function, and its time-domain response to step and other  inputs. 
In such areas as signal processing and control, many of the analysis and design cal-
culations are done in the s-plane, where a system model is represented in terms of 
the poles and zeros of its transfer function ( )T s . On the other hand, system perfor-
mance is often analyzed by examining time-domain responses, particularly when 
dealing with control systems.

t

jv

s

1 1 1

1 1

0

1

0

FIGURE 5.17
Impulse response 
for various root 
locations in the 
s-plane. (The 
 conjugate root is 
not shown.)
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Section 5.6 The Steady-State Error of Feedback Control Systems 337

The control system designer will envision the effects on the step and impulse 
responses of adding, deleting, or moving poles and zeros of ( )T s  in the s-plane. 
Likewise, the designer should visualize the necessary changes for the poles and 
zeros of ( )T s , in order to effect desired changes in the step and impulse responses.

An experienced designer is aware of the effects of zero locations on system 
response, as well. The poles of ( )T s  determine the particular response modes 
that will be present, and the zeros of ( )T s  establish the relative weightings of 
the   individual mode functions. For example, moving a zero closer to a specific 
pole will reduce the relative contribution to the output response. In other words, 
the zeros have a direct impact on the values of Ai and Dk in Equation (5.22). For 
example, if there is a zero near the pole at σ= −s i, then Ai will be much smaller 
in magnitude.

5.6 THE STEADY-STATE ERROR OF FEEDBACK CONTROL SYSTEMS

One of the fundamental reasons for using feedback, despite its cost and increased 
complexity, is the attendant improvement in the reduction of the steady-state 
error of the system. The steady-state error of a stable closed-loop system is usually 
 several orders of magnitude smaller than the error of an open-loop system. The 
system actuating signal, which is a measure of the system error, is denoted as .E sa( )  
Consider a unity negative feedback system. In the absence of external  disturbances, 

( ) =T sd 0, and measurement noise, ( ) =N s 0, the tracking error is

E s
G s G s

R s
c

1
1

   .( )
( ) ( )

( )=
+

Using the final value theorem and computing the steady-state tracking error yields

 e t e s
G s G s

R s
t s c
lim   lim  

1
1

   .ss
0

( )
( ) ( )

( )= =
+→∞ →

 (5.23)

It is useful to determine the steady-state error of the system for the three stan-
dard test inputs for the unity feedback system. Later in this section we will consider 
steady-state tracking errors for nonunity feedback systems.

Step Input. The steady-state error for a step input of magnitude A is therefore

e
s A s

G s G s
A
G s G ss c

s
c

lim  
1 1 lim  

.ss
0

0

( )
( ) ( ) ( ) ( )

=
/

+
=

+→
→

It is the form of the loop transfer function G s G sc( ) ( ) that determines the steady-
state error. The loop transfer function is written in general form as

 G s G s

K s z

s s p
c

i

M

i

N

k

Q

k

 

   

,1

1

∏

∏ ( )
( ) ( )

( )
=

+

+

=

=

 (5.24)

where ∏  denotes the product of the factors and ≠ ≠z pi k0,   0  for any ≤ ≤i M1  
and ≤ ≤i k Q.  Therefore, the loop transfer function as s approaches zero depends 
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338 Chapter 5  The Performance of Feedback Control Systems

on the number of integrations, N. If N is greater than zero, then G s G s
s

clim  
0

( ) ( )
→

  

approaches infinity, and the steady-state error approaches zero. The number of integra-
tions is often indicated by labeling a system with a type number that is equal to N.

Consequently, for a type-zero system, =N 0, the steady-state error is

 e
A

G G
A

K z p
c

i

M

i
k

Q

k
1 0 0

1  

.ss

1 1
∏ ∏

( ) ( )
=

+
=

+ /
= =

 (5.25)

The constant G Gc 0 0( ) ( ) is denoted by Kp,  the position error constant, and is given by

K G s G sp
s

clim   .
0

( ) ( )=
→

The steady-state tracking error for a step input of magnitude A is thus given by

 e
A

Kp
=

+1
.ss  (5.26)

Hence, the steady-state error for a unit step input with one integration or more, 
≥N 1, is zero because

 lim  
1  

lim   0.ss
0 0∏ ∏ ∏ ∏( )

=
+ /

=
+ /

=
→ →

e
A

K z s p

As

s K z ps
i

N
k

s

N

N
i k

 (5.27)

Ramp Input. The steady-state error for a ramp (velocity) input with a slope A is

 e
s A s

G s G s
A

s sG s G s
A

sG s G ss c s c s c
lim  

 

1
lim   lim   .ss

0

2

0 0

( )
( ) ( ) ( ) ( ) ( ) ( )

=
/

+
=

+
=

→ → →
 (5.28)

Again, the steady-state error depends upon the number of integrations, N. For a 
type-zero system, =N 0, the steady-state error is infinite. For a type-one system, 

=N 1,  the error is

lim  
[ ]

,ss
0 ∏ ∏( )( )

=
+ / +→

e
A

sK s z s s ps i k

or

 e
A

K z p

A
K

i k∏ ∏
=

/
=

υ
,ss  (5.29)

where Kυ  is designated the velocity error constant. The velocity error constant is 
computed as

K sG s G s
s

clim   .
0

( ) ( )=υ
→

When the transfer function possesses two or more integrations, ≥N 2,  we obtain 
a steady-state error of zero. When =N 1,  a steady-state error exists. However, 
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Section 5.6 The Steady-State Error of Feedback Control Systems 339

the steady-state velocity of the output is equal to the velocity of input, as we shall 
see shortly.

Acceleration Input. When the system input is ( ) = /2,2r t At  the steady-state error is

 e
s A s

G s G s
A

s G s G ss c s c
lim  

1
lim  

 
.ss

0

3

0 2

( )
( ) ( ) ( ) ( )

=
/

+
=

→ →
 (5.30)

The steady-state error is infinite for one integration. For two integrations, =N 2, 
and we obtain

 e
A

K z p

A
Ki k a∏ ∏

=
/

= ,ss  (5.31)

where Ka    is designated the acceleration error constant. The acceleration error 
constant is

K s G s G sa
s

clim     .
0

2 ( ) ( )=
→

When the number of integrations equals or exceeds three, then the steady-state 
error of the system is zero.

Control systems are often described in terms of their type number and the error 
constants, K Kp υ,   ,  and Ka .  Definitions for the error constants and the steady-state 
error for the three inputs are summarized in Table 5.2.

EXAMPLE 5.3 Mobile robot steering control

A mobile robot may be designed as an assisting device or servant for a severely dis-
abled person [7]. The steering control system for such a robot can be represented 
by the block diagram shown in Figure 5.18. The steering controller is

 G s K K sc .1 2( ) = + /  (5.32)

Table 5.2 Summary of Steady-State Errors

Number of 
Integrations  
in Gc s G s ,( ) ( )   
Type Number

Input

Step, =( )r t A,   
( ) = /R s A s

Ramp, =( )r t At,  
( ) = /R s A s  2

Parabola, ( ) = /r t At 2,2  
R(s) = A/s3

0
e

A
Kp

=
+1

 ss
∞ ∞

1 = 0sse
A

Kυ

∞

2 = 0sse 0 A
Ka

M05_DORF2374_14_GE_C05.indd   339M05_DORF2374_14_GE_C05.indd   339 14/09/21   10:15 AM14/09/21   10:15 AM



340 Chapter 5  The Performance of Feedback Control Systems

Therefore, the steady-state error of the system for a step input when =K 02  and 
G s Kc 1( ) =  is

 e
A

Kp
=

+1
,ss  (5.33)

where K KKp = .1  When K  2  is greater than zero, we have a type-1 system,

G s
K s K

s
c ,1 2( ) =

+

and the steady-state error is zero for a step input.
If the steering command is a ramp input, the steady-state error is

 e
A

K
=

υ
,ss  (5.34)

where

K sG s G s K K
s

clim   .
0

2( ) ( )= =υ
→

The transient response of the vehicle to a triangular wave input when 
G s K s K sc 1 2( ) ( )= + /  is shown in Figure 5.19. The transient response clearly shows 
the effect of the steady-state error, which may not be objectionable if υK  is suffi-
ciently large. Note that the output attains the desired velocity as required by the 
input, but it exhibits a steady-state error. ■

The control system error constants, K Kp υ,   , and Ka , describe the ability of a 
system to reduce or eliminate the steady-state error. Therefore, they are utilized as 
numerical measures of the steady-state performance. The designer determines the 
error constants for a given system and attempts to determine methods of increasing 

-

K
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Desired
heading angle
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Y(s)

Actual
heading angle

+FIGURE 5.18
Block diagram of 
steering control 
system for a mobile 
robot.
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Input

Output
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t

FIGURE 5.19
Triangular wave 
response.
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Section 5.6 The Steady-State Error of Feedback Control Systems 341

the error constants while maintaining an acceptable transient response. In the case 
of the steering control system, we want to increase the gain factor KK2  in order to 
increase Kυ  and reduce the steady-state error. However, an increase in KK2  re-
sults in an attendant decrease in the system damping ratio ζ  and therefore a more 
oscillatory response to a step input. Thus, we seek a compromise that provides the 
largest Kυ  based on the smallest ζ  allowable.

In the preceding discussions, we assumed that we had a unity feedback system. 
Now we consider nonunity feedback systems. For a system in which the feedback 
is not unity, the units of the output Y s( )  are usually different from the output of 
the sensor. For example, a speed control system is shown in Figure 5.20. The con-
stants K1 and K2  account for the conversion of one set of units to another set of 
units (here we convert rad/s to volts). We can select K ,1  and thus we set =K K1 2  
and move the block for K1 and K2  past the summing node. Then we obtain the 
equivalent block diagram shown in Figure 5.21. Thus, we obtain a unity feedback 
system as desired.

Consider a nonunity negative feedback system with the system H s( )  in the 
feedback loop given by

1
 2

τ
( ) =

+
H s

K
s

which has a DC gain of

( ) =
→

H s K
s
lim   .

0
2

If we set =K K ,2 1  then the system is transformed to that of Figure 5.21 for the 
steady-state calculation. To see this, consider error of the system E s( ), where

 [1 ] ,E s R s Y s T s R s( ) ( ) ( ) ( ) ( )= − = −  (5.35)

since .Y s T s R s( ) ( ) ( )=  Note that

1
1

1
,1 1

1
T s

K G s G s
H s G s G s

s K G s G s
s K G s G s

c

c

c

c

τ
τ

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

=
+

=
+

+ +

Gc(s) G(s)
VoltsVolts

Volts K2

Controller

+

-
Sensor

Y(s)
Speed
(rad/s)

Process
R(s)

Desired
speed

(rad/s)

K1

FIGURE 5.20
A speed control 
system.

Ea(s) Volts Gc(s)G(s)
+

-

Y(s)
(rad/s)

R(s)
(rad/s)

K1FIGURE 5.21
The speed 
control system of 
Figure 5.20 with 

=K K .1 2
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342 Chapter 5  The Performance of Feedback Control Systems

and therefore,

E s
s K G s G s

s K G s G s
R sc

c

1 1

1
  .1

1

τ
τ

( )
( )

( ) ( )
( ) ( )

( )=
+ −

+ +

Then the steady-state error for a unit step input is

 e sE s
K G s G ss

s
c

lim  
1

1 lim  
.ss

0 1
0

( )
( ) ( )

= =
+→

→

 (5.36)

We assume here that

sG s G s
s

clim   0.
0

( ) ( ) =
→

EXAMPLE 5.4 Steady-state error

Let us determine the appropriate value of K1 and calculate the steady-state error 
for a unit step input for the system shown in Figure 4.4 when

G s G s
s

H s
s

c 40,  
1

5
,  and 

2
0.1 1

.( ) ( ) ( )= =
+

=
+

Selecting = =K K 2,1 2  we can use Equation (5.36) to determine

e
K G s G s

s
c

1
1 lim  

1
1 2 40 1 5

1
17

,ss
1

0
( )( ) ( ) ( )

=
+

=
+ /

=

→

or 5.9% of the magnitude of the step input. ■

EXAMPLE 5.5 Nonunity feedback control system

Let us consider the system of Figure 5.22, where we assume we cannot insert a gain 
K1 following ( )R s  as we did for the system of Figure 5.20. Then the actual error is 
given by Equation (5.35), which is

[1 ] .E s T s R s( ) ( ) ( )= −

Let us determine an appropriate gain K so that the steady-state error to a step input 
is minimized. The steady-state error is

( )= −
→

e s T s
ss

lim   [1 ]
1

,ss
0

where

T s
G s G s

G s G s H s
K s

s s K
c

c1
4

2 4 2
.( ) ( ) ( )

( ) ( ) ( )
( )

( )( )
=

+
=

+
+ + +

Then we have

( ) =
+

T
K

K
0

4
8 2

.
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Section 5.6 The Steady-State Error of Feedback Control Systems 343

The steady-state error for a unit step input is

( )= −e T1 0 .ss

Thus, to achieve a zero steady-state error, we require that

0
4

8 2
1,( ) =

+
=T

K
K

or + =K K8 2 4 . Thus, =K 4 will yield a zero steady-state error. It is unlikely that 
meeting a steady-state error specification is the only requirement of the feedback 
control system, so choosing the control as a gain with only one parameter to adjust 
is probably not practical. ■

The determination of the steady-state error is simpler for unity feedback 
 systems. However, it is possible to extend the notion of error constants to nonunity 
feedback systems by first appropriately rearranging the block diagram to obtain an 
equivalent unity feedback system. Remember that the underlying system must be 
stable, otherwise our use of the final value theorem will be compromised. Consider 
the nonunity feedback system in Figure 5.21 and assume that =K 1.1  The closed-
loop transfer function is

Y s
R s

T s
G s G s
H s G s G s

c

c1
.

( )
( )

( ) ( ) ( )
( ) ( ) ( )

= =
+

By manipulating the block diagram appropriately we can obtain the equivalent 
unity feedback system with

Y s
R s

T s
Z s

Z s
s

G s G s
G s G s H s

c

c1
 where Z

1 ( 1)
.

( )
( )

( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

= =
+

=
+ −

The loop transfer function of the equivalent unity feedback system is ( )Z s . It fol-
lows that the error constants for nonunity feedback systems are given as:

K Z s K sZ s s Z sp
s s

a
s

( ) ( ) ( )= = =υ
→ → →

lim   ,   lim   ,  and K lim     .
0 0 0

2

Note that when 1,H s( ) =  then Z s G s G sc( ) ( ) ( )=  and we maintain the unity 
feedback error constants. For example, when 1,H s( ) =  then lim     lim ,

0 0
K Z s G s G sp

s s
c( ) ( ) ( )= =

→ →
 

lim     lim ,
0 0

K Z s G s G sp
s s

c( ) ( ) ( )= =
→ →

 as expected.

Controller

+

-

2
s + 4

1
s + 2

K

Sensor

Process

Ea(s)
R(s) Y(s)

FIGURE 5.22
A system with a 
feedback ( )H s .
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344 Chapter 5  The Performance of Feedback Control Systems

5.7 PERFORMANCE INDICES

Modern control theory assumes that we can specify quantitatively the required 
system performance. Then a performance index can be calculated or measured 
and used to evaluate the system performance. Quantitative measures of the per-
formance of a system are very valuable in the design and operation of control 
systems.

A system is considered an optimum control system when the system parameters 
are adjusted so that the index reaches an extremum, commonly a minimum value. 
To be useful, a performance index must be a number that is always positive or zero. 
Then the best system is defined as the system that minimizes this index.

A performance index is a quantitative measure of the performance of a system 
and is chosen so that emphasis is given to the important system specifications.

A common performance index is the integral of the square of the error, ISE, 
which is defined as

 ∫ ( )=ISE     .
0

2e t dt
T

 (5.37)

The upper limit T is a finite time selected by the control system designer. It is 
convenient to choose T as the settling time Ts. The step response for a specific 
feedback control system is shown in Figure 5.23(b), and the error in Figure 5.23(c). 
The error squared is shown in Figure 5.23(d), and the integral of the error squared 
in Figure 5.23(e). This criterion will discriminate between excessively overdamped 
and  excessively underdamped systems. The minimum value of the integral occurs 
for a compromise value of the damping. The performance index of Equation (5.37) 
is mathematically convenient for analytical and computational purposes.

Three other performance indices we might consider include

 ∫ ( )= e t dt
T

IAE   ,
0

 (5.38)

 ∫ ( )= t e t dt
T

ITAE   ,
0

 (5.39)

and

 ∫ ( )=ITSE   .
0

2te t dt
T

 (5.40)

The ITAE is able to reduce the contribution of any large initial errors, as well as 
to emphasize errors occurring later in the response [6]. The performance index 
ITAE provides the best selectivity of the performance indices; that is, the min-
imum value of the integral is readily discernible as the system parameters are 
varied.
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Section 5.7 Performance Indices 345

The general form of the performance integral is

 ∫ ( ) ( ) ( )=   ( ,   ,   ,   )  ,
0

I f e t r t y t t dt
T

 (5.41)

where f is a function of the error, input, output, and time. We can obtain numerous 
indices based on various combinations of the system variables and time.

EXAMPLE 5.6 Space telescope control system

Consider a space telescope pointing control system shown in Figure 5.24 [9]. We 
 desire to select the magnitude of the gain, K ,3  to minimize the effect of the dis-
turbance, ( )T sd . The closed-loop transfer function from the disturbance to the 
output is

 
Y s
T s

s s K K
s K K s K K Kd p

( )
( )

( )
=

+
+ + 

.1 3
2

1 3 1 2
 (5.42)

(a)

(b)

(d)

(e)

A

A

A

A2

0

0

0

0

0

r(t)

y(t)

e(t)

e2(t)

µe2(t) dt

(c)

t

FIGURE 5.23
The calculation 
of the Integral 
squared error.
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346 Chapter 5  The Performance of Feedback Control Systems

Typical values for the constants are =K 0.51  and K K Kp = 2.5.1 2  In this case, the 
goal is to minimize ( )y t , where, for a unit step disturbance, the minimum ISE can be 
analytically calculated. The attitude is

 
β

β
ψ( ) = +





















−y t e tK t10
   sin

2
 0.25 3  (5.43)

where β = − /10 4.3
2K  Squaring ( )y t  and integrating the result yields

∫ ∫β
β

ψ
β

β ψ( )= +






 = − +









− −
∞ ∞

 
10

    sin  
2

      
10

    
1
2

1
2

  cos 2  
0

2
0.5 2

0
2

0.53 3I e t dt e t dtK t K t  

 (5.44)
1

0.1 .
3

3= +
K

K

Differentiating I and equating the result to zero, and solving for K3, we obtain

 0.1 0.
3

3
2= − + =−dI

dK
K  (5.45)

K2

(b)

(a)

s
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K1
s Y(s)
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X(s)1 1 1

1

Position feedback

- K3 Damping

- Kp

- -

+

+

+
R(s)

Y(s)
Attitude

K1

s

K2

s

Disturbance
Td(s)

Disturbance
Td(s)

X(s)

Position feedback

K3

Kp

Damping

FIGURE 5.24
A space telescope 
pointing control 
system. (a) Block 
diagram. (b) Signal-
flow graph.
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Section 5.7 Performance Indices 347

Therefore, the minimum ISE is obtained when = =K 10 3.2.3  This value of K3  
corresponds to a damping ratio ζ = 0.50 . The values of ISE and IAE for this system 
are plotted in Figure 5.25. The minimum for the IAE performance index is obtained 
when =K 4.23  and ζ = 0.665. While the ISE criterion is not as selective as the IAE 
criterion, it is clear that it is possible to solve analytically for the minimum value of 
ISE. The minimum of IAE is obtained by computing the actual value of IAE for 
several values of the parameter of interest. ■

A control system is optimum when the selected performance index is  minimized. 
However, the optimum value of the parameters depends directly on the definition 
of optimum, that is, the performance index. Therefore, in Example 5.6, we found 
that the optimum setting varied for different performance indices.

The coefficients that will minimize the ITAE performance criterion for a step 
input have been determined for the general closed-loop transfer function [6]

 
 

.0

1
1

1 0�
( )

( )
( )

= =
+ + + +−

−T s
Y s
R s

b
s b s b s bn

n
n

 (5.46)

This transfer function has a steady-state error equal to zero for a step input. Note 
that the transfer function has n poles and no zeros. The optimum coefficients for the 
ITAE criterion are given in Table 5.3. The responses using optimum coefficients 
for a step input are given in Figure 5.26 for ISE, IAE, and ITAE. The  responses are 
provided for normalized time ω tn . Other standard forms based on different perfor-
mance indices are available and can be useful in aiding the designer to determine 
the range of coefficients for a specific problem.

7 8 9 10654321

K3

I

1.5

1.3

1.1

0.9

0.7

0.5

IAE

ISE
FIGURE 5.25
The performance 
indices of the 
 telescope control 
system versus .3K

Table 5.3 The Optimum Coefficients of ( )T s  Based on the  
ITAE Criterion for a Step Input

ω+s n

ω ω+ +s sn n1.42 2

ω ω ω+ + +s s sn n n1.75 2.153 2 2 3

ω ω ω ω+ + + +s s s sn n n n2.1 3.4  2.74 3 2 2 3 4

ω ω ω ω ω+ + + + +s s s s sn n n n n2.8 5.0 5.5 3.45 4 2 3 3 2 4 5

ω ω ω ω ω ω+ + + + + +s s s s s sn n n n n n3.25 6.60 8.60 7.45 3.956 5 2 4 3 3 4 2 5 6
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FIGURE 5.26
Step responses 
of a normalized 
 transfer function 
using  optimum 
 coefficients for 
(a) ISE, (b) IAE, 
and (c) ITAE. The 
response is for 
 normalized time, 

.wn
t

For a ramp input, the coefficients have been determined that minimize the 
ITAE criterion for the general closed-loop transfer function [6]

 ( ) =
+

+ + + +−
− �

T s
b s b

s b s b s bn
n

n
.1 0

1
1

1 0
 (5.47)
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Section 5.8 The Simplification of Linear Systems 349

This transfer function has a steady-state error equal to zero for a ramp input. The 
optimum coefficients for this transfer function are given in Table 5.4. The transfer 
function, Equation (5.50), implies that the process ( )G s  has two or more pure inte-
grations, as required to provide zero steady-state error.

5.8 THE SIMPLIFICATION OF LINEAR SYSTEMS

It is quite useful to study complex systems with high-order transfer functions by 
using lower-order approximate models. Several methods are available for reduc-
ing the order of a systems transfer function. One relatively simple way to delete 
a  certain insignificant pole of a transfer function is to note a pole that has a neg-
ative real part that is much more negative than the other poles. Thus, that pole is 
 expected to affect the transient response insignificantly.

For example, if we have a system with transfer function

( )
( )( )

=
+ +

G s
K

s s s2 30
,

N
or

m
al

iz
ed

 r
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e
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(c)

Normalized time
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n = 2
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FIGURE 5.26
(Continued) 

Table 5.4 The Optimum Coefficients of ( )T s  Based 
on the ITAE Criterion for a Ramp Input

ω ω+ +s sn n3.22 2

ω ω ω+ + +s s sn n n1.75 3.253 2 2 3

ω ω ω ω+ + + +s s s sn n n n2.41 4.93 5.144 3 2 2 3 4

ω ω ω ω ω+ + + + +s s s s sn n n n n2.19 6.50 6.30 5.245 4 2 3 3 2 4 5
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350 Chapter 5  The Performance of Feedback Control Systems

we can safely neglect the impact of the pole at = −s 30.  However, we must retain 
the steady-state response of the system, so we reduce the system to

30
2

.
( )

( )
( )

=
/
+

G s
K

s s

A more sophisticated approach attempts to match the frequency response of the 
reduced-order transfer function with the original transfer function frequency re-
sponse as closely as possible. Although frequency response methods are covered in 
Chapter 8, the associated approximation method strictly relies on algebraic manip-
ulation and is presented here. Consider the high-order system be described by the 
transfer function

 
  1

  1
,1

1
1

1
1

1

�
�

( ) =
+ + + +
+ + + +

−
−

−
−G s K

a s a s a s
b s b s b s

H
m

m
m

m

n
n

n
n

 (5.48)

in which the poles are in the left-hand s-plane and ≤m n.  The lower-order approx-
imate transfer function is

 
1

1
,1

1

�
�

( ) =
+ + +
+ + +

G s K
c s c s

d s d s
L

p
p

g
g

 (5.49)

where ≤ <p g n.  Notice that the gain constant, K, is the same for the original and 
approximate system; this ensures the same steady-state response. The method out-
lined in Example 5.7 is based on selecting ci   and di   in such a way that G sL( ) has a 
frequency response very close to that of .G sH( )  This is equivalent to stating that 
G j G jH Lω ω( ) ( )/  is required to deviate the least amount from unity for various fre-
quencies. The c and d coefficients are obtained via

 M s
d
ds

M sk
k

k
( ) ( )=( )  (5.50)

and

 s
d
ds

sk
k

k
( ) ( )∆ = ∆( ) ,  (5.51)

where M s( ) and s( )∆  are the numerator and denominator polynomials of 
( ) ( )/ ,G s G sH L  respectively. We also define

 ∑ ( )
( ) ( ) ( )

=
−

−
= …

( )( )

=

+ −
M

M M
k q k

qq
k

q k q k q k
 

1   0 0
!  2 !

,   0,  1,  22
0

2 2
 (5.52)

and an analogous equation for ∆ q.2  The solutions for the c and d coefficients are 
obtained by equating

 = ∆M q q  2 2  (5.53)

for = …q 1,  2,  up to the number required to solve for the unknown coefficients.
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Section 5.8 The Simplification of Linear Systems 351

EXAMPLE 5.7 A simplified model

Consider the third-order system

 ( ) =
+ + +

=
+ + +

G s
s s s s s s

H
6

6 11 6
1

1
11
6

1
6

.
3 2 2 3

 (5.54)

Using the second-order model

 ( ) =
+ +

G s
d s d s

L
1

1
,

1 2
2

 (5.55)

we determine that

1 ,   and 1
11
6

 
1
6

  .1 2
2 2 3( ) ( )= + + ∆ = + + +M s d s d s s s s s

Then we know that

 ( ) = + +( )M s d s d s1 ,0
1 2

2  (5.56)

and ( ) =( )M 0 1.0  Similarly, we have

 ( )= + + = +( )M
d
ds

d s d s d d s  1 2 .1
1 2

2
1 2  (5.57)

Therefore, ( ) =( )M d0 .1
1  Continuing this process, we find that

( ) ( )= ∆ =( ) ( )0 1      0 1,0 0M

0        0
11
6

,  1
1

1( ) ( )= ∆ =( ) ( )M d

 ( ) ( )= ∆ =( ) ( )M d0 2     0 2,2
2

2  (5.58)

( ) ( )= ∆ =( ) ( )M 0 0     0 1.3 3

We now equate = ∆M q q  2 2  for =q 1 and 2. We find that, for =q 1,

  1
0 0

2
0 0

1
1

0 0
2

 2

0 2 1 1 2 0
( )

( ) ( ) ( ) ( )
( )

( ) ( )
= − + + −

( ) ( ) ( ) ( ) ( ) ( )
M

M M M M M M

          = − + − = − +d d d d d2 .2 1
2

2 2 1
2  (5.59)

Since the equation for ∆  2  is similar, we have

  1
0   0

2
0   0

1
1

0   0
2

 2

0 2 1 1 2 0
( )

( ) ( ) ( ) ( )
( )

( ) ( )
∆ = −

∆ ∆
+

∆ ∆
+ −

∆ ∆( ) ( ) ( ) ( ) ( ) ( )

                  = − + − =1
121
36

  1
49
36

.  (5.60)
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352 Chapter 5  The Performance of Feedback Control Systems

 Equation (5.53) with =q 1 requires that = ∆M ;2 2  therefore,

 − + =d d2
49
36

.2 1
2  (5.61)

Completing the process for = ∆M ,4 4  we obtain

 =d
7

18
.2

2  (5.62)

Solving Equations (5.61) and (5.62) yields =d 1.6151  and =d 0.624.2  (The other 
sets of solutions are rejected because they lead to unstable poles.) The lower-order 
system transfer function is

 
1

1 1.615 0.624
1.60

2.590 1.60
.2 2( ) =

+ +
=

+ +
G s

s s s s
L  (5.63)

It is interesting to see that the poles of G sH( ) are 1,   2,   3,s = − − −  whereas the 
poles of G sL( ) are = −s 1.024 and −1.565. Because the lower-order model has two 
poles, we estimate that we would obtain a slightly overdamped step response with a 
settling time to within 2% of the final value in approximately 3 seconds. ■

It is sometimes desirable to retain the dominant poles of the original system, 
,G sH( )  in the low-order model. This can be accomplished by specifying the denom-

inator of G sL( ) to be the dominant poles of G sH( ) and allowing the numerator of 
G sL( ) to be subject to approximation.

Another novel and useful method for reducing the order is the Routh ap-
proximation method based on the idea of truncating the Routh table used to de-
termine stability. The Routh approximants can be computed by a finite recursive 
algorithm [19].

5.9 DESIGN EXAMPLES

In this section we present two illustrative examples. The first example is a simpli-
fied view of the Hubble space telescope pointing control problem. The Hubble 
space telescope problem highlights the process of computing controller gains to 
achieve desired percent overshoot specifications, as well as meeting steady-state 
error  specifications. The second example considers the control of the bank angle 
of an airplane. The airplane attitude motion control example represents a more 
in-depth look at the control design problem. Here we consider a complex fourth- 
order model of the lateral dynamics of the aircraft motion that is approximated by 
a second- order model using the approximation methods of Section 5.8. The simpli-
fied model can be used to gain insight into the controller design and the impact of 
key controller parameters on the transient performance.

EXAMPLE 5.8 Hubble space telescope control

The orbiting Hubble space telescope is the most complex and expensive scien-
tific instrument that has ever been built. The telescope’s 2.4 meter mirror has the 
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Section 5.9 Design Examples 353

smoothest surface of any mirror made, and its pointing system can center it on a 
dime 400 miles away [18, 21]. Consider the model of the telescope-pointing system 
shown in Figure 5.27.

The goal of the design is to choose K1 and K so that (1) the percent overshoot 
of the output to a step command, ( )r t , is ≤P O. . 10%, (2) the steady-state error to 
a ramp command is minimized, and (3) the effect of a step disturbance is reduced. 
Since the system has an inner loop, block diagram reduction can be used to obtain 
the simplified system of Figure 5.27(b).
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FIGURE 5.27
(a) The Hubble 
telescope pointing 
system, (b) reduced 
block diagram, and 
(c) system response 
to a unit step 
input command 
and a unit step 
 disturbance input.
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The output due to the two inputs of the system of Figure 5.27(b) is given by

 ( ) ( ) ( ) ( ) ( )= + /[ ] ,Y s T s R s T s K T sd  (5.64)

where

( ) ( )
( )

( )
( )

=
+

=
+

T s
KG s

KG s
L s

L s1 1
.

The tracking error is

 ( )
( )

( ) ( )
( )

( )=
+

−
+

E s
L s

R s
G s

L s
T sd

1
1

 
1

  . (5.65)

First, let us select K and K1 to meet the percent overshoot requirement for a step 
input, ( ) = / .R s A s  Setting ( ) =T sd 0, we have

 ( ) ( )
( )

( )=
+

=
+ +







Y s

KG s
KG s

R s
K

s K s K
A
s1

    .
2

1
 (5.66)

To set the percent overshoot to ≤P O. . 10%, we select ζ = 0.6 . We can use 
Equation (5.16) to determine that =P O. . 9.5% for ζ = 0.6. We next examine the 
steady-state error for a ramp, ( ) = ≥r t Bt t,   0.  Using Equation 5.28 we find

 
( )

=











=

/→
lim   .ss

0 1
e

B
sKG s

B
K Ks

 (5.67)

The steady-state error due to the ramp disturbance is reduced by increasing KK1. 
The steady-state error due to a unit step disturbance is equal to − /1 .K  The steady-
state error due to the step disturbance input can thus be reduced by  increasing K. In 
summary, we seek a large K and a large value of / 1K K  to obtain low steady-state 
errors due to a step and ramp disturbance, respectively. We also  require ζ = 0.6  to 
limit the percent overshoot.

With ζ = 0.6, the characteristic equation of the system is

 ζω ω ω( )+ + = + +s s s s Kn n n2 2 0.6 .2 2 2  (5.68)

Therefore, ω = Kn , and the second term of the denominator of Equation (5.69) 
requires ω( )=K n2 0.6 .1  Then =K K1.2 ,1  so the ratio / 1K K  is

= =
K
K

K

K

K
1.2 1.2

.
1

If we select =K 100,  we have =K 121  and / = 8.33.1K K  The responses of the 
system to a unit step input command and a unit step disturbance input are shown 
in Figure 5.27(c). Note how the effect of the disturbance is relatively insignificant. 
Finally, we note that the steady-state error for a ramp input is

= =e
B

B
8.33

0.12 .ss

This design, using =K 100,  provides acceptable results. ■
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Section 5.9 Design Examples 355

EXAMPLE 5.9 Attitude control of an airplane

Each time we fly on a commercial airliner, we experience first-hand the benefits of 
automatic control systems. These systems assist pilots by improving the handling 
qualities of the aircraft over a wide range of flight conditions and by providing 
pilot relief (for such emergencies as going to the restroom) during extended flights. 
The special relationship between flight and controls began in the early work of the 
Wright brothers. Using wind tunnels, the Wright brothers applied systematic de-
sign techniques to make their dream of powered flight a reality. This systematic 
approach to design contributed to their success.

Another significant aspect of their approach was their emphasis on flight con-
trols; the brothers insisted that their aircraft be pilot-controlled. Observing birds 
control their rolling motion by twisting their wings, the Wright brothers built air-
craft with mechanical mechanisms that twisted their airplane wings. Today we no 
longer use wing warping as a mechanism for performing a roll maneuver; instead we 
control rolling motion by using ailerons, as shown in Figure 5.28. The Wright broth-
ers also used elevators (located forward) for longitudinal control (pitch motion) and 
rudders for lateral control (yaw motion). Today’s aircraft still use both elevators 
and rudders, although the elevators are generally located on the tail (rearward).

The first controlled, powered, unassisted take-off flight occurred in 1903 with 
the Wright Flyer I (a.k.a. Kitty Hawk). The first practical airplane, the Flyer III, 
could fly figure eights and stay aloft for half an hour. Three-axis flight control was a 
major (and often overlooked) contribution of the Wright brothers. A concise histor-
ical perspective is presented in Stevens and Lewis [24]. The continuing desire to fly 
faster, lighter, and longer fostered further developments in automatic flight control.

The main topic of this chapter is control of the automatic rolling motion of an 
airplane. The elements of the design process emphasized in this chapter are illus-
trated in Figure 5.29.

We begin by considering the model of the lateral dynamics of an airplane 
moving along a steady, wings-level flight path. By lateral dynamics, we mean the 
attitude motion of the aircraft about the forward velocity. An accurate mathe-
matical model describing the motion (translational and rotational) of an aircraft 
is a complicated set of highly nonlinear, time-varying, coupled differential equa-
tions. A good description of the process of developing such a mathematical model 
 appears in Etkin and Reid [25].

For our purposes a simplified dynamic model is required for the autopilot de-
sign process. A simplified model might consist of a transfer function describing 

Bank angle, f

Bank angle, f

Aileron

Aileron

Plane of symmetry

FIGURE 5.28
Control of the bank 
angle of an airplane 
using differential 
deflections of the 
ailerons.
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356 Chapter 5  The Performance of Feedback Control Systems

the input–output relationship between the aileron deflection and the aircraft bank 
angle. Obtaining such a transfer function would require many prudent simplifica-
tions to the original high-fidelity, nonlinear mathematical model.

Suppose we have a rigid aircraft with a plane of symmetry. The airplane is as-
sumed to be cruising at subsonic or low supersonic ( <Mach 3) speeds. This allows 
us to make a flat-Earth approximation. We ignore any rotor gyroscopic effects due 
to spinning masses on the aircraft (such as propellors or turbines). These assump-
tions allow us to decouple the longitudinal rotational (pitching) motion from the 
lateral rotational (rolling and yawing) motion.

Of course, we also need to consider a linearization of the nonlinear equations 
of motion. To accomplish this, we consider only steady-state flight conditions 
such as

	❏ Steady, wings-level flight

	❏ Steady, level turning flight

	❏ Steady, symmetric pull-up

	❏ Steady roll.

See Figure 5.30
Controller, aileron,
aircraft, and gyro.

Design specifications:
     DS1: P.O. 6 20%
     DS2: Fast response time

Regulate the bank angle
to zero degrees.

Proportional controller with
gain K.

Use control design
software

Airplane bank angle

See Equations (5.70) – (5.72)

Establish the system configuration

Obtain a model of the process, the
actuator, and the sensor

If the performance meets the specifications,
then finalize the design.

If the performance does not meet the
specifications, then iterate the configuration. 

Identify the variables to be controlled

Establish the control goals

Topics emphasized in this example

Write the specifications

Optimize the parameters and
analyze the performance

Describe a controller and select key
parameters to be adjusted

FIGURE 5.29 Elements of the control system design process emphasized in the airplane attitude 
control example.
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Section 5.9 Design Examples 357

For this example we assume that the airplane is flying at low speed in a steady, 
wings-level attitude, and we want to design an autopilot to control the rolling 
 motion. We can state the control goal as follows:

Control Goal
Regulate the airplane bank angle to zero degrees (steady, wings level) and 
maintain the wings-level orientation in the presence of unpredictable external 
disturbances.

We identify the variable to be controlled as

Variable to Be Controlled
Airplane bank angle (denoted by φ ).

Defining system specifications for aircraft control is complicated, so we do not 
 attempt it here. It is a subject in and of itself, and many engineers have spent 
 significant efforts developing good, practical design specifications. The goal is to 
 design a control system such that the dominant closed-loop system poles have 
satisfactory natural frequency and damping [24]. We must define satisfactory and 
choose test input signals on which to base our analysis.

The Cooper–Harper pilot opinion ratings provide a way to correlate the feel 
of the airplane with control design specifications [26]. These ratings address the 
 handling qualities issues. Many flying qualities requirements are specified by 
 government agencies, such as the United States Air Force [27]. The USAF MIL-F-
8785C is a source of time-domain control system design specifications.

For example we might design an autopilot control system for an aircraft 
in steady, wings-level flight to achieve a ≤P O. . 20% to a step input with mini-
mal oscillatory motion and rapid response time (that is, a short time-to-peak). 
Subsequently we implement the controller in the aircraft control system and 
 conduct flight tests or high-fidelity computer simulations, after which the pilots 
tell us whether they liked the performance of the aircraft. If the overall perfor-
mance was not satisfactory, we change the time-domain specification (in this case 
a percent overshoot specification) and redesign until we achieve a feel and perfor-
mance that pilots (and ultimately passengers) will accept. Despite the simplicity of 
this approach and many years of research, precise-control system design specifi-
cations that provide acceptable airplane flying characteristics in all cases are still 
not  available [24].

The control design specifications given in this example may seem somewhat 
contrived. In reality the specifications would be much more involved and, in many 
ways, less precisely known. But we must begin the design process somewhere. With 
that approach in mind, we select simple design specifications and begin the iterative 
design process. The design specifications are

Control Design Specifications

DS1 Percent overshoot is ≤P O. . 20% for a unit step input.

DS2 Fast response time as measured by time-to-peak.

By making the simplifying assumptions discussed above and linearizing about 
the steady, wings-level flight condition, we can obtain a transfer function model 
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358 Chapter 5  The Performance of Feedback Control Systems

describing the bank angle output, φ( )s ,  to the aileron deflection input, .δ ( )sa  The 
transfer function has the form

 
φ
δ

( )
( )

( )
( )

( )
( )( )

=
− + +

+ + + +
s
s

k s c s b s b

s s d s e s f s fa
.

0
2

1 0

0 0
2

1 0
 (5.69)

The lateral (roll/yaw) motion has three main modes: Dutch roll mode, spiral 
mode, and roll subsidence mode. The Dutch roll mode, which gets its name from 
its similarities to the motion of an ice speed skater, is characterized by a rolling and 
yawing motion. The airplane center of mass follows nearly a straightline path, and 
a rudder impulse can excite this mode. The spiral mode is characterized by a mainly 
yawing motion with some roll motion. This is a weak mode, but it can cause an air-
plane to enter a steep spiral dive. The roll subsidence motion is almost a pure roll 
motion. This is the motion we are concerned with for our autopilot design. The de-
nominator of the transfer function in Equation (5.69) shows two first-order modes 
(spiral and roll subsidence modes) and a second-order mode (Dutch roll mode).

In general the coefficients c b b d e f f,   ,   ,   ,   ,   ,  0 0 1 0 0 0 1 and the gain k are compli-
cated functions of stability derivatives. The stability derivatives are functions of 
the flight conditions and the aircraft configuration; they differ for different aircraft 
types. The coupling between the roll and yaw is included in Equation (5.69).

In the transfer function in Equation (5.69), the pole at = −s d0 is associated 
with the spiral mode. The pole at = −s e0 is associated with the roll subsidence 
mode. Generally, �e d  .0 0  For an F-16 flying at 500 ft/s in steady, wings-level 
flight, we have =e 3.570  and =d 0.01280  [24]. The complex conjugate poles given 
by the term + +s f s f2

1 0 represent the Dutch roll motion.
For low angles of attack (such as with steady, wings-level flight), the Dutch 

roll mode generally cancels out of the transfer function with the + +s b s b2
1 0 term. 

This is an approximation, but it is consistent with our other simplifying  assumptions. 
Also, we can ignore the spiral mode since it is essentially a yaw motion only weakly 
coupled to the roll motion. The zero at =s c0 represents a gravity effect that causes 
the aircraft to sideslip as it rolls. We assume that this effect is negligible, since it is 
most pronounced in a slow roll maneuver in which the sideslip is allowed to build 
up, and we assume that the aircraft sideslip is small or zero. Therefore we can sim-
plify the transfer function in Equation (5.69) to obtain a single-degree-of-freedom 
approximation:

 
φ
δ

( )
( ) ( )

=
+

s
s

k
s s ea

.
0

 (5.70)

For our aircraft we select =e 1.40  and =k 11.4. The associated time-constant of 
the roll subsidence is τ = / =1 0.7 s.0e  These values represent a fairly fast rolling 
motion response.

For the aileron actuator model, we typically use a simple first-order system 
model,

 
δ ( )

( )
=

+
s

e s
p

s p
a , (5.71)
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Section 5.9 Design Examples 359

where .e s s sdφ φ( ) ( ) ( )= −  In this case we select =p 10. This corresponds to a time 
constant of τ = / =1 0.1 s.p  This is a typical value consistent with a fast response. 
We need to have an actuator with a fast response so that the dynamics of the ac-
tively controlled airplane will be the dominant component of the system response. 
A slow actuator is akin to a time delay that can cause performance and stability 
problems.

For a high-fidelity simulation, we would need to develop an accurate model of 
the gyro dynamics. The gyro, typically an integrating gyro, is usually characterized 
by a very fast response. To remain consistent with our other simplifying assump-
tions, we ignore the gyro dynamics in the design process. This means we assume 
that the sensor measures the bank angle precisely. The gyro model is given by a 
unity transfer function,

 Kg = 1.  (5.72)

Thus our physical system model is given by Equations (5.70), (5.71), and (5.72).
The controller we select for this design is a proportional controller,

G s Kc .( ) =

The system configuration is shown in Figure 5.30. The select key parameter is as 
follows:

Select Key Tuning Parameter
Controller gain K.

The closed-loop transfer function is

 
 

114
11.4 14 114

 .
3 2

T s
s
s

K
s s s Kd

φ
φ

( ) ( )
( )

= =
+ + +

 (5.73)

We want to determine analytically the values of K that will give us the desired re-
sponse, namely, a percent overshoot less than 20% and a fast time-to-peak. The 
analytic analysis would be simpler if our closed-loop system were a second- order 
system (since we have valuable relationships between settling time, percent over-
shoot, natural frequency and damping ratio); however we have a third-order 
 system, given by ( )T s  in Equation (5.73). We could consider approximating the 
third-order transfer function by a second-order transfer function—this is sometimes 
a very good engineering approach to analysis. There are many methods available to 

FIGURE 5.30
Bank angle control 
autopilot.

-

+
K

Kg = 1

10
s + 10

11.4
s(s + 1.4)

fd (s)
Desired

bank angle

f(s)
Bank angle

Aileron
actuator

Aircraft
dynamicsGain

Gyro
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360 Chapter 5  The Performance of Feedback Control Systems

obtain approximate transfer functions. Here we use the algebraic method described 
in Section 5.8 that attempts to match the frequency response of the approximate 
system as closely as possible to the actual system.

Our transfer function can be rewritten as

T s
s s s

K K K

1

1
,

2 314
114

11.4

114

1

114

( ) =
+ + +

by factoring the constant term out of the numerator and denominator. Suppose our 
approximate transfer function is given by the second-order system

( ) =
+ +

G s
d s d s

L
1

1
.

1 2
2

The objective is to find appropriate values of d1 and d .2  As in Section 5.8, we define 
( )M s  and ( )∆ s  as the numerator and denominator of .( ) ( )/T s G sL  We also define

 M
M M

k q k
qq

k

q k q k q k
 

1   0 0
!  2 !

,   1,  2, ,2
0

2 2

�∑ ( )
( ) ( ) ( )

=
−

−
=

( )( )

=

+ −
 (5.74)

and

 
k q k

qq
k

q k q k q k
 

1   0   0
!  2 !

,   1,  2, .2
0

2 2

�∑ ( )
( ) ( ) ( )

∆ =
− ∆ ∆

−
=

( )( )

=

+ −
 (5.75)

Then, forming the set of algebraic equations

 M qq q,   1,  2, ,2 2 �= ∆ =  (5.76)

we can solve for the unknown parameters of the approximate function. The index 
q is incremented until sufficient equations are obtained to solve for the unknown 
coefficients of the approximate function. In this case, =q 1,  2  since we have two 
parameters d1 and d2  to compute.

We have

( ) = + +M s d s d s1 1 2
2

( ) = = +( )M s
dM
ds

d d s21
1 2

( ) = =( )M s
d M
ds

d2  2
2

2 2

( ) ( )= = =( )M s M s . . . 0.3 4

Thus evaluating at =s 0 yields

( ) =( )M d0  1
1

( ) =( )M d0 2  2
2

( ) ( )= = =( ) ( )M M0 0 . . . 0.3 4
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Similarly,

s
K

s
K

s
s

K
1

14
114

11.4
114 114

2
3

( )∆ = + + +

s
d
ds K K

s
K

s
14

114
22.8

114
3

114
1 2( )∆ =

∆
= + +( )

s
d
ds K K

s
22.8

114
6

114
2

2

2( )∆ =
∆

= +( )

( )∆ =
∆

=( ) s
d
ds K

6
114

3
3

3

( ) ( )∆ = ∆ = =( ) s s . . .  0.4 5

Evaluating at =s 0,  it follows that

( )∆ =( )
K

0
14

114
,  1

( )∆ =( )
K

0
22.8

114
,  2

( )∆ =( )
K

0
6

114
,  3

( ) ( )∆ = ∆ = =( ) ( )0   0 . . .  0.4 5

Using Equation (5.77) for =q 1 and =q 2  yields

( ) ( ) ( ) ( ) ( ) ( )
= − + − = − +

( ) ( ) ( ) ( )
M

M M M M M M
d d

0 0
2

0 0
1

 
0 0
2

2 ,2

2 1 1 2

2 1
2
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Similarly using Equation (5.78), we find that

( ) ( )
∆ =

−
+ ∆ =

K K K

22.8
114

196

114
  and

101.96

114
.2 2 4 2

Thus forming the set of algebraic equations in Equation (5.79),

= ∆ = ∆M M  and ,2 2 4 4

we obtain

d d
K K

d
K( ) ( )

− + =
−

+ =2
22.8

114
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114
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101.96

114
.2 1

2
2 2

2
2
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362 Chapter 5  The Performance of Feedback Control Systems

Solving for d1 and d2  yields

 = −d K
K

196 296.96
114

,  1  (5.77)

 =d
K

10.097
114

,  2  (5.78)

where we always choose the positive values of d  1 and d  2 so that G sL( ) has poles 
in  the left half-plane. Thus (after some manipulation) the approximate transfer 
function is

 
11.29

1.92 2.91 11.29
.

2
G s

K

s Ks K
L( ) =

+ − +
 (5.79)

We require that <K 0.65 so that the coefficient of the s term remains a real number.
Our desired second-order transfer function can be written as

 
2

2

2 2
G s

s s
L

n

n n

ω
ζω ω

( ) =
+ +

. (5.80)

Comparing coefficients in Equations (5.79) and (5.80) yields

 ω ζ= = −K
K

n 11.29 and
0.043

  0.065.2 2  (5.81)

The design specification that the percent overshoot P.O. is to be less than 20% 
implies that we want ζ ≥ 0.45. Setting ζ = 0.45  in Equation (5.81) and solving for 
K yields

=K 0.16.

With =K 0.16 we compute

ω = =Kn 11.29 1.34.

Then we can estimate the time-to-peak Tp    from Equation (5.14) to be

1
2.62 s.

2
Tp

n

π

ω ζ
=

−
=

We might be tempted at this point to select ζ > 0.45 so that we reduce the 
percent overshoot even further than 20%. What happens if we decide to try this ap-
proach? From Equation (5.81) we see that K decreases as ζ  increases. Then, since

ω = Kn 11.29 ,
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as K decreases, then ωn  also decreases. But the time-to-peak increases as ωn    
 decreases. Since our goal is to meet the specification of percent overshoot less than 
20% while minimizing the time-to-peak, we use the initial selection of ζ = 0.45  so 
that we do not increase Tp  unnecessarily.

The second-order system approximation has allowed us to gain insight into the 
relationship between the parameter K and the system response, as measured by 
percent overshoot and time-to-peak. Of course, the gain =K 0.16 is only a starting 
point in the design because we in fact have a third-order system and must consider 
the effect of the third pole (which we have ignored so far).

A comparison of the third-order aircraft model in Equation (5.73) with the 
second-order approximation in Equation (5.79) for a unit step input is shown in 
Figure 5.31. The step response of the second-order system is a good approximation 
of the original system step response, so we would expect that the analytic analysis 
using the simpler second-order system to provide accurate indications of the rela-
tionship between K and the percent overshoot and time-to-peak.

With the second-order approximation, we estimate that with =K 0.16 the per-
cent overshoot is =P O. . 20% and the time-to-peak is Tp = 2.62 s.  As shown in 
Figure 5.32 the percent overshoot of the original third-order system is =P O. . 20.5% 
and the time-to-peak is Tp = 2.73 s.  Thus, we see that that analytic analysis using 
the approximate system is an excellent predictor of the actual response. For com-
parison purposes, we select two variations in the gain and observe the response. For 

=K 0.1, the percent overshoot is =P O. . 9.5% and the time-to-peak is Tp = 3.74 s. 

Time (s)

B
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2nd-order approximation in Equation (5.79) with K = 0.16

3rd-order aircraft model in Equation (5.73)

FIGURE 5.31 Step response comparison of third-order aircraft model versus second-order 
approximation.
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364 Chapter 5  The Performance of Feedback Control Systems

For  =K 0.2,  the percent overshoot is =P O. . 26.5% and the time-to-peak is 
Tp = 2.38 s. So as predicted, as K decreases the damping ratio increases, leading to 
a reduction in the percent overshoot. Also as predicted, as the percent overshoot 
decreases the time-to-peak increases. ■

5.10 SYSTEM PERFORMANCE USING CONTROL DESIGN SOFTWARE

In this section, we investigate time-domain performance specifications given in terms 
of transient response to a given input signal and the resulting steady-state tracking 
errors. We conclude with a discussion of the simplification of linear  systems. The 
function introduced in this section is impulse. We discuss the Isim function and see 
how these functions are used to simulate a linear system.

Time-Domain Specifications. Time-domain performance specifications are gen-
erally given in terms of the transient response of a system to a given input signal. 
Because the actual input signals are generally unknown, a standard test input signal 
is used. Consider the second-order system shown in Figure 5.3. The closed-loop 
output is

 
ω

ζω ω
( ) ( )=

+ +
Y s

s s
R sn

n n2
  .

2

2 2
 (5.82)

We have already discussed the use of the step function to compute the step 
response of a system. Now we address another important test signal: the impulse. 

FIGURE 5.32
Step response 
of the third-order 
 aircraft model with 

=K 0.10,  0.16, 
and 0. 20 showing 
that, as predicted, 
as K decreases 
percent overshoot 
decreases while 
the time-to-peak 
increases. Time (s)
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FIGURE 5.33 The impulse function.

u(t)

t

Impulse
input Output

System
G(s)

y(t)

t

y(t) = output response at t
    T = simulation time

G(s) = sys t = T: user-supplied
 time vector
or
t = Tfinal: simulation
 final time (optional)

The impulse response is the time derivative of the step response. We compute the 
impulse response with the impulse function shown in Figure 5.33.

We can obtain a plot similar to that of Figure 5.4 with the step function, as 
shown in Figure 5.34. Using the impulse function, we can obtain a plot similar to 
that of Figure 5.5. The response of a second-order system for an impulse function 
input is shown in Figure 5.35. In the script, we set ω =n 1, which is equivalent to 
computing the step response versus ω tn . This gives us a more general plot valid for 
any ω >n 0.

In many cases, it may be necessary to simulate the system response to an arbi-
trary but known input. In these cases, we use the Isim function. The Isim function is 
shown in Figure 5.36.

EXAMPLE 5.10 Mobile robot steering control

The block diagram for a steering control system for a mobile robot is shown in 
Figure 5.18. Suppose the transfer function of the steering controller is

G s K
K

s
c .1

2( ) = +

When the input is a ramp, the steady-state error is

 e
A

K
=

υ
,ss  (5.83)

where

K K K=υ .2
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FIGURE 5.34
(a) Response of 
a second-order 
 system to a step 
input. (b) m-file 
script.

The effect of the controller constant, K ,2  on the steady-state error is evident from 
Equation (5.83). Whenever K2 is large, the steady-state error is small.

We can simulate the closed-loop system response to a ramp input using the Isim 
function. The controller gains, K1 and K ,2  and the system gain K can be represented 
symbolically in the script so that various values can be selected and simulated. The 
results are shown in Figure 5.37 for = = =K K K1,   2,1 2  and τ = /1 10.  ■
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(a) Response of a 
second-order sys-
tem to an impulse 
function input. (b) 
m-file script.

Simplification of Linear Systems. It may be possible to develop a lower-order 
approximate model that closely matches the input–output response of a high-order 
model. A procedure for approximating transfer functions is given in Section 5.8. 
We can use computer simulation to compare the approximate model to the actual 
model, as illustrated in the following example.

M05_DORF2374_14_GE_C05.indd   367M05_DORF2374_14_GE_C05.indd   367 14/09/21   10:19 AM14/09/21   10:19 AM



368 Chapter 5  The Performance of Feedback Control Systems

Arbitrary
input Output

System
G(s)

y(t)

t

u(t)

t

y(t) = output response at t
    T = simulation time
 vector

t = times at which
response to u is

computed

G(s) = sys u = input

FIGURE 5.36
The Isim function.

FIGURE 5.37
(a) Transient 
 response of the 
mobile robot 
 steering control 
system to a ramp 
input. (b) m-file 
script. (b)

G(s)Gc(s)

Compute triangular
wave input.

Linear simulation.

0 1 2 3 4 5 6 7 8 9

u
 (

ra
d)

Time (s)

(a)

- 2.0

- 1.5

- 1.0

- 0.5

0

0.5

1.0

1.5

2.0

ess

ess

Output

Input

M05_DORF2374_14_GE_C05.indd   368M05_DORF2374_14_GE_C05.indd   368 14/09/21   10:19 AM14/09/21   10:19 AM



Section 5.10 System Performance Using Control Design Software 369

EXAMPLE 5.11 A simplified model

Consider the third-order system

G s
s s s

H
6

6 11 6
.

3 2( ) =
+ + +

A second-order approximation is

G s
s s

L
1.60

2.590 1.60
.

2( ) =
+ +

A comparison of their respective step responses is given in Figure 5.38. ■

GH(s) =
6

s3 + 6s2 + 11s + 6

GL(s) =
1.6

s2 + 2.59s + 1.6

(b)

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8

St
ep

 R
es

po
ns

e

Time (s)

Second-order
approximation

Third-order
system

FIGURE 5.38 (a) Step response comparison for an approximate transfer function versus the 
actual transfer function. (b) m-file script.
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370 Chapter 5  The Performance of Feedback Control Systems

5.11 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

In this section, we further consider the design process of the disk drive read 
system. We will specify the desired performance for the system. Then we will 
 attempt to adjust the amplifier gain Ka  in order to obtain the best performance 
possible.

Our goal is to achieve the fastest response to a step input ( )r t  while (1) limiting 
the percent overshoot and oscillatory nature of the response and (2) reducing the 
effect of a disturbance on the output position of the read head. The specifications 
are summarized in Table 5.5.

Let us consider the second-order model of the motor and arm, which neglects 
the effect of the coil inductance. We then have the closed-loop system shown in 
Figure 5.39. Then the output when ( ) =T sd 0 is

Y s
K

s s K
R sa

a
( )

( )
( )=

+ +
5
20 5

  

K
s s K

R sa

a
( )=

+ +
5

20 5
  

2

        
ω

ζω ω
( )=

+ +s s
R sn

n n2
  .

2

2 2
 (5.84)

Therefore, Kn aω = 5 ,2  and ζω =n2 20. We then determine the response of the sys-
tem as shown in Figure 5.40. Table 5.6 shows the performance measures for selected 
values of Ka .

When Ka  is increased to 60, the effect of a disturbance is reduced by a factor of 2.  
We can show this by plotting the output, ( )y t , as a result of a unit step disturbance 

Table 5.5 Specifications for the Transient Response

Performance Measure Desired Value

Percent overshoot Less than 5%
Settling time Less than 250 ms
Maximum value of response  
 to a unit step disturbance

Less than × −5 10 3

-

-+

+
R(s) Y(s)Ka 5

Td (s)Motor
constantAmplifier

1
s(s + 20)

LoadFIGURE 5.39
Control system 
model with a 
 second-order 
model of the motor 
and load.
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Section 5.11 Sequential Design Example: Disk Drive Read System 371

Table 5.6 Response for the Second-Order Model for a Step Input

K  a 20 30 40 60 80

Percent overshoot 0 1.2% 4.3% 10.8% 16.3%

Settling time ( )s 0.55 0.40 0.40 0.40 0.40
Damping ratio 1 0.82 0.707 0.58 0.50
Maximum value of the  
 response ( )y t  to a unit  
 disturbance

− × −10 10 3 − × −6.6 10 3 − × −5.2 10 3 − × −3.7 10 3 − × −2.9 10 3

(a)

Select Ka.

Compute the
closed-loop

transfer function.

(b)

Time (s)

0 0.1 0.2 0.3 0.5 0.7 0.90.4 0.6 0.8 1
0

0.6

0.4

0.2

1

1.2

0.8

y(
t)

Ka = 60.

Ka = 30.

FIGURE 5.40
Response of 
the system to a 
unit step input, 

( ) = >r t t1,   0.  
(a) m-file script. 
(b) Response for 

=Ka 30  and 60.

input, as shown in Figure 5.41. Clearly, if we wish to meet our goals with this system, 
we need to select a compromise gain. In this case, we select Ka = 40  as the best 
compromise. However, this compromise does not meet all the  specifications. In the 
next chapter, we consider again the design process and change the configuration of 
the control system.
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372 Chapter 5  The Performance of Feedback Control Systems

5.12 SUMMARY

In this chapter, we have considered the definition and measurement of the per-
formance of a feedback control system. The concept of a performance measure or 
index was discussed, and the usefulness of standard test signals was outlined. Then, 
several performance measures for a standard step input test signal were delineated. 
For example, the overshoot, peak time, and settling time of the response of the 
system under test for a step input signal were considered. The fact that the specifi-
cations on the desired response are often contradictory was noted, and the concept 
of a design compromise was proposed. The relationship between the location of the 
s-plane root of the system transfer function and the system response was discussed. 
A most important measure of system performance is the steady-state error for spe-
cific test input signals. Thus, the relationship of the steady-state error of a system in 
terms of the system parameters was developed by utilizing the final-value theorem. 
Finally, the utility of an integral performance index was outlined, and several design 
examples that minimized a system’s performance index were completed. Thus, we 
have been concerned with the definition and usefulness of quantitative measures of 
the performance of feedback control systems.

FIGURE 5.41
Response of the 
system to a unit 
step disturbance, 

( ) = /1 .T s sd   
(a) m-file script. 
(b) Response for 

=Ka 30 and 60. (b)

(a)

Time (s)

0 0.1 0.2 0.3 0.5 0.7 0.90.4 0.6 0.8 1
-7

-4

-5

-6

-2

0
10-3

Select Ka.

Disturbance enters summer
with a negative sign.

*

-1

-3

y(
t)

Ka = 60.

Ka = 30.
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Skills Check 373

SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or False, 
Multiple Choice, and Word Match. To obtain direct feedback, check your answers with the 
answer key provided at the conclusion of the end-of-chapter problems. Use the block diagram 
in Figure 5.42 as specified in the various problem statements.

-

+
Gc(s) Y(s)

Controller

G(s)

Process

R(s)

FIGURE 5.42 Block diagram for the Skills Check.

In the following True or False and Multiple Choice problems, circle the correct answer.

1. In general, a third-order system can be approximated by a second-order  
system’s dominant roots if the real part of the dominant roots is less than  
1/10 of the real part of the third root. True or False

2. The number of zeros of the forward path transfer function at the origin is  
called the type number. True or False

3. The rise time is defined as the time required for the system to settle within  
a certain percentage of the input amplitude. True or False

4. For a second-order system with no zeros, the percent overshoot to a unit  
step is a function of the damping ratio only. True or False

5. A type-1 system has a zero steady-state tracking error to a ramp input. True or False

Consider the closed-loop control system in Figure 5.42 for Problems 6 and 7 with

L s G s G s
s sc

6
3

.( ) ( ) ( )
( )

= =
+

6. The steady-state error to a unit step input ( ) = /1R s s  is:

a. ( )= =
→∞
lim 0sse e t

t

b. ( )= = /
→∞
lim 1 2sse e t

t

c. ( )= = /
→∞
lim 1 6sse e t

t

d. ( )= = ∞
→∞

e e t
t
limss

7. The percent overshoot of the output to a unit step input is:

a. =P O. . 9%

b. =P O. . 1%

c. =P O. . 20%

d. No overshoot

Consider the block diagram of the control system shown in Figure 5.42 in Problems 8 and 
9 with the loop transfer function

L s G s G s
K

s sc 10
.( ) ( ) ( )

( )
= =

+
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374 Chapter 5  The Performance of Feedback Control Systems

8. Find the value of K so that the system provides an optimum ITAE response for a step input.

a. =K 1.10

b. =K 12.56

c. =K 51.02

d. =K 104.7

9. Compute the expected percent overshoot to a unit step input for the value of K  
in Problem 8.

a. =P O. . 1.4%

b. =P O. . 4.6%

c. =P O. . 10.8%

d. No overshoot expected

10. A system has the closed-loop transfer function ( )T s  given by

( )
( )

( )
( ) ( )

= =
+ + +

T s
Y s
R s s s s

2500
20 10 125

.
2

Using the notion of dominant poles, estimate the expected percent overshoot.

a. ≈P O. . 5%

b. ≈P O. . 20%

c. ≈P O. . 50%

d. No overshoot expected

11. Consider the unity feedback control system in Figure 5.42 where

L s G s G s
K

s sc 5
.( ) ( ) ( )

( )
= =

+

The design specifications are:

i. Peak time Tp ≤ 1.0

ii. Percent overshoot ≤P O. . 10%.

With K  as the design parameter, it follows that

a. Both specifications can be satisfied.

b. Only the first specification Tp ≤ 1.0  can be satisfied.

c. Only the second specification ≤P O. . 10% can be satisfied.

d. Neither specification can be satisfied.

 12. Consider the feedback control system in Figure 5.43 where ( ) =
+

G s
K

s 10
.

+

-

+

+

Controller

R(s) Y(s)

Process

G(s)

Td(s)

Ea(s)

Measurement

s

1
s

FIGURE 5.43 Feedback system with integral controller and derivative measurement.
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The nominal value of =K 10. Using a 2% criterion, compute the settling time, Ts, for a 
unit step disturbance, ( ) ( )= / =1 , when 0.T s s R sd

a. =Ts 0.02 s

b. =Ts 0.2 s

c. =Ts 1.03 s

d. =Ts 4.83 s

 13. A plant has the transfer function given by

( )
( )( )

=
+ +

G s
s s

1
1 1 0.5

and is controlled by a proportional controller G s Kc( ) = , as shown in the block diagram 
in Figure 5.42. The value of K  that yields a steady-state error E s Y s R s( ) ( ) ( )= −  with 
a magnitude equal to 0.01 for a unit step input is:

a. =K 49

b. =K 99

c. =K 169

d. None of the above

In Problems 14 and 15, consider the control system in Figure 5.42, where

G s
s s

G s
K

sc
6

5 2
and

50
.( )

( )( )
( )=

+ +
=

+

 14. A second-order approximate model of the loop transfer function is:

a. G s G s
K

s sc
ˆ ˆ 3 25

7 102
( )

( ) ( ) =
/

+ +

b. G s G s
K

s sc
ˆ ˆ 1 25

7 102
( )

( ) ( ) =
/

+ +

c. G s G s
K

s sc
ˆ ˆ 3 25

7 5002
( )

( ) ( ) =
/

+ +

d. G s G s
K

s sc
ˆ ˆ 6

7 102( ) ( ) =
+ +

 15. Using the second-order system approximation (see Problem 14), estimate the gain K  so 
that the percent overshoot is approximately ≈P O. . 15%.

a. =K 10

b. =K 300

c. =K 1000

d. None of the above

In the following Word Match problems, match the term with the definition by writing the 
 correct letter in the space provided.

a. Unit impulse The time for a system to respond to a step input and 
rise to a peak response.

b. Rise time The roots of the characteristic equation that cause the 
dominant transient response of the system.

c. Settling time The number N of poles of the transfer function, G(s),  
at the origin.

M05_DORF2374_14_GE_C05.indd   375M05_DORF2374_14_GE_C05.indd   375 17/09/21   3:57 PM17/09/21   3:57 PM



376 Chapter 5  The Performance of Feedback Control Systems

d. Type number The constant evaluated as lim s G(s).
e.  Percent 

overshoot
An input signal used as a standard test of a system’s 
ability to respond adequately.

f.  Position error 
constant, KP

The time required for the system output to settle 
within a certain percentage of the input amplitude.

g.  Velocity error 
constant, Kυ

A set of prescribed performance criteria.

h.  Steady-state 
response

A system whose parameters are adjusted so that the 
performance index reaches an extremum value.

i. Peak time A quantitative measure of the performance of a system.
j.  Dominant roots The time for a system to respond to a step input and 

attain a response equal to a percentage of the magni-
tude of the input.

k.  Test input signal The amount by which the system output response 
 proceeds beyond the desired response.

l.  Acceleration 
error constant, Ka

The constant evaluated as lim s2 G(s).

m.  Transient 
response

The constant evaluated as lim G(s).

n.  Design 
specifications

The constituent of the system response that exists a 
long time following any signal initiation.

o.  Performance 
index

The constituent of the system response that disappears 
with time.

p.  Optimum  
control system

A test input consisting of an impulse of infinite ampli-
tude and zero width, and having an area of unity.

s→0

s→0

s→0

E5.1 A laser cutter is used to cut a parabolic path on sheet 
metal. We want to have a finite steady-state error for the 
laser beam positioning control system. (a) Which type of 
number system is required? (How many integrations?) 
(b) If we want to achieve a zero steady-state error, which 
type of number system is required?

E5.2 The engine, body, and tires of a racing vehicle affect 
the acceleration and speed attainable [9]. The speed 
control of the car is represented by the model shown 
in Figure E5.2. (a) Calculate the steady-state error 
of the car to a step command in speed. (b) Calculate 
overshoot of the speed to a step command.
Answer: (a) e Ass 11;= /  (b) P O =. . 36%

E5.3 New passenger rail systems that could profitably 
 compete with air travel are under development. Two of  
these systems, the French TGV and the Japanese Shink-
ansen, reach speeds of 160 mph [17]. The  Trans-rapid, a 
magnetic levitation train, is shown in Figure E5.3(a).

The use of magnetic levitation and electro-
magnetic propulsion to provide contactless vehicle 

movement makes the Transrapid technology radically 
different. The underside of the carriage (where the 
wheel trucks would be on a conventional car) wraps 
around a guideway. Magnets are attached to the 
wraparound and pull the train to the reaction rail at 
the bottom of the guideway.

The levitation control is represented by Figure 
E5.3(b). (a) Select K so that the system provides an 
optimum ITAE response. (b) Determine the expected 
percent overshoot to a step input of ( )I s .
Answer: =K 100;  4.6%

EXERCISES

-

+ 240
(s + 4)(s + 6)

R(s)
Speed

command

Y(s)
Speed

Engine and tires

FIGURE E5.2 Racing car speed control.
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E5.4 A feedback system with negative unity feedback has 
a loop transfer function

L s G s G s
s

s sc
2 8

4
.( ) ( ) ( )

( )
( )

= =
+
+

(a) Determine the closed-loop transfer function 
  .T s Y s R s( ) ( ) ( )= /  (b) Find the time response, ( )y t ,  

for a step input ( ) =r t A  for >t 0.  (c) Determine 
the percent overshoot of the response. (d) Using the 
final-value theorem, determine the steady-state value 
of ( )y t .
Answer: (b) ( )( ) = − +−y t e tt1 1.07  sin 7 1.23

E5.5 Consider the feedback system in Figure E5.5. Find 
K such that the closed-loop system minimizes the 
ITAE performance criterion for a step input.

E5.6 Consider the block diagram shown in Figure E5.6 
[16]. (a) Calculate the steady-state error for a ramp 
input. (b) Select a value of K that will result in zero per-
cent overshoot to a step input. Provide rapid response.

Plot the poles and zeros of this system and dis-
cuss the dominance of the complex poles. What over-
shoot for a step input do you expect?

(a)

(b)

-

+ K
s (s + 14)

I(s)
Coil

current

Gap dynamics
Y(s)
Gap

spacing

FIGURE E5.3 Levitated train control. (Bernd Mellmann/
Alamy Stock Photo.) 

-

+ 1

s(s + 4)
KR(s)

Controller Process

Y(s)FIGURE E5.5
Feedback system 
with  proportional 
controller 

( ) =G s K.c

- -

+ 100
s2

Velocity

Position feedback

Y(s)
Position

Ks

R(s)

FIGURE E5.6 Block diagram with position and velocity 
feedback.

E5.7 Effective control of insulin injections can result 
in better lives for diabetic persons. Automatically 
 controlled insulin injection by means of a pump and 
a sensor that measures blood sugar can be very ef-
fective. A pump and injection system has a feedback 
control as shown in Figure E5.7. Calculate the suitable 
gain K so that the percent overshoot of the step re-
sponse due to the drug injection is =P O. . 7%. ( )R s  
is the desired blood-sugar level and Y s( )  is the actual 
blood-sugar level.
Answer: =K 1.67

E5.8 A control system for positioning the head of a 
floppy disk drive has the closed-loop transfer function

T s
s

s s s( )
( )

( )
( )

=
+

+ + +
0.313 0.8

0.6 4 5
.

2

Plot the poles and zeros of this system, and discuss the 
dominance of the third pole. What percent overshoot 
for a step input do you expect?

E5.9 A unity negative feedback control system has the 
loop transfer function

L s G s G s
K

s s K
c .

( )
( ) ( ) ( )= =

+

(a) Determine the percent overshoot and settling 
time (using a 2% settling criterion) due to a unit 
step input.

(b) For what range of K is the settling time is approx-
imately ≤Ts    1 s?
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378 Chapter 5  The Performance of Feedback Control Systems

K

-

+ s + 2
s(s + 1)

Human body
Y(s)

Blood-sugar
level

R(s)
Insulin

Pump

1

Sensor
FIGURE E5.7
Blood-sugar level 
control.

-

+ -

+
K

s + 9
s + 6

(s + 2)(s + 4)

R(s)
Desired
speed

Controller

Disturbance
Td(s)

Y(s)
Speed of
rotation

Wheel and
motor dynamics

FIGURE E5.12  
Speed control of a 
Ferris wheel.

E5.10 A second-order control system has the closed-
loop transfer function .T s Y s R s( ) ( ) ( )= /  The system 
specifications for a step input follow:
1. Percent overshoot ≤P O. . 5%.
2. Settling time 4 s.Ts <
3. Peak time 1 s.Tp <

Show the desired region for the poles of ( )T s  in 
order to achieve the desired response. Use a 2% set-
tling  criterion to determine settling time.

E5.11 A system with unity feedback is shown in Figure 
E5.11. Determine the steady-state error for a step 
and a ramp input when

G s
s

s s s s

10 5

2 4 6
.

( )
( )

( )( )( )
=

+
+ + +

(b) For the gain of part (a), determine and plot the 
tracking error for a unit step disturbance. Does the 
speed change more than 5%? (Set ( ) =R s 0  and re-
call that the tracking error ( ) ( ) ( )= −E s R s T s  .)

E5.13 For the system with unity feedback shown in 
Figure E5.11, determine the steady-state error for a 
step and a ramp input when

( ) =
+ +

G s
s s

20
14 50

.
2

Answer: =e 0.71ss  for a step and = ∞ess  for a 
ramp.

E5.14 A feedback system is shown in Figure E5.14.
(a) Determine the steady-state error for a unit step 

when K = 0.6 and G sp( ) = 1.
(b) Select an appropriate value for G sp( ) so that the 

steady-state error is equal to zero for the unit 
step input.-

+
R(s) Y(s)G(s)

FIGURE E5.11 Unity feedback system.

E5.12 The Ferris wheel is often featured at state fairs 
and carnivals. George Ferris was born in Galesburg, 
Illinois, in 1859; he later moved to Nevada and then 
graduated from Rensselaer Polytechnic Institute in 
1881. By 1891, Ferris had considerable experience with 
iron, steel, and bridge construction. He conceived and 
constructed his famous wheel for the 1893 Columbian 
Exposition in Chicago [8]. Consider the requirement 
that the steady-state speed must be controlled to 
within 5% of the desired speed for the Ferris wheel 
speed control system shown in Figure E5.12.
(a) Determine the required gain K to achieve the 

steady-state requirement.

-

+ K
s(s + 5)

s + 1
(s + 0.5)

R(s) Y(s)Gp(s)

FIGURE E5.14 Feedback system.

E5.15 A closed-loop control system has a transfer func-
tion ( )T s  as follows:

( )
( )

( )
( ) ( )

= =
+ + +

T s
Y s
R s s s s

2500
50 10 50

.
2
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Plot ( )y t  for a unit step input when (a) the actual 
( )T s  is used, and (b) using the dominant complex 

poles. Compare the results.

E5.16 A second-order system is
( )

( )
( )
( )

( )
( )( )

= =
/ +

+ +
T s

Y s

R s

z s z

s s

10

1 8
.

Consider the case where < <z1 8. Obtain the par-
tial fraction expansion, and plot the output for a unit 
step input for =z 2, 4, and 6.

E5.17 A closed-loop control system transfer function 
( )T s  has two dominant complex conjugate poles. 

Sketch the region in the left-hand s-plane where the 
complex poles should be located to meet the given 
specifications.

(a) ζ ω≤ ≤ ≤n0.6 0.8,   10
(b) ζ ω≤ ≤ ≥n0.5 0.707,   10
(c) ζ ω≥ ≤ ≤n0.5, 5   10
(d) ζ ω≤ ≤ ≤n0.707, 5   10
(c) ζ ω≥ ≤n0.6,   6

E5.18 A system is shown in Figure E5.18(a). The 
 response to a unit step, when =K 1,  is shown in 
Figure E5.18(b). Determine the value of K so that the 
steady-state error is equal to zero.
Answer: =K 1.25.

E5.19 A second-order system has the closed-loop 
 transfer function

T s
Y s

R s s s s s
n

n n2
20

5.38 20
.

2

2 2 2
ω

ζω ω
( )

( )
( )

= =
+ +

=
+ +

(a) Estimate the percent overshoot P.O., the time to 
peak Tp,  and the settling time Ts  of the unit step 
response.

(b) Obtain the system response to a unit step, and 
verify the results in part (a).

E5.20 Consider the closed-loop system in Figure E5.20, 
where

L s
s

s s
Ka

2

5
.

2( )
( )

( )
=

+
+

(a) Determine the closed-loop transfer function T(s) 
= ( ) ( )/Y s R s .

(b) Determine the steady-state error of the closed-
loop system response to a unit ramp input.

(c) Select a value for Ka  so that the steady-state 
error of the system response to a unit step input 
is zero.

(a)

(b)

G(s)
-

+
Y(s)R(s) K

t

y(t)

1.0

0.8

0
0

FIGURE E5.18 Feedback system with prefilter.

+

-
Y(s)

s + 2
s + 5

1
s

Ka

R(s)

FIGURE E5.20 Nonunity closed-loop feedback control 
system with parameter .Ka

P5.1 An important problem for television systems is 
the jumping or wobbling of the picture due to the 
movement of the camera. This effect occurs when 
the camera is mounted in a moving truck or airplane. 
The Dynalens system has been designed to reduce 
the effect of rapid scanning motion; see Figure P5.1. 
A maximum scanning motion of 25°/s is expected. 

Let K Kg t= = 1  and assume that τg  is negligi-
ble. (a)  Determine the error of the system ( )E s .  
(b) Determine the necessary loop gain K K Ka m t   when 
a 1°/s steady-state error is allowable. (c) The motor 
time constant is τ =m 0.40 s . Determine the neces-
sary loop gain so that the settling time (to within 2% 
of the final value of υb ) is ≤Ts 0.03 s.

PROBLEMS

M05_DORF2374_14_GE_C05.indd   379M05_DORF2374_14_GE_C05.indd   379 14/09/21   10:20 AM14/09/21   10:20 AM



380 Chapter 5  The Performance of Feedback Control Systems

P5.2 A specific closed-loop control system is to be de-
signed for an underdamped response to a step input. 
The specifications for the system are as follows:

< <P O10% . . 20%,

<Ts 0.6 s.

(a) Identify the desired area for the dominant roots 
of the system. (b) Determine the smallest value of 
a third root r  3 if the complex conjugate roots are to 
represent the dominant response. (c) The closed-loop 
system transfer function ( )T s  is third-order, and the 
feedback has a unity gain. Determine the loop transfer 
function ( ) ( ) ( )= /G s Y s E s  when the settling time to 
within 2% of the final value is =Ts 0.6  s and the per-
cent overshoot is =P O. . 20%.

P5.3 A laser beam can be used to weld, drill, etch, cut, and 
mark metals, as shown in Figure P5.3(a) [14]. Assume 
we have a work requirement for an accurate laser to 
mark a linear path with a closed-loop control system, 
as shown in Figure P5.3(b). Calculate the necessary 
gains K and K1 to result in a steady-state error of  
5 mm for r t t( ) =  mm.

P5.4 The loop transfer function of a unity negative feed-
back system

L s G s G s
K

s sc 4
.( ) ( ) ( )

( )
= =

+

A system response to a step input is specified as 
follows:

=Tp 0.25 s,

P O =. . 10%.

(a) Determine whether both specifications can be met 
simultaneously. (b) If the specifications cannot be met 
simultaneously, determine a compromise value for K 
so that the peak time and percent overshoot specifica-
tions are relaxed by the same percentage.

P5.5 A space telescope is to be launched to carry out 
astronomical experiments [8]. The pointing control 
system is desired to achieve 0.01 minute of arc and 
track solar objects with apparent motion up to 0.21 arc 
minute per second. The system is illustrated in Figure 
P5.5(a). The control system is shown in Figure P5.5(b). 
Assume that τ = 11  s and τ = 02 . (a) Determine the 
gain =K K K1 2  required so that the response to a unit 
step command is as rapid as reasonable with a percent 
overshoot of ≤P O. . 5%. (b) Determine the steady-
state error of the system for a step and a ramp input.

P5.6 A robot is programmed to have a tool or welding 
torch follow a prescribed path [7, 11]. Consider a robot 
tool that is to follow a sawtooth path, as shown in 
Figure P5.6(a). The loop transfer function of the plant is

L s G s G s
s

s s s
c( ) ( ) ( )

( )
( )( )

= =
+

+ +
20 2

1 4
 

(a)

(b)

-

+Kg

stg + 1

Km

stm + 1

Vc(s)
Camera
speed

Vb(s)
Bellows

speed
Ka

Kt

Rate gyro Amplifier Motor

Tachometer

Torque motor

Camera

A

B

d

FIGURE P5.1 Camera wobble control.

(b)

(a)

Beam

Workpiece

Laser
cavity

Mirror

Focusing lens

Nozzle assembly

-

+ K

s(s + K1)
R(s) Y(s)

FIGURE P5.3 Laser beam control.
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for the closed-loop system shown in Figure P5.6(b). 
Calculate the steady-state error.

P5.7 Astronaut Bruce McCandless II took the first unteth-
ered walk in space on February 7, 1984, using the  gas-jet 
propulsion device illustrated in Figure P5.7(a). The 
controller can be represented by a gain K ,2  as shown 

(a)

(b)

-

+ K1

s2

Y(s)
Pointing

angle

R(s)
Input

Controller

K2(t1s + 1)

t2s + 1

Starlight

Tracking and
data relay

satellite systemSpace shuttle

Ground
station

Process

FIGURE P5.5
(a) The space 
telescope. (b) The 
space telescope 
pointing control 
system.

(a)

(b)

G(s)Gc(s)

-

+
R(s)

Y(s)
Path

trajectory

0 10 20 30 40

r(t)

0

10

Time (s)

FIGURE P5.6
Robot path control.

in Figure P5.7(b). The moment of inertia of the equip-
ment and astronaut is =I 25 kg m .2  (a)  Determine 
the necessary gain K3 to maintain a steady-state error 
equal to 1 cm when the input is a unit ramp. (b) With 
this gain K ,3  determine the necessary gain K K1 2  in 
order to restrict the percent overshoot to ≤P O. . 10%.

M05_DORF2374_14_GE_C05.indd   381M05_DORF2374_14_GE_C05.indd   381 14/09/21   10:21 AM14/09/21   10:21 AM



382 Chapter 5  The Performance of Feedback Control Systems

P5.8 Photovoltaic arrays generate a DC voltage that can 
be used to drive DC motors or that can be converted 
to AC power and added to the distribution network. It 
is desirable to maintain the power out of the array at 
its maximum available as the solar incidence changes 
during the day. One such closed-loop system is shown 
in Figure P5.8. The transfer function for the process is

( ) =
+

G s
K

s 40
,

(a)

(b)

1
s

R(s)
Desired
position

1
IsK2

Force Velocity Position
(meters)

Gas jet
controller

K1

K3

- -

+

Astronaut

FIGURE P5.7
(a) Astronaut Bruce 
McCandless II 
is shown a few 
 meters away from 
the Earth-orbiting 
space shuttle.  
He used a nitrogen- 
propelled 
hand-controlled 
device called the 
manned maneuver-
ing unit. (Courtesy 
of NASA.) (b) Block 
diagram.

G(s)

s

-

+ -

+

R(s)
Slope of

power curve
at maximum

power

Integrator

Disturbance
Td(s)

P(s)
Power
output

1
s

Di�erentiator

FIGURE P5.8
Solar cell control.

where =K 40.  (a) Compute the closed-loop trans-
fer function, and (b) determine the settling time to 
within 2% of the final value of the system to a unit 
step disturbance.

P5.9 Antennas that receive and transmit signals to com-
munication satellites generally include an extremely 
large horn antenna. The microwave antenna can be 
175 ft long and weigh 340 tons. A photo of an antenna 
is shown in Figure P5.9. Suppose that the communi-
cation satellite is 3 ft in diameter and moves at about 
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16,000 mph at an altitude of 2500 miles. The antenna 
must be positioned accurately to 0.1° because the 
microwave beam is 0.2° wide and highly attenuated 
by the large distance. If the antenna is following the 
moving satellite, determine the Kv necessary for the 
system.

FIGURE P5.9 A large antenna  receives and transmits 
signals to a communication satellite. (Gary Woods/Alamy 
Stock Photo.)

P5.12 Train travel between cities will increase as trains are 
developed that travel at high speeds, making the travel 
time from city center to city center equivalent to airline 
travel time. The Japanese National Railway has a train 
called the Shinkansen train that travels an average 
speed of 320 km/hr [17]. To maintain a desired speed, 
a speed control system is proposed that yields a zero 
steady-state error to a ramp input. A third- order  system 
is sufficient. Determine the optimum system trans-
fer function ( )T s  for an ITAE performance  criterion. 
Estimate the settling time (with a 2% criterion) and 
percent overshoot for a step input when ω =n 10.

P5.13 We want to approximate a fourth-order system by 
a lower-order model. The transfer function of the orig-
inal system is

G s
s s s

s s s sH
7 24 24

10 35 50 24

3 2

4 3 2( ) =
+ + +

+ + + +

( )( )( )( )
=

+ + +
+ + + +

s s s
s s s s

7 24 24
1 2 3 4

.
3 2

Show that if we obtain a second-order model by the 
method of Section 5.8, and we do not specify the poles 
and the zero of G sL( ), we have

G s
s

s sL
0.2917 1

0.399 1.375 12( ) =
+

+ +

( )
( )( )

=
+

+ +
s

s s
0.731 3.428

1.043 2.4
.

P5.14 For the original system of Problem P5.13, we want 
to find the lower-order model when the poles of the 
second-order model are specified as −1 and −2 and 
the model has one unspecified zero. Show that this 
low-order model is

G s
s

s s
s

s sL
0.986 2

3 2
0.986 2.028

1 2
.2( )

( )
( )( )

=
+

+ +
=

+
+ +

P5.15 Consider a unity feedback system with loop trans-
fer function

L s G s G s
K s

s s s
c

3
5 4   10

.
2( )

( ) ( ) ( )
( )

( )
= =

+
+ + +

Determine the value of the gain K such that the per-
cent overshoot to a unit step is minimized.

P5.16 A magnetic amplifier with a low-output impedance 
is shown in Figure P5.16 in cascade with a low-pass fil-
ter and a preamplifier. The amplifier has a high-input 
impedance and a gain of 1 and is used for adding the 
signals as shown. Select a value for the capacitance C 
so that the transfer function 0 inV s V s( ) ( )/  has a damp-
ing ratio of /1 2.  The time constant of the magnetic 
amplifier is equal to 1 second, and the gain is =K 10. 
Calculate the settling time (with a 2% criterion) of the 
resulting system.

P5.10 A speed control system of an armature-controlled 
DC motor uses the back emf voltage of the motor 
as a feedback signal. (a) Draw the block diagram 
of this system (see Example 2.5). (b) Calculate the 
steady-state error of this system to a step input com-
mand setting the speed to a new level. Assume that 

= = = =R L J ba a 1,  the motor constant is Km = 1, 
and =Kb 1. (c) Select a feedback gain for the back 
emf signal to yield a step response with a percent 
overshoot of =P O. . 15%.

P5.11 A unity feedback control system has a process 
transfer function

( )
( )

( )= =
Y s
E s

G s
K
s

.

The system input is a step function with an amplitude 
A. The initial condition of the system at time t0  is 

( ) =y t Q,0  where ( )y t  is the output of the system. The 
performance index is defined as

∫ ( )=
∞

    .
0

2I e t dt

(a) Show that ( ) ( )= − /I A Q K2 .2  (b) Determine the 
gain K that will minimize the performance index I. Is 
this gain a practical value? (c) Select a practical value 
of gain and determine the resulting value of the per-
formance index.
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384 Chapter 5  The Performance of Feedback Control Systems

P5.17 Electronic pacemakers for human hearts regulate 
the speed of the heart pump. A proposed closed-loop 
system that includes a pacemaker and the measure-
ment of the heart rate is shown in Figure P5.17 [2, 3]. 
The transfer function of the heart pump and the pace-
maker is found to be

( )
( ) =

/ +12 1
.G s

K
s s

Design the amplifier gain to yield a system with 
a  settling time to a step disturbance of less than 
1 second. The percent overshoot to a step in desired 
heart rate should be ≤P O. . 10%. (a) Find a suitable 
range of K. (b) If the nominal value of K is =K 10,  
find the sensitivity of the system to small changes in 
K. (c) Evaluate the sensitivity of part (b) at DC (set 

=s 0 ). (d) Evaluate the magnitude of the sensitivity 
at the normal heart rate of 60 beats/minute.

P5.18 Consider the third-order system 
1

5 10 13 2
G s

s s s
( ) =

+ + +
.

 Determine a first-order model with one pole unspecified 
and no zeros that will represent the third-order system.

P5.19 A closed-loop control system with negative unity 
feedback has a loop transfer function

L s G s G s
s s s

c
8
6 12

.
2( )

( ) ( ) ( )= =
+ +

(a) Determine the closed-loop transfer function ( )T s . 
(b) Determine a second-order approximation for ( )T s .  
(c) Plot the response of ( )T s  and the second-order ap-
proximation to a unit step input and compare the results.

Vin(s)

- 1
+ 1

Amplifier

R = 50 Æ

C

Vo(s)
K

ts + 1

Magnetic
amplifier

FIGURE P5.16
Feedback amplifier.

-

+ +

+
1
s

Desired
heart rate

Actual
heart rate

Td(s)

Heart

Km = 1

Rate measurement
sensor

Pacemaker
K

s + 11
12

FIGURE P5.17
Heart pacemaker.

P5.20 A system is shown in Figure P5.20.
(a) Determine the steady-state error for a unit 

step input in terms of K and K ,1  where 
E s R s Y s( ) ( ) ( )= − .

(b) Select K ,1  so that the steady-state error is zero.

K1

-

+ K
(s + 5)(s + 11)

R(s) Y(s)

FIGURE P5.20 System with pregain, .1K

1
s + 2k

1
s + a

-

+
R(s) Y(s)

FIGURE P5.21 Closed-loop system with 
parameters k and a.

P5.21 Consider the closed-loop system in Figure P5.21. 
Determine values of the parameters k and a so that 
the following specifications are satisfied:
(a) The steady-state error to a unit step input is zero.
(b) The closed-loop system has a percent overshoot 

of ≤P O. . 5%.
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P5.22 Consider the closed-loop system in Figure P5.22, 
where

G s G s
s K

H s
sc

2
0.2

  and
2

2
.

τ
( ) ( ) ( )=

+
=

+

(a) If τ = 2.43, determine the value of K such that 
the steady-state error of the closed-loop system 
response to a unit step input, is zero.

(b) Determine the percent overshoot and the time 
to peak of the unit step response when K is as in 
part (a).

+

-
Y(s)

2
s + 0.2K

2
2s + t

R(s)

FIGURE P5.22 Nonunity closed-loop feedback control 
system.

AP5.1 Consider the following closed-loop transfer functions

T s
s

s s s( )( )
( )

( )
=

+
+ + +

10 1

5 2 2
1 2

and

T s
s

s s s( )( )
( ) =

+
+ + +

10
5 2 2

.2 2

(a) Determine the steady-state error for a unit step input. 
(b) Assume that the complex poles dominate, and 

determine the percent overshoot and settling 
time to within 2% of the final value.

(c) Plot the actual system response, and compare it 
with the estimates of part (b).

AP5.2 A closed-loop system is shown in Figure AP5.2. 
Plot the response to a unit step input for the system 
for τ =z 0,  0.05, 0.1, and 0.5. Record the percent 
 overshoot, rise time, and settling time (with a 2% 
 criterion) as τz   varies. Describe the effect of varying 
τz. Compare the location of the zero τ− /1 z  with the 
location of the closed-loop poles.

AP5.3 A closed-loop system is shown in Figure AP5.3. 
Plot the response to a unit step input for the system 
with pτ = 0, 0.2, 1, and 4. Record the percent over-
shoot, rise time, and settling time (with a 2% crite-
rion) as τp  varies. Describe the effect of varying .pτ  
Compare the location of the open-loop pole 1 pτ− /  
with the location of the closed-loop poles.

ADVANCED PROBLEMS

-

+
R(s) Y(s)

5440(tzs + 1)

s(s2 + 28s + 432)

FIGURE AP5.2 System with a variable zero.

-

+ 1

s (s + 5)(tps + 1)
R(s) Y(s)

FIGURE AP5.3 System with a variable pole in the 
process.

K

-

+ +

+
15

(s + 5)(s + 7)

Disturbance
Td(s)

Train
dynamics

R(s)
E(s) Y(s)

Speed

FIGURE AP5.4
Speed control.

AP5.4 The speed control of a high-speed train is rep-
resented by the system shown in Figure AP5.4 [17]. 
Determine the equation for steady-state error for K 
for a unit step input. Consider the three values for K 
equal to 1, 10, and 100.
(a) Determine the steady-state error.
(b) Determine and plot the response ( )y t  for (i) a 

unit step input ( ) = /1R s s  and (ii) a unit step dis-
turbance input 1 .T s sd( ) = /

(c) Create a table showing percent overshoot, set-
tling time (with a 2% criterion), ess for ( )r t , and 

/y td|   |max  for the three values of K. Select the 
best compromise value.
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Gc(s) G(s)

-

+
R(s)

Controller Process

Y(s)

FIGURE AP5.7
Closed-loop system 
with unity feedback.

-

+ ++ 10(s + 1)

(s + 2)(s + 6)

s + a
s

Disturbance
Td(s)

Y(s)

Controller Plant

R(s)

FIGURE AP5.5
System with control 
parameter α.

K
-

+

-

+ Km

s + 0.02
R(s) Y(s)

DC motor

Kb

1
s

FIGURE AP5.6
DC motor control.

AP5.5 A system with a controller is shown in Figure 
AP5.5. The zero of the controller may be varied.
(a) Determine the steady-state error for a unit step 

input for α = 0  and α ≠ 0.
(b) Let α = 1, 15, and 75. Plot the response of the 

system to a unit step input disturbance for the 
three values of α.  Compare the results, and se-
lect the best value of the three values of α.

AP5.6 The block diagram model of an armature-current 
controlled DC motor is shown in Figure AP5.6.
(a) Determine the steady-state tracking error to a 

ramp input in terms of K, Kb, and Km.
(b) Let Km = 12 and Kb = 0.01, and select K so that 

steady-state tracking error is equal to 1.
(c) Plot the response to a unit step input and a unit 

ramp input for 30 seconds. Are the responses 
acceptable?

AP5.7 Consider the closed-loop system in Figure AP5.7 
with transfer functions

G s K G s
s s s

c ( )( )
( ) ( )= =

+ + +
and

1
5 2 1

.
2

(a) Assume that the complex poles dominate, and 
estimate the settling time and percent overshoot 
to a unit step input for K = 1, 10, 25, and 50.  

(b) Determine the actual settling time and percent 
overshoot to a unit step for the values of K in 
part (a).

(c) Co-plot the results of (a) and (b) and comment.

AP5.8 A unity negative feedback system has an open 
loop transfer function

G s
K

s s
( ) =

+ 8
.2

Determine the gain K that results in the fastest re-
sponse without overshoot. What are the correspond-
ing poles?
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1

s(s + 15)(s + 25)

KI

sKP +
Ea(s)

-

+
R(s)

Controller Plant

Y(s)FIGURE AP5.9
Feedback control 
system with a 
 proportional plus 
integral controller.

-

+ K
s

R(s)

Actuator and
amplifier

Arm
dynamics

Y(s)
Welding tip

position

vn
2
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2

FIGURE DP5.2
Welding tip position 
control.

-

+ K

s + 7
£d (s) £(s)

Roll angle

Aileron actuator Aircraft dynamics

12

s (s + 3)

Gyro

Kg = 1FIGURE DP5.1
Roll angle control.

AP5.9 The unity negative feedback system in Figure 
AP5.9 has the process given by

( )
( )( )

=
+ +

G s
s s s

1
15 25

.

The controller is a proportional plus integral control-
ler with gains Kp   and KI  . The objective is to design 
the controller gains such that the dominant roots 
have a damping ratio ζ  equal to 0.707. Determine 
the  resulting peak time and settling time (with a 2% 
 criterion) of the system to a unit step input.

CDP5.1 The capstan drive system of the previous prob-
lems (see CDP1.1–CDP4.1) has a disturbance due 
to changes in the part that is being machined as 
material is removed. The controller is an amplifier 
G s Kc a( ) = .  Evaluate the effect of a unit step distur-
bance, and determine the best value of the amplifier 
gain so that the percent overshoot to a step command 

( ) = >r t A t,   0  is ≤P O. . 5%, while reducing the ef-
fect of the disturbance as much as possible.

DP5.1 The roll control autopilot of an aircraft is shown in 
Figure DP5.1. The goal is to select a suitable K so that 
the response to a step command φ ( ) = ≥t A td ,   0,  will 
provide a response φ( )t  that is a fast response and has 
an percent overshoot of ≤P O. . 20%. (a) Determine 
the closed-loop transfer function φ φ( ) ( )s sd/ .  (b) 
Determine the roots of the characteristic equation 

for =K 0.7,  3,  and 6. (c) Using the concept of dom-
inant roots, find the  expected percent overshoot and 
peak time for the approximate second-order system. 
(d) Plot the  actual response and compare with the 
approximate results of part (c). (e) Select the gain K 
so that the percent overshoot is =P O. . 16%. What is 
the resulting peak time?

DP5.2 The design of the control for a welding arm with 
a long reach requires the careful selection of the 
 parameters [13]. The system is shown in Figure DP5.2. 
The damping ratio ζ , the gain K, and the natural fre-
quency ωn   can be selected. (a) Determine K, and 
ωn   so that the response to a unit step input achieves 
Tp ≤ 1 s and ≤P O. . 10%. (b) Plot the response of 
the system designed in part (a) to a step input.

DESIGN PROBLEMS
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-

+ 1

s (s + q)

Electric
motor

Y(s) valve
position

R(s)
Command

Controller

s
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FIGURE DP5.3
Active suspension 
system.
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(b)
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G(s)Gc(s)
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FIGURE DP5.4
Control of a space 
satellite.

DP5.3 Active suspension systems for modern automobiles 
provide a comfortable firm ride. The design of an ac-
tive suspension system adjusts the valves of the shock 
absorber so that the ride fits the conditions. A small 
electric motor, as shown in Figure DP5.3, changes the 
valve settings [13]. The controller is a proportional plus 
integral controller with gains KP and KI. Select a design 
value for KP, KI, and the  parameter q in order to satisfy 
the ITAE performance for a step command R(s) with 
a natural frequency, nω = 1 rad/s. Upon completion of 
your design, assuming that the complex poles dominate, 
determine the natural frequency of the system for a step 
input.

DP5.4 The space satellite, as shown in Figure DP5.4  
(a), uses a control system to readjust its orientation, 
as shown in Figure DP5.4 (b).
(a) Determine a second-order model for the closed-

loop system.
(b) Using the second-order model, select a gain  

K so that the percent overshoot is ≤ 10%,  
and the steady-state error to a step is less than 
8%.

(c) Verify your design by determining the actual 
performance of the third-order system.

DP5.5 A deburring robot can be used to smooth off ma-
chined parts by following a preplanned path (input 
command signal). In practice, errors occur due to 
robot inaccuracy, machining errors, large tolerances, 
and tool wear. These errors can be eliminated using 
force feedback to modify the path online [8, 11].

While force control has been able to address 
the problem of accuracy, it has been more difficult 
to solve the contact stability problem. In fact, by 
closing the force loop and introducing a compliant 
wrist force sensor (the most common type of force 
control), one can add to the stability problem.

A model of a robot deburring system is shown 
in Figure DP5.5. Determine the region of stability 
for the system for K1  and K .2  Assume both adjust-
able gains are greater than zero.

DP5.6 The model for a position control system using a 
DC motor is shown in Figure DP5.6. The goal is to 
select K1  and K2 so that the peak time is Tp ≤ 0.7 s,  
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+ 10 K1

s (s + 4)
R(s) Y(s)

(1 + 2K2s)FIGURE DP5.6
Position control 
robot.

K1

-

+

-

+-

+
5

s (s + 4)

K2
-4

s + 10

Xd(s)
Position

input

X(s)
Actual

position

Fd(s)
Desired

force

F(s)
Actual
force

Force sensor

1FIGURE DP5.5
Deburring robot.

(a)

xi

ui

y0

(b)

R(s) Gc(s) G(s) Y(s)
-

+
FIGURE DP5.7
(a) Three-
dimensional cam 
and (b) x-axis 
 control system.

and the percent overshoot for a step input is  
≤ 5%.

DP5.7 A three-dimensional cam for generating a function 
of two variables is shown in Figure DP5.7(a). Both x 
and y may be controlled using a position control system 
[31]. The control of x may be achieved with a DC motor 
and position feedback of the form shown in Figure 
DP5.7(b), with the DC motor and load represented by

( )
( )

( )
=

+ +
G s

K
s s p s 4

,

where =K 2  and =p 2. Design a proportional plus 
derivative controller

G s K K sc p D( ) = +

to achieve a percent overshoot ≤P O. . 5% to a unit 
step input and a settling time ≤Ts 2  s.

DP5.8 Computer control of a robot to spray-paint an 
automobile is accomplished by the system shown in 
Figure DP5.8(a) [7]. We wish to investigate the sys-
tem when =K 1, 10, and 20. The feedback control 
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390 Chapter 5  The Performance of Feedback Control Systems

block diagram is shown in Figure DP5.8(b). (a) For the 
three values of K, determine the percent overshoot, 
the settling time (with a 2% criterion), and the steady-
state error for a unit step input. Record your results in 

a table. (b) Choose one of the three values of K that 
provides acceptable performance. (c) For the value 
selected in part (b), determine the output for a distur-
bance ( ) = /1T s sd  when ( ) =R s 0.

K

(b)

(a)

R(s)
+

-

Computer

Y(s)
1

s + 5
1

s + 1

Td(s)

+

+

Computer

Line conveyor

Hydraulic motor

Robot and tableTable encoder

Line encoder

Screw

Input

FIGURE DP5.8
Spray-paint robot.

CP5.1 Consider the closed-loop transfer function

T s
s s

( ) =
+ +

35
12 35

.
2

Obtain the impulse response analytically, and compare 
the result to one obtained using the impulse function.

CP5.2 A unity negative feedback system has the loop 
transfer function

L s G s G s
s

s s s
c ( )

( ) ( ) ( )= =
+

+ +
2 8

5 20
.

2 2

Using Isim, obtain the response of the closed-loop sys-
tem to a unit ramp input,

( ) = /1 .2R s s

Consider the time interval ≤ ≤t0 50.  What is the 
steady-state error?

CP5.3 A working knowledge of the relationship between 
the pole locations of a second-order system and the tran-
sient response is important in control design. With that 
in mind, consider the following five pole location cases:
(a) s j= ± ,1,2
(b) s = − −1, 1,1,2
(c) s = − −1, 2,1,2
(d) s j= − ±1 ,1,2
(e) s j= ±1 .1,2

Using the impulse and subplot functions, create a 
plot containing two subplots, with each subplot de-
picting the pole location and impulse response of 
each of the five cases listed. Discuss the results.

COMPUTER PROBLEMS
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-

+
R(s)

ControllerPrefilter Process

Y(s)
vn

2

s2 + 2zvns + vn
2

Kp

s + t

s + z

s + p
K

Ea(s)
FIGURE CP5.5
Feedback  control 
system with 
 controller and 
prefilter.

 3. nω ξ= =3, 0.5,
 4. nω ξ= =4, 0.5,

Develop an m-file to plot the unit step response, and 
determine the values of peak overshoot Mp,  time to 
peak Tp,  and settling time Ts  (with a 2% criterion) for 
each of the four cases listed. Discuss the results.

CP5.7 An autopilot designed to hold an aircraft in 
straight and level flight is shown in Figure CP5.7.
(a) Suppose the controller is a constant gain con-

troller given by G sc ( ) = 5. Using the Isim func-
tion, compute and plot the ramp response for 
θ ( ) =t atd , where a = /1.5° s. Determine the atti-
tude error after 10 seconds.

(b) If we increase the complexity of the controller, we 
can reduce the steady-state tracking error. With 
this objective in mind, suppose we replace the 
constant gain controller with the more sophisti-
cated controller

G s K
K
s s

c 3
0.8

.1
2( ) = + = +

This type of controller is known as a proportional plus 
integral (PI) controller. Repeat the simulation of part 
(a) with the PI controller, and compare the steady-state 
tracking errors of the constant gain controller versus 
the PI controller.

CP5.4 Consider the unit step response of the simple 
second-order closed-loop control system shown in 
Figure CP5.4.
(a) Determine analytically the damping ratio ξ and 

natural frequency nω  of the closed-loop system re-
sponse to a unit step input, and the corresponding 
closed-loop system transfer function.

(b) Develop an m-file to plot the unit step response 
of the closed-loop system in (a), and estimate the 
percent overshoot from the plot. Compare the 
plot with the step response in Figure CP5.4, and 
discuss the results.

CP5.5 Consider the feedback system in Figure CP5.5. 
Develop an m-file to design a controller and prefilter

G s K
s z
s p

G s
K

sc p
pand  
τ

( ) ( )=
+
+

=
+

such that the ITAE performance criterion is minimized. 
For ω =n 0.45  and ζ = 0.59, plot the unit step response 
and determine the percent overshoot and settling time.

CP5.6 The closed-loop transfer function of a simple 
 second-order system is

s s
n

n n

ω
ξω ω+ +2

.
2

2 2

 Consider the following cases:

 1. nω ξ= =1, 0.5,
 2. nω ξ= =2, 0.5,

+ +
vn

2

vn
22Zvnss2

0
0

0.2

0.4

0.6

A
m

pl
itu

de

0.8

1

2 4 6
Time (seconds)

Step Response

8 10 12

System: sys
Rise time (seconds): 1.64

Peak amplitude: 1.16
Overshoot (%): 16.3
At time (seconds): 3.59

System: sys
Settling time (seconds): 8.08

System: sys
Final value: 1

Y(s)R(s)

FIGURE CP5.4
Step response of a 
simple second- 
order system.
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392 Chapter 5  The Performance of Feedback Control Systems

CP5.8 The block diagram of a rate loop for a missile au-
topilot is shown in Figure CP5.8. Using the analytic 
formulas for second-order systems, predict ,   ,M Tpt p  
and Ts   for the closed-loop system due to a unit step 
input. Compare the predicted results with the actual 
unit step response obtained with the step function. 
Explain any differences.

CP5.9 Develop an m-file that can be used to analyze the 
closed-loop system in Figure CP5.9. Drive the system 
with a step input, and display the output on a graph. 
What is the settling time and the percent overshoot?

CP5.10 Develop an m-file to simulate the response of 
the system in Figure CP5.10 to a parabolic input  
R s s( ) = /1 .3  What is the steady-state error? Display 
the output on an x-y graph.

-

+ 30
s + 30

R(s)

5
0.2s + 5

Y(s)

FIGURE CP5.9 Nonunity feedback system.

-

+ (s + 1) (s + 2) (s + 3) (s + 4) (s + 5)
s2(s + 6) (s + 7) (s + 8)

R(s) Y(s)

FIGURE CP5.10 Closed-loop system for m-file.

CP5.11 A closed-loop transfer function is given by

T s
Y s

R s s s( )
( )

( )
( )

= =
+
1

.
2

(a) Obtain the response of the closed-loop transfer 
function /( ) ( ) ( )=T s Y s R s  to a unit step input.

(b) By consecutively adding zeros at − − −0, 0.5, 1.5, and 2.5,
− − −0, 0.5, 1.5, and 2.5, determine the step response. Compare 

the results with the step response in part (a). 
What conclusions can be drawn regarding the ef-
fect of adding a zero to a second-order system? 

CP5.12 A closed-loop transfer function is given by

T s
Y s

R s

s

s s s( )
( )

( )
( )

( )
( )

= =
+

+ + +
12 3

10 6 45
.

2

(a)  Obtain the response of the closed-loop transfer 
function ( ) ( ) ( )= /T s Y s R s  to a unit step input. 
What is the settling time Ts  (use a 2% criterion) 
and percent overshoot P.O.?

(b) Neglecting the real pole at s = −10, determine 
the settling time Ts  and percent overshoot P.O. 
Compare the results with the actual system response 
in part (a). What conclusions can be drawn regard-
ing neglecting the pole?

-

+ - 15

s + 15

- (s + 2)

s(s2 + 7.5s + 4)
Gc(s)

ud(t)
Desired
attitude

u(t)
Actual
attitude

Aircraft modelController Elevator servo

FIGURE CP5.7
An aircraft autopilot 
block diagram.

-

+
Missile dynamicsController

125(s + 1)

(s2 + s + 125)

6
s0.2 +

u(t)
Actual

rate

.
ud(t)

Desired
rate

.

FIGURE CP5.8
A missile rate loop 
autopilot.
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Terms and Concepts 393

ANSWERS TO SKILLS CHECK

True or False: (1) True; (2) False; (3) False; (4) True; 
(5) False

Multiple Choice: (6) a; (7) a; (8) c; (9) b; (10) b; (11) a; 
(12) b; (13) b; (14) a; (15) b

Word Match (in order, top to bottom): i, j, d, g, k, c, n, 
p, o, b, e, l, f, h, m, a

TERMS AND CONCEPTS

Acceleration error constant, Ka The constant evaluated 
as s G s G s

s
clim  [   ].

0
2 ( ) ( )

→
 The steady-state error for a 

parabolic input, ( ) = /2,2r t At  is equal to /  .A Ka

Design specifications A set of prescribed performance 
criteria.

Dominant roots The roots of the characteristic equation 
that cause the dominant transient response of the 
system.

Optimum control system A system whose parameters 
are adjusted so that the performance index reaches 
an extremum value.

Peak time The time for a system to respond to a step 
input and rise to a peak response.

Percent overshoot The amount by which the system out-
put response proceeds beyond the desired response.

Performance index A quantitative measure of the per-
formance of a system.

Position error constant, Kp The constant evaluated 
as G s G s

s
clim   .

0
( ) ( )

→
 The steady-state error for a step 

input (of magnitude A) is equal to A Kp( )/ +1 .

Rise time The time for a system to respond to a step 
input and attain a response equal to a percentage of 
the magnitude of the input. The 0–100% rise time, 

,Tr  measures the time to 100% of the magnitude of 
the input. Alternatively, Tr1  measures the time from 
10% to 90% of the response to the step input.

Settling time The time required for the system output 
to settle within a certain percentage of the input 
amplitude.

Steady-state response The constituent of the system 
response that exists a long time following any signal 
initiation.

Test input signal An input signal used as a standard test 
of a system’s ability to respond adequately.

Transient response The constituent of the system re-
sponse that disappears with time.

Type number The number N of poles of the transfer 
function, G s G sc ,( ) ( )  at the origin. G s G sc( ) ( ) is the 
loop transfer function.

Unit impulse A test input consisting of an impulse of in-
finite amplitude and zero width, and having an area 
of unity. The unit impulse is used to determine the 
impulse response.

Velocity error constant, Kυ The constant evaluated as 
G s G s

s
clim  [ ].

0
( ) ( )

→
 The steady-state error for a ramp 

input (of slope A) for a system is equal to .A K/ υ
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6 The Stability of Linear 
Feedback Systems
6.1 The Concept of Stability 395

6.2 The Routh–Hurwitz Stability Criterion 399

6.3 The Relative Stability of Feedback Control Systems 407

6.4 The Stability of State Variable Systems 408

6.5 Design Examples 411

6.6 System Stability Using Control Design Software 419

6.7 Sequential Design Example: Disk Drive Read System 425

6.8 Summary 427

PREVIEW

Stability of closed-loop feedback systems is central to control system design. A stable  
system should exhibit a bounded output if the input is bounded. This is known 
as bounded-input, bounded-output stability. The stability of a feedback system 
is directly related to the location of the roots of the characteristic equation of 
the system transfer function and to the location of the eigenvalues of the system 
matrix for a system in state variable format. The Routh–Hurwitz method is intro-
duced as a useful tool for assessing system stability. The technique allows us to 
compute the number of roots of the characteristic equation in the right half plane 
without actually computing the values of the roots. This gives us a design method 
for determining values of certain system parameters that will lead to closed-loop 
stability. For stable systems, we will introduce the notion of relative stability which 
allows us to characterize the degree of stability. The chapter concludes with a sta-
bilizing controller design based on the Routh–Hurwitz method for the Sequential 
Design Example: Disk Drive Read System.

DESIRED OUTCOMES

Upon completion of Chapter 6, students should be able to:

	❏ Explain the concept of stability of dynamic systems.

	❏ Describe the key concepts of absolute and relative stability.

	❏ Explain bounded-input, bounded-output stability.

	❏ Describe the relationship of the s-plane pole locations (for transfer function models) 
and of the eigenvalue locations (for state variable models) to system stability.

	❏ Construct a Routh array and employ the Routh–Hurwitz stability criterion to  
determine stability.
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Section 6.1  The Concept of Stability 395

6.1 THE CONCEPT OF STABILITY

When considering the design and analysis of feedback control systems, stability is 
of the utmost importance. From a practical point of view, a closed-loop feedback 
system that is unstable is of minimal value. As with all such general statements, there 
are exceptions; but for our purposes, we will declare that all our control designs 
must result in a closed-loop stable system. Many physical systems are inherently 
open-loop unstable, and some systems are even designed to be open-loop unstable. 
Most modern fighter aircraft are open-loop unstable by design, and without active 
feedback control assisting the pilot, they cannot fly. Active control is introduced by 
engineers to stabilize the unstable system—that is, the aircraft—so that other con-
siderations, such as transient performance, can be addressed. Using feedback, we 
can stabilize unstable systems and then with a judicious selection of controller pa-
rameters, we can adjust the transient performance. For open-loop stable systems, we 
still use feedback to adjust the closed-loop performance to meet the design specifi-
cations. These specifications take the form of steady-state tracking errors, percent 
overshoot, settling time, time to peak, and the other indices.

We can say that a closed-loop feedback system is either stable or it is not  stable. 
This type of stable/not stable characterization is referred to as absolute  stability. 
A  system possessing absolute stability is called a stable system—the label of 
 absolute is dropped. Given that a closed-loop system is stable, we can further char-
acterize the degree of stability. This is referred to as relative stability. The pioneers 
of aircraft design were familiar with the notion of relative stability—the more stable 
an aircraft was, the more difficult it was to maneuver (that is, to turn). One out-
come of the relative instability of modern acrobatic aircraft is high maneuverability.  
A acrobatic aircraft is less stable than a commercial transport; hence it can maneuver 
more quickly. As we will discuss later in this section, we can determine that a system 
is stable (in the absolute sense) by determining that all transfer function poles lie in 
the left-half s-plane, or equivalently, that all the eigenvalues of the system matrix 
A  lie in the left-half s-plane. Given that all the poles (or eigenvalues) are in the  
left-half s-plane, we investigate relative-stability by examining the relative locations 
of the poles (or eigenvalues).

A stable system is defined as a system with a bounded (limited) system 
response. That is, if the system is subjected to a bounded input or disturbance and 
the  response is bounded in magnitude, the system is said to be stable.

A stable system is a dynamic system with a bounded response  
to a bounded input.

The concept of stability can be illustrated by considering a right circular cone placed 
on a plane horizontal surface. If the cone is resting on its base and is tipped slightly,  
it returns to its original equilibrium position. This position and response are said to  
be stable. If the cone rests on its side and is displaced slightly, it rolls with no tendency 
to leave the position on its side. This position is designated as the neutral  stability. 
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396 Chapter 6  The Stability of Linear Feedback Systems

On the other hand, if the cone is placed on its tip and released, it falls onto its side. This 
position is said to be unstable. These three positions are illustrated in Figure 6.1.

The stability of a dynamic system is defined in a similar manner. The response 
to a displacement, or initial condition, will result in either a decreasing, neutral, or 
increasing response. Specifically, it follows from the definition of stability that a 
linear system is stable if and only if the absolute value of its impulse response ( )g t ,  
integrated over an infinite range, is finite. That is, in terms of the convolution inte-
gral Equation (5.2) for a bounded input,  

0
g t dt∫ ( )

∞
 must be finite.

The location in the s-plane of the poles of a system indicates the resulting  transient 
response. The poles in the left-hand portion of the s-plane result in a  decreasing re-
sponse for disturbance inputs. Similarly, poles on the ωj -axis and in the  right-hand 
plane result in a neutral and an increasing response, respectively, for a disturbance 
input. This division of the s-plane is shown in Figure 6.2. Clearly, the poles of  desirable 
dynamic systems must lie in the left-hand portion of the s-plane [1–3].

A common example of the potential destabilizing effect of feedback is that 
of feedback in audio amplifier and speaker systems used for public address in 
auditoriums. In this case, a loudspeaker produces an audio signal that is an ampli-
fied version of the sounds picked up by a microphone. In addition to other audio 
inputs, the sound coming from the speaker itself may be sensed by the microphone. 
The strength of this particular signal depends upon the distance between the loud-
speaker and the microphone. Because of the attenuating properties of air, a larger 
distance will cause a weaker signal to reach the microphone. Due to the finite prop-
agation speed of sound waves, there will also be a time delay between the signal 
produced by the loudspeaker and the signal sensed by the microphone. In this case, 
the output from the feedback path is added to the external input. This is an example 
of positive feedback.

As the distance between the loudspeaker and the microphone decreases, we 
find that if the microphone is placed too close to the speaker, then the system will 
be unstable. The result of this instability is an excessive amplification and distortion 
of audio signals and an oscillatory squeal.

(a) Stable (b) Neutral (c) Unstable

FIGURE 6.1
Illustration of 
stability.

Stable Neutral Unstable

t t t
FIGURE 6.2
Stability in the 
s-plane.
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Section 6.1  The Concept of Stability 397

In terms of linear systems, we recognize that the stability requirement may be 
defined in terms of the location of the poles of the closed-loop transfer function. A 
closed-loop system transfer function can be written as

 

∏

∏ ∏σ α α ω( )
( )

( )
( )

( )

( )

= =

+

+ + + +





=

= =

T s
p s
q s

K s z

s s s s

i
i

M

N

k

Q

k
m

R

m m m    2
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1

1 1

2 2 2
 (6.1)

where ( ) ( )= ∆ =q s s 0  is the characteristic equation whose roots are the poles of 
the closed-loop system. The output response for an impulse function input (when 

=N 0) is then

 ∑ ∑ ω
ω θ( ) ( )= +









 +σ α

=

−

=

−y t A e B e t
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m

t
m mk m       

1
 sin ,

1 1

 (6.2)

where Ak  and Bm are constants that depend on σ αzk i m,   ,   , K, and ωm.  To obtain 
a bounded response, the poles of the closed-loop system must be in the left-hand 
portion of the s-plane. Thus, a necessary and sufficient condition for a feedback 
system to be stable is that all the poles of the system transfer function have negative 
real parts. A system is stable if all the poles of the transfer function are in the left-
hand s-plane. A system is not stable if not all the roots are in the left-hand plane. If 
the characteristic equation has simple roots on the imaginary axis ωj( -axis) with all 
other roots in the left half-plane, the steady-state output will be sustained oscilla-
tions for a bounded input, unless the input is a sinusoid (which is bounded) whose 
frequency is equal to the magnitude of the ωj -axis roots. For this case, the output 
becomes unbounded. Such a system is called marginally stable, since only certain 
bounded inputs (sinusoids of the frequency of the poles) will cause the output to 
become unbounded. For an unstable system, the characteristic equation has at least 
one root in the right half of the s-plane or repeated ωj  roots; for this case, the out-
put will become unbounded for any input.

For example, if the characteristic equation of a closed-loop system is

( )( )+ + =s s10 16 0,2

then the system is said to be marginally stable. If this system is excited by a sinusoid 
of frequency ω = 4, the output becomes unbounded.

An example of how mechanical resonance can cause large displacements 
occurred in a 39-story shopping mall in Seoul, Korea. The Techno-Mart build-
ing, shown in Figure 6.3, hosts activities such as physical aerobics, in addition to 
 shopping. After a Tae Bo workout session on the 12th floor with about twenty 
 participants, the building shook for 10 minutes triggering an evacuation for two 
days [5]. A team of experts concluded that the building was likely excited to me-
chanical resonance by the vigorous exercise.

To ascertain the stability of a feedback control system, we could determine 
the roots of the characteristic polynomial ( )q s . However, we are first interested 
in determining the answer to the question, Is the system stable? If we calcu-
late the roots of the characteristic equation in order to answer this question, we 
have determined much more information than is necessary. Therefore, several 
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398 Chapter 6  The Stability of Linear Feedback Systems

methods have been developed that provide the required yes or no answer to 
the stability question. The three approaches to the question of stability are (1) 
the s-plane approach, (2) the frequency ω( )j  approach, and (3) the time-domain 
approach.

Industrial robot sales were the highest level ever recorded for a single year in 
2013. In fact, since the introduction of industrial robots at the end of the 1960s until 
2013, there have been over 2.5 million operational industrial robots sold. The world-
wide stock of operational industrial robots at the end of 2013 was in the range of 
1.3–1.6 million units. The projections are that from 2015–2017, industrial robot in-
stallations will increase by 12% on average per year [10]. Clearly, the market for 
industrial robots is dynamic. The worldwide market for service robots is similarly 
active. The projections for the period 2014–2017 are that approximately 31 million  
new service robots for personal use (such as vacuum cleaners and lawn mowers) 
and approximately 134,500 new service robots for professional use will be put into 
service [10]. As the capability of robots increases, it is reasonable to assume that 
the numbers in service will continue to rise. Especially interesting are robots with 
human characteristics, particularly those that can walk upright [21]. The IHMC 
robot depicted in Figure 6.4 competed in the recent DARPA Robotics Challenge 
[24]. Examining the IHMC robot in Figure 6.4, one can imagine that it is not inher-
ently stable and that active control is required to keep it upright during the walking 
motion. In the next sections we present the Routh–Hurwitz stability criterion to 
investigate system stability by analyzing the characteristic equation without direct 
computation of the roots.

FIGURE 6.3
Vigorous exer-
cising on the 12th 
floor likely led 
to mechanical 
resonance of the 
building trigger-
ing a two-day 
evacuation.
(Photo courtesy 
of Truth Leem/
Reuters.)
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Section 6.2  The Routh–Hurwitz Stability Criterion 399

6.2 THE ROUTH–HURWITZ STABILITY CRITERION

The discussion and determination of stability has occupied the interest of many engi-
neers. Maxwell and Vyshnegradskii first considered the question of stability of dynamic 
systems. In the late 1800s, A. Hurwitz and E. J. Routh independently published a 
method of investigating the stability of a linear system [6, 7]. The Routh–Hurwitz  
stability method provides an answer to the question of stability by considering the 
characteristic equation of the system. The characteristic equation is written as

 ( ) ( )∆ = = + + + + =−
−s q s a s a s a s an

n
n

n . . .   0.1
1

1 0  (6.3)

To ascertain the stability of the system, it is necessary to determine whether any one 
of the roots of ( )q s  lies in the right half of the s-plane. If Equation (6.3) is written in 
factored form, we have

 ( )( ) ( )− − − =a s r s r s rn n  . . . 0,1 2  (6.4)

where =r ii th root of the characteristic equation. Multiplying the factors together, 
we find that

( )( ) = − + + + −q s a s a r r r sn
n

n n
n. . .1 2

1

( )+ + + + −a r r r r r r sn
n        . . .1 2 2 3 1 3

2

( )− + +−a r r r r r r sn
n           . . . . . .1 2 3 1 2 4

3

 ( )+ − =a r r r rn
n

n  1       . . . 0.1 2 3  (6.5)

FIGURE 6.4
Team IHMC on the 
rubble on the first 
day of the DARPA 
Robotics Challenge 
2015.
(DOD Photo/Alamy 
Stock Photo.)
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400 Chapter 6  The Stability of Linear Feedback Systems

In other words, for an nth-degree equation, we obtain

( ) = − −q s a s a sn
n

n
n (sum of all the roots)  1

 + −a sn
n (sum of the products of the roots taken 2 at a time)  2

 − −a sn
n (sum of the products of the roots taken 3 at a time)  3

 ( )+ + − =an
n. . .   1  (product of all n roots) 0.  (6.6)

Examining Equation (6.5), we note that all the coefficients of the polynomial will 
have the same sign if all the roots are in the left-hand plane. Also, it is necessary that 
all the coefficients for a stable system be nonzero. These requirements are necessary 
but not sufficient. That is, we immediately know the system is unstable if they are not 
satisfied; yet if they are satisfied, we must proceed further to ascertain the stability of 
the system. For example, when the characteristic equation is

 ( ) ( )( ) ( )= + − + = + + +q s s s s s s s2 4 2 8 ,2 3 2  (6.7)

the system is unstable, and yet the polynomial possesses all positive coefficients.
The Routh–Hurwitz criterion is a necessary and sufficient criterion for 

the  stability of linear systems. The method was originally developed in terms of 
 determinants, but we shall use the more convenient array formulation. The Routh–
Hurwitz criterion is based on ordering the coefficients of the characteristic equation

 + + + + + =−
−

−
−a s a s a s a s an

n
n

n
n

n  . . .   01
1

2
2

1 0  (6.8)

into an array as follows [4]:

−
− −

− − −

s

s

a a a

a a a

n

n

n n n

n n n

     
     

.
1

2 4

1 3 5

�
�

Further rows of the array, known as the Routh array, are then completed as

�

�
�
�
�

� � �

−

−

−

− −

− − −

− − −

− − −

−

s

s

s

s

s

a a a

a a a

b b b

c c c

h

n

n

n

n

n n n

n n n

n n n

n n n

n

     
     
     
     

 

1

2

3

0

2 4

1 3 5

1 3 5

1 3 5

1

where

=
−

=
−

−
− − −

− −

−

− −
b

a a a a
a a

a a

a an
n n n n

n n

n n

n n

1
 

 
 

,1
1 2 3

1 1

2

1 3

 �= −−
−

−

− −
b

a

a a

a an
n

n n

n n

1
 

 
 

  ,3
1

4

1 5

 =
−

−
−

− −

− −
�c

b

a a

b bn
n

n n

n n

1
 

 
 

  ,   1
1

1 3

1 3
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Section 6.2  The Routh–Hurwitz Stability Criterion 401

and so on. The algorithm for calculating the entries in the array can be followed on 
a determinant basis or by using the form of the equation for −bn .1

The Routh–Hurwitz criterion states that the number of roots of ( )q s  with pos-
itive real parts is equal to the number of changes in sign of the first column of the 
Routh array. This criterion requires that there be no changes in sign in the first col-
umn for a stable system. This requirement is both necessary and sufficient.

Four distinct cases or configurations of the first column array must be consid-
ered, and each must be treated separately and requires suitable modifications of the 
array calculation procedure: (1) No element in the first column is zero; (2) there is 
a zero in the first column, but some other elements of the row containing the zero 
in the first column are nonzero; (3) there is a zero in the first column, and the other 
elements of the row containing the zero are also zero; and (4) as in the third case, 
but with repeated roots on the ωj -axis.

To illustrate this method clearly, several examples will be presented for each case.

Case 1. No element in the first column is zero.

EXAMPLE 6.1 Second-order system

The characteristic polynomial of a second-order system is

( ) = + +q s a s a s a .2
2

1 0

The Routh array is written as

s

s

s

a a

a

b

 
  0
  0

,

2

1

0

2 0

1

1

where

( )
=

−
=

−
=b

a a a
a a

a a

a
a

0 1
 

 
  0

.1
1 0 2

1 1

2 0

1
0

Therefore, the requirement for a stable second-order system is that all the coeffi-
cients be positive or all the coefficients be negative. ■

EXAMPLE 6.2 Third-order system

The characteristic polynomial of a third-order system is

( ) = + + +q s a s a s a s a .3
3

2
2

1 0

The Routh array is

s

s

s

s

a a

a a

b

c

 

 
 
  0
  0

,

3

2

1

0

3 1

2 0

1

1

M06_DORF2374_14_GE_C06.indd   401M06_DORF2374_14_GE_C06.indd   401 14/09/21   10:30 AM14/09/21   10:30 AM



402 Chapter 6  The Stability of Linear Feedback Systems

where

=
−

= =b
a a a a

a
c

b a
b

a  and .1
2 1 0 3

2
1

1 0

1
0

For the third-order system to be stable, it is necessary and sufficient that the co-
efficients be positive and .2 1 0 3>a a a a  The condition when =a a a a2 1 0 3 results in 
a marginal stability case, and one pair of roots lies on the imaginary axis in the  
s-plane. This marginal case is recognized as Case 3 because there is a zero in the first 
column when =a a a a .2 1 0 3  It will be discussed under Case 3.

As a final example of characteristic equations that result in no zero elements in 
the first row, let us consider the polynomial

 ( )( )( ) ( )= − + − − + = + + +q s s j s j s s s s1 7 1 7 3 2 24.3 2  (6.9)

The polynomial satisfies all the necessary conditions because all the coefficients 
exist and are positive. Therefore, utilizing the Routh array, we have

−

s

s

s

s

1 2
1 24

22 0
24 0

.

3

2

1

0

Because two changes in sign appear in the first column, we find that two roots of 
( )q s  lie in the right-hand plane, and our prior knowledge is confirmed. ■

Case 2. There is a zero in the first column, but some other elements of the row 
containing the zero in the first column are nonzero. If only one element in the 
array is zero, it may be replaced with a small positive number, ,∈  that is allowed 
to approach zero after completing the array. For example, consider the following 
characteristic polynomial:

 ( ) = + + + + +q s s s s s s2 2 4 11 10.5 4 3 2  (6.10)

The Routh array is then

1 2 11

2 4 10

6 0

  10 0

  0 0

10 0 0

,

5

4

3

2

1

0

1

1

∈

s

s

s

s

s

s

c

d

where

4 12
and

6 10
.1 1

1

1
=

−
=

−∈

∈

∈
c d

c
c
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Section 6.2  The Routh–Hurwitz Stability Criterion 403

When 0 1<∈ � , we find that <c 01  and >d 01 . Therefore, there are two sign 
changes in the first column; hence the system is unstable with two roots in the right 
half-plane.

EXAMPLE 6.3 Unstable system

As a final example of the type of Case 2, consider the characteristic polynomial

 ( ) = + + + +q s s s s s K,4 3 2  (6.11)

where we desire to determine the gain K that results in marginal stability. The 
Routh array is then

1 1
1 1 0

0
  0 0

0 0

,

4

3

2

1

0

1

∈

s

s

s

s

s

K

K
c

K

where

.1 =
−∈

∈
c

K

When 0 1<∈ �  and >K 0, we find that <c 01 . Therefore, there are two sign 
changes in the first column; hence, the system is unstable with two roots in the right 
half-plane. When 0 1<∈ �  and <K 0, we find that >c 01 , but because the last 
term in the first column is equal to K, we have a sign change in the first column; 
hence, the system is unstable with one root in the right half-plane. Consequently, 
the system is unstable for all values of gain K. ■

Case 3. There is a zero in the first column, and the other elements of the row 
containing the zero are also zero. Case 3 occurs when all the elements in one row 
are zero or when the row consists of a single element that is zero. This condition 
occurs when the polynomial contains singularities that are symmetrically located 
about the origin of the s-plane. Therefore, Case 3 occurs when factors such as 

σ σ( )( )+ −s s  or ω ω( )( )+ −s j s j  occur. This problem is circumvented by utilizing 
the auxiliary polynomial, ( )U s , which immediately precedes the zero entry in the 
Routh array. The order of the auxiliary polynomial is always even and indicates the 
number of symmetrical root pairs.

To illustrate this approach, let us consider a third-order system with the charac-
teristic polynomial

 ( ) = + + +q s s s s K2 4 ,3 2  (6.12)
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404 Chapter 6  The Stability of Linear Feedback Systems

where K is an adjustable loop gain. The Routh array is then

−

s

s

s

s

K
K

K

 

1 4
2

8
2

  0

0

.

3

2

1

0

For a stable system, we require that

< <K0 8.

When =K 8, we have two roots on the ωj -axis and a marginal stability case. Note 
that we obtain a row of zeros (Case 3) when =K 8. The auxiliary polynomial, ( )U s ,  
is the equation of the row preceding the row of zeros. The equation of the row preced-
ing the row of zeros is, in this case, obtained from the s -row.2  We recall that this row 
contains the coefficients of the even powers of s, and therefore we have

 ( ) ( )( )( ) = + = + = + = + −U s s Ks s s s j s j2 2 8 2 4 2 2 2 .2 0 2 2  (6.13)

When =K 8, the factors of the characteristic polynomial are

 ( )( )( ) ( )= + + −q s s s j s j2 2 2 . (6.14)

Case 4. Repeated roots of the characteristic equation on the ωj -axis.  If the 
ωj -axis roots of the characteristic equation are simple, the system is neither stable 

nor unstable; it is instead called marginally stable, since it has an undamped 
sinusoidal mode. If the ωj -axis roots are repeated, the system response will be 
unstable with a form ω φ( )+t t sin . The Routh–Hurwitz criteria will not reveal this 
form of instability [20].

Consider the system with a characteristic polynomial

( )( )( )( )( ) ( )= + + − + − = + + + + +q s s s j s j s j s j s s s s s1 2 2 1.5 4 3 2

The Routh array is

1 2 1
1 2 1

0
1 1

0

1

.

5

4

3

2

1

0

s

s

s

s

s

s

∈ ∈

∈

When �∈<0 1, we note the absence of sign changes in the first column. However, 
as ∈ → 0, we obtain a row of zero at the s3 line and a now of zero at the s1 line. 
The auxiliary polynomial at the s2 line is +s 1,2  and the auxiliary polynomial at 
the s4 line is ( )+ + = +s s s2 1 1 ,4 2 2 2  indicating the repeated roots on the ωj -axis. 
Hence, the system is unstable.
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Section 6.2  The Routh–Hurwitz Stability Criterion 405

EXAMPLE 6.4 Fifth-order system with roots on the -axisωj

Consider the characteristic polynomial

 ( ) = + + + + +q s s s s s s4 24 3 63.5 4 3 2  (6.15)

The Routh array is

1 4 3
1 24 63

20 60 0
21 63 0
0 0 0

.

5

4

3

2

1

− −

s
s
s
s
s

Therefore, the auxiliary polynomial is

 ( )( )( )( ) = + = + = + −U s s s s j s j21 63 21 3 21 3 3 ,2 2  (6.16)

which indicates that two roots are on the imaginary axis. To examine the remaining 
roots, we divide by the auxiliary polynomial to obtain

( )
+

= + + +
q s

s
s s s

3
21.

2
3 2

Establishing a Routh array for this equation, we have

1 1
1 21

20 0
21 0

.

3

2

1

0

s

s

s

s

−

The two changes in sign in the first column indicate the presence of two roots in the 
right-hand plane, and the system is unstable. The roots in the right-hand plane are 

= + ±s j1 6. ■

EXAMPLE 6.5 Welding control

Large welding robots are used in today’s auto plants. The welding head is moved 
to different positions on the auto body, and a rapid, accurate response is required.  
A block diagram of a welding head positioning system is shown in Figure 6.5. 

-

+R(s)
Desired
position

Y(s)
Data head
position

K (s + a)
s + 1

1
s (s + 2)(s + 3)

Head dynamicsController

FIGURE 6.5
Welding head 
 position control.
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406 Chapter 6  The Stability of Linear Feedback Systems

We desire to determine the range of K and a for which the system is stable. The 
characteristic equation is

( ) ( )
( )( )( )

+ = +
+

+ + +
=G s

K s a
s s s s

1 1
1 2 3

0.

Therefore, ( ) ( )= + + + + + =q s s s s K s Ka6 11 6 0.4 3 2  Establishing the Routh 
array, we have

+
s

s

s

s

s

Ka
K

b Ka

c

Ka

1 11
6 6

 

 

,

4

3

2

1

0

3

3

where
( )

=
−

=
+ −

b
K

c
b K Ka

b
60

6
  and

6 6
.3 3

3

3

The coefficient c3  sets the acceptable range of K and a, while b3 requires that K be 
less than 60. Requiring ≥c   0,3  we obtain

( )( )− + + ≤K K Ka60 6 36 0.

The required relationship between K and a is then

( )( )
≤

− +
a

K K
K

60 6
36

when a is positive. Therefore, if =K 40, we require ≤a 0.639. ■

Suppose we write the characteristic equation of an nth-order system as

ω+ + + + + =−
−

−
− �s a s a s a sn

n
n

n
n

n
n 0.1

1
2

2
1

We divide through by ωn
n and use ω= /s s n

*  to obtain the normalized form of the 
characteristic equation:

�+ + + + =− −s b s c sn n n  1 0.* * 1 * 2

For example, we normalize

+ + + =s s s5 2 8 03 2

by dividing through by ω= n8 ,3  obtaining

ω ω ω
+ + + =

s s s

n n n

5
2

 
2
4

  1 0,
3

3

2

2

or

+ + + =s s s2.5 0.5 1 0,*3 *2 *
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Section 6.3  The Relative Stability of Feedback Control Systems 407

where ω= /s s n.*  In this case, =b 2.5 and =c 0.5. Using this normalized form of the 
characteristic equation, we summarize the stability criterion for up to a sixth-order 
characteristic equation, as provided in Table 6.1. Note that =bc 1.25 and the system 
is stable.

6.3 THE RELATIVE STABILITY OF FEEDBACK CONTROL SYSTEMS

The verification of stability using the Routh–Hurwitz criterion provides only a 
partial answer to the question of stability. The Routh–Hurwitz criterion ascertains 
the absolute stability of a system by determining whether any of the roots of the 
characteristic equation lie in the right half of the s-plane. However, if the system 
 satisfies the Routh–Hurwitz criterion and is stable, it is desirable to determine the 
relative stability; that is, it is interesting to investigate the relative damping of each 
root of the characteristic equation. The relative stability of a system can be defined 
as the property that is measured by the relative real part of each root or pair of 
roots. Thus, root r2  is relatively more stable than the roots r r,   ˆ ,1 1  as shown in Figure 
6.6. The relative stability of a system can also be defined in terms of the relative 
damping coefficients ζ  of each complex root pair and, therefore, in terms of the 
speed of response and overshoot instead of settling time.

The investigation of the relative stability of each root is important because the 
location of the closed-loop poles in the s-plane determines the performance of the 
system. Thus, we reexamine the characteristic polynomial ( )q s  and consider several 
methods for the determination of relative stability.

r3

r1

r2

r3

r1

-s1

ˆˆ

jv

s

FIGURE 6.6
Root locations in 
the s-plane.

Table 6.1 The Routh–Hurwitz Stability Criterion

 n Characteristic Equation Criterion

2 + + =s bs  1 02 >b 0

3 + + + =  1 03 2s bs cs − >bc 1 0

4 + + + + =s bs cs ds  1 04 3 2 − − >bcd d b 02 2

5 + + + + + =s bs cs ds es  1 05 4 3 2 + − − >bcd b d b e 02 2

6 + + + + + + =s bs cs ds es fs  1 06 5 4 3 2 ( )+ − − + − − − + + >bcd d b e e b c bd bc f f e cdf 02 2 2 2 2

Note: The equations are normalized by ω( )n
n .
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408 Chapter 6  The Stability of Linear Feedback Systems

Because the relative stability of a system is determined by the location of the 
roots of the characteristic equation, a first approach using an s-plane formulation 
is to extend the Routh–Hurwitz criterion to ascertain relative stability. This can be 
accomplished by utilizing a change of variable, which shifts the s-plane axis in order 
to utilize the Routh–Hurwitz criterion. Examining Figure 6.6, we notice that a shift 
of the vertical axis in the s-plane to σ− 1  will result in the roots r r,   ˆ1 1 appearing on 
the shifted axis. The correct magnitude to shift the vertical axis must be obtained 
on a trial-and-error basis. Then, without solving the fifth-order polynomial ( )q s , we 
may determine the real part of the dominant roots r r,   ˆ .1 1

EXAMPLE 6.6 Axis shift

Consider the third-order characteristic equation

 ( ) = + + +q s s s s4 6 4.3 2  (6.17)

Setting the shifted variable sn equal to +s 1, we obtain

 1 4 1 6 1 4 1.3 2 3 2s s s s s sn n n n n n( ) ( ) ( )− + − + − + = + + +  (6.18)

Then the Routh array is established as

s

s

s

s

n

n

n

n

1 1
1 1
0 0
1 0

.

3

2

1

0

There are roots on the shifted imaginary axis that can be obtained from the auxil-
iary polynomial

 1 1 1 .2U s s s j s j s j s jn n n n( )( ) ( )( )( ) = + = + − = + + + −  (6.19) ■

The shifting of the s-plane axis to ascertain the relative stability of a system is 
a very useful approach, particularly for higher-order systems with several pairs of 
closed-loop complex conjugate roots.

6.4 THE STABILITY OF STATE VARIABLE SYSTEMS

The stability of a system modeled by a state variable flow graph model can be read-
ily ascertained. If the system we are investigating is represented by a signal-flow 
graph state model, we obtain the characteristic equation by evaluating the flow 
graph determinant. If the system is represented by a block diagram model we ob-
tain the characteristic equation using the block diagram reduction methods.

EXAMPLE 6.7 Stability of a second-order system

A second-order system is described by the two first-order differential equations

 = − + = + − +� �x x x x x Kx Ku3   and 1 ,1 1 2 2 2 1  (6.20)
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Section 6.4  The Stability of State Variable Systems 409

where ( )u t  is the input. The flow graph model of this set of differential equations is 
shown in Figure 6.7(a) and the block diagram model is shown in Figure 6.7(b).

Using Mason’s signal-flow gain formula, we note three loops:

= = − = −− − −L s L s L Ks,   3 ,   and ,1
1

2
1

3
2

where L1 and L2  do not share a common node. Therefore, the determinant is

( ) ( )( )∆ = − + + + = − − − + −− − − −L L L L L s s Ks s1 1 3 3 .1 2 3 1 2
1 1 2 2

We multiply by s2 to obtain the characteristic equation

( )+ + − =s s K2 3 0.2

Since all coefficients must be positive, we require >K 3 for stability. A similar 
analysis can be undertaken using the block diagram. Closing the two feedback loops 
yields the two transfer functions

( ) ( )=
−

=
+

G s
s

G s
s

1
1

  and
1

3
,1 2

as illustrated in Figure 6.7(b). The closed loop transfer function is thus

( ) ( ) ( )
( ) ( )

=
+

T s
KG s G s

KG s G s1
.1 2

1 2

Therefore, the characteristic equation is

( ) ( ) ( )∆ = + =s KG s G s1 0,1 2

1
s

1
s

U (s)
1 1K

+1 -3

X1(s)
X2(s)

-1

(a)

FIGURE 6.7
(a) Flow graph 
model for state 
variable equations 
of Example 6.7. 
(b) Block diagram 
model.

1
s

U(s) K

3

X1(s)
+

-

+

+

1
s

+

-

(b)

G2(s)

1
s + 3

G1(s)

1
s - 1
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410 Chapter 6  The Stability of Linear Feedback Systems

or

 ( ) ( )( ) ( )∆ = − + + = + + − =s s s K s s K1 3 2 3 0.2  (6.21)

This confirms the results obtained using signal-flow graph techniques. ■

A method of obtaining the characteristic equation directly from the vector dif-
ferential equation is based on the fact that the solution to the unforced system is an 
exponential function. The vector differential equation without input signals is

 �x Ax= , (6.22)

where x is the state vector. The solution is of exponential form, and we can define 
a constant λ such that the solution of the system for one state can be of the form 

.x t k ei i
ti( ) = λ  The λi  are called the characteristic roots or eigenvalues of the system, 

which are simply the roots of the characteristic equation. If we let x k= λe t  and sub-
stitute into Equation (6.22), we have

 k Akλ =λ λe et t ,  (6.23)

or

 x Axλ = .  (6.24)

 Equation (6.24) can be rewritten as

 I A xλ − =( ) 0,  (6.25)

where I equals the identity matrix and 0 equals the null matrix. This set of simulta-
neous equations has a nontrivial solution if and only if the determinant vanishes—
that is, only if

 I Aλ − =det( ) 0.  (6.26)

The nth-order equation in λ resulting from the evaluation of this determinant is the 
characteristic equation, and the stability of the system can be readily ascertained.

EXAMPLE 6.8 Closed epidemic system

The vector differential equation of the epidemic system is given in Equation (3.63) 
and repeated here as

α β
β γ
α γ

=
− −

−





















+



































x
x

d
dt

u

u

0
0
0

1 0
0 1
0 0

.1

2

The characteristic equation is then

λ
λ

λ
λ

α β
β γ
α γ

− =


















−

− −
−







































I Adet( ) det
0 0

0 0
0 0

0
0
0

 
λ α β

β λ γ
α γ λ

=
+

− +
− −





















det
0
0

 λ λ α γ λ αγ β( )( )= + + + +



 = 0.2 2
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Section 6.5  Design Examples 411

Thus, we obtain the characteristic equation of the system. The additional root λ = 0  
 results from the definition of x3 as the integral of α γ+x x ,1 2  and x3 does not affect 
the other state variables. Thus, the root λ = 0  indicates the integration connected 
with x .3  The characteristic equation indicates that the system is marginally stable 
when α γ+ > 0 and αγ β+ >  0.2  ■

6.5 DESIGN EXAMPLES

In this section we present two illustrative examples. The first example is a tracked 
vehicle control problem. In this first example, stability issues are addressed em-
ploying the Routh–Hurwitz stability criterion and the outcome is the selection of 
two key system parameters. The second example illustrates the stability problem 
robot-controlled motorcycle and how Routh–Hurwitz can be used in the selection 
of controller gains during the design process. The robot-controlled motorcycle 
 example highlights the design process with special attention to the impact of key 
controller parameters on stability.

EXAMPLE 6.9 Tracked vehicle turning control

The design of a turning control for a tracked vehicle involves the selection of two 
parameters [8]. In Figure 6.8, the system shown in part (a) has the model shown in 
part (b). The two tracks are operated at different speeds in order to turn the vehicle. 
We must select K and a so that the system is stable and the steady-state error for a 
ramp command is less than or equal to 24% of the magnitude of the command.

The characteristic equation of the feedback system is

G s G sc1 0,( ) ( )+ =

(a)

(b)

-

+
R(s)

Desired
direction
of turning

s + a
s + 1

K
s (s + 2)(s + 5)

Power train and
vehicle G(s)

Controller
Gc(s)

Y(s)

Throttle
Steering

Track torque

Power train
and controller

Vehicle

Right

Left

Di�erence in track speed

Y(s)
Direction
of travel

FIGURE 6.8
(a) Turning  control 
system for a 
 two-track vehicle. 
(b) Block diagram.
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412 Chapter 6  The Stability of Linear Feedback Systems

or

 1
1 2 5

0.
( )

( )( )( )
+

+
+ + +

=
K s a

s s s s
 (6.27)

Therefore, we have

( )( )( ) ( )+ + + + + =s s s s K s a1 2 5 0,

or

 ( )+ + + + + =s s s K s Ka8 17 10 0.4 3 2  (6.28)

To determine the stable region for K and a, we establish the Routh array as

+
s

s

s

s

s

Ka
K

b Ka

c

Ka

1 17
8 10 0

 

 

,

4

3

2

1

0

3

3

where
126

8
  and

10 8
.3 3

3

3

( )
=

−
=

+ −
b

K
c

b K Ka
b

For the elements of the first column to be positive, we require that Ka b,   ,3  and c3  
be positive. Therefore, we require that

<K 126,

>Ka 0, and

 ( )( )+ − − >K K Ka10 126 64 0. (6.29)

The region of stability for >K 0 is shown in Figure 6.9. The steady-state error to a 
ramp input ( ) = >r t At t,   0  is

= / υe A K ,ss

0

1.0

0.6

2.0

3.0

500 70 100 126 150
K

a

Stable
region

Selected K and a

FIGURE 6.9
The stable region.
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where

K sG G Ka
s

clim   10.
0

= = /υ
→

Therefore, we have

 =e
A

Ka
10

.ss  (6.30)

When ess  is equal to 23.8% of A, we require that =Ka 42. This can be satisfied 
by the selected point in the stable region when =K 70 and =a 0.6, as shown 
in Figure  6.9. Another acceptable design would be attained when =K 50 and 

=a 0.84. We can calculate a series of possible combinations of K and a that can 
satisfy =Ka 42 and that lie within the stable region, and all will be acceptable de-
sign solutions. However, not all selected values of K and a will lie within the stable 
region. Note that K cannot exceed 126. ■

EXAMPLE 6.10 Robot-controlled motorcycle

Consider the robot-controlled motorcycle shown in Figure 6.10. The motorcycle 
will move in a straight line at constant forward speed υ. Let φ( )t  denote the angle 
between the plane of symmetry of the motorcycle and the vertical. The desired 
angle φ ( )td  is equal to zero, thus

φ ( ) =sd 0.

The design elements highlighted in this example are illustrated in Figure 6.11. Using 
the Routh–Hurwitz stability criterion will allow us to get to the heart of the mat-
ter, that is, to develop a strategy for computing the controller gains while ensuring 
closed-loop stability. The control goal is

Control Goal
Control the motorcycle in the vertical position, and maintain the prescribed 
position in the presence of disturbances.

The variable to be controlled is

Variable to Be Controlled
The motorcycle position from vertical, φ( )t .

h

Robot

c.g.

c.g. = Center of gravity

c
L

Forward speed

v

f

FIGURE 6.10
The robot- 
controlled 
motorcycle.
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414 Chapter 6  The Stability of Linear Feedback Systems

Since our focus here is on stability rather than transient response characteristics, the 
control specifications will be related to stability only; transient performance is an 
issue that we need to address once we have investigated all the stability issues. The 
control design specification is

Design Specification
DS1 The closed-loop system must be stable.

The main components of the robot-controlled motorcycle are the motorcycle and 
robot, the controller, and the feedback measurements. The main subject of the chapter  
is not modeling, so we do not concentrate on developing the motorcycle dynamics  
model. We rely instead on the work of others (see [22]). The motorcycle model is 
given by

 
α

( ) =
−

G s
s

1
,

2
1

 (6.31)

where g h g,   9.806 m s ,1
2α = / = /  and h is the height of the motorcycle center of 

gravity above the ground (see Figure 6.10). The motorcycle is unstable with poles at 
α= ±s .1  The controller is given by

See Figures 6.10 and 6.12.

See Figures 6.12: KP and KD.

Control the motorcycle to the
vertical position.

Vertical position (f).

Design specification:
 DSI: Closed-loop stability.

See Equations (6.31) and (6.32)
and Table 6.2.

Establish the system configuration

Obtain a model of the process, the
actuator, and the sensor

If the performance meets the specifications,
then finalize the design.

If the performance does not meet the
specifications, then iterate the configuration. 

Identify the variables to be controlled

Establish the control goals

Topics emphasized in this example

Write the specifications

Optimize the parameters and
analyze the performance

Describe a controller and select key
parameters to be adjusted

FIGURE 6.11 Elements of the control system design process  emphasized in this robot- controlled 
motorcycle example.
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α α

τ
( ) =

+
+

G s
s

s
c

1
,2 3  (6.32)

where
α υ ( )= / hc2

2

and

α υ ( )= /L hc .3

The forward speed of the motorcycle is denoted by υ, and c denotes the wheel-
base (the distance between the wheel centers). The length, L, is the horizontal 
distance between the front wheel axle and the motorcycle center of gravity. The 
time- constant of the controller is denoted by τ.  This term represents the speed of 
response of the controller; smaller values of τ  indicate an increased speed of re-
sponse. Many simplifying assumptions are necessary to obtain the simple transfer 
function models in Equations (6.31) and (6.32).

Control is accomplished by turning the handlebar. The front wheel rotation 
about the vertical is not evident in the transfer functions. Also, the transfer func-
tions assume a constant forward speed υ which means that we must have another 
control system at work regulating the forward speed. Nominal motorcycle and 
robot controller parameters are given in Table 6.2.

Assembling the components of the feedback system gives us the system 
 configuration shown in Figure 6.12. Examination of the configuration reveals that 
the robot controller block is a function of the physical system (h, c, and L), the 
operating conditions υ( ), and the robot time-constant τ( ). No parameters need 
 adjustment unless we physically change the motorcycle parameters and/or speed. 
In fact, in this example the parameters we want to adjust are in the feedback loop:

Select Key Tuning Parameters
Feedback gains KP  and KD.

The key tuning parameters are not always in the forward path; in fact they may exist 
in any subsystem in the block diagram.

We want to use the Routh–Hurwitz technique to analyze the closed-loop sys-
tem stability. What values of KP  and KD lead to closed-loop stability? A related 
question that we can pose is, given specific values of KP  and KD  for the nominal 
system (that is, nominal values of α α α,   ,   ,1 2 3  and τ), how can the parameters them-
selves vary while still retaining closed-loop stability?

Table 6.2 Physical Parameters

τ 0.2 s
α1 9 /1 s2

α2 2.7 /1 s2

α3 1.35 1/s
h 1.09 m
V 2.0 m/s
L 1.0 m
c 1.36 m
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416 Chapter 6  The Stability of Linear Feedback Systems

The closed-loop transfer function from φ ( )sd  to φ( )s  is

α α
( )

( )
=

+
∆

T s
s

s
,2 3

where

s s K s K K s KD D P P1 .3
3

2
2 3 1 2 1τ α α α τα α α( ) ( ) ( )∆ = + + + + − + −

The question that we need to answer is for what values of KP  and KD  does the char-
acteristic equation ( )∆ =s 0 have all roots in the left half-plane?

We can set up the following Routh array:

s

s
s

K K

K K

a

K

D P

D P

P1

1  
3

2

2 3 1

3 2 1

2 1

τ α α τα
α α α

α α

+ −
+ −

−

where

a
K K K K

K
D D P P

D

1
1

.3 2 3 1 2 1

3

α α α τα τ α α
α

( )( ) ( )
=

+ + − − −
+

By inspecting column 1, we determine that for stability we require

0,   1 ,   ,  and  0.3 1 2K K aD Pτ α α α> > − / > / >

Choosing KD 0>  satisfies the second inequality (note that α > 03 ). In the event 
τ = 0, we would reformulate the characteristic equation and rework the Routh 
array. We need to determine the conditions on KP and KD such that >a 0. We find 
that >a 0 implies that the following relationship must be satisfied:

 K K K KD P D P  0.2 3
2

2 1 3 3
2

3 2α α α τα α α α τα( ) ( )+ − + + − >  (6.33)

Using the nominal values of the parameters α α α,   ,   ,1 2 3  and τ  (see Table 6.2), for 
all KD 0>  and KP 3.33,>  the left hand-side of Equation (6.33) is positive, hence 

>a 0. Taking into account all the inequalities, a valid region for selecting the gains 
is KD 0>  and KP 3.33.1 2α α> / =

-

+ +

+

1

s2 - a1

a3s + a2

ts + 1

Robot
controller

Td(s)

fd(s) f(s)

Motorcycle
dynamics

KP + KDS

Feedback
controllerFIGURE 6.12

The robot- controlled 
 motorcyle  feedback 
system block 
diagram.
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Section 6.5  Design Examples 417

Selecting any point ( ,   )K KP D  in the stability region yields a valid (that is, stable)  
set of gains for the feedback loop. For example, selecting

K KP D10 and  5= =

yields a stable closed-loop system. The closed-loop poles are

= − = − = −s s s35.2477,   2.4674,  and  1.0348.1 2 3

Since all the poles have negative real parts, we know the system response to any 
bounded input will be bounded.

For this robot-controlled motorcycle, we do not expect to have to respond to 
 nonzero command inputs (that is, φ ( ) ≠td 0) since we want the motorcyle to remain up-
right, and we certainly want to remain upright in the presence of external  disturbances. 
The transfer function for the disturbance ( )T sd  to the output φ( )s  without feedback is

φ
α

( ) ( )=
−

s
s

T sd
1

  .
2

1

The characteristic equation is

α( ) = − =q s s 0.2
1

The system poles are

α α= − = +s  and s .1 1 2 1

Thus we see that the motorcycle is unstable; it possesses a pole in the right 
half-plane. Without feedback control, any external disturbance will result in the 
motorcycle falling over. Clearly the need for a control system (usually provided by 
the human rider) is necessary. With the feedback and robot controller in the loop, 
the closed-loop transfer function from the disturbance to the output is

s
T s

s
s K s K K s Kd D D P P

1
1

.
3

3
2

2 3 1 2 1

φ τ
τ α α α τα α α

( )
( ) ( ) ( )

=
+

+ + + + − + −

The response to a step disturbance is shown in Figure 6.13; the response is stable. 
The control system manages to keep the motorcycle upright, although it is tilted at 
about φ = =0.055 rad 3.18 deg.

It is important to give the robot the ability to control the motorcycle over a 
wide range of forward speeds. Is it possible for the robot, with the feedback gains 
as selected (KP 10=  and KD 5= ), to control the motorcycle as the velocity varies? 
From experience we know that at slower speeds a bicycle becomes more difficult 
to control. We expect to see the same characteristics in the stability analysis of our 
system. Whenever possible, we try to relate the engineering problem at hand to 
real-life experiences. This helps to develop intuition that can be used as a reason-
ableness check on our solution.

A plot of the roots of the characteristic equation as the forward speed υ var-
ies is shown in Figure 6.14. The data in the plot were generated using the nominal 
values of the feedback gains, KP 10=  and KD 5.=  We selected these gains for 
the case where υ = /2 m s.  Figure 6.14 shows that as υ increases, the roots of the 
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FIGURE 6.13  
Disturbance 
response with 
KP = 10  and 
KD = 5.
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v = 2 m/s. 

s2 =  -2.4674
s3 =  -1.0348

One pole enters the
right half-plane
for v = 1.15.

s1 = -35.2477

FIGURE 6.14  
Roots of the 
characteristic 
equation as the 
motorcycle velocity 
varies.

characteristic equation remain stable (that is, in the left half-plane) with all points 
negative. But as the motorcycle forward speed decreases, the roots move toward 
zero, with one root becoming positive at υ = /1.15 m s.  At the point where one root 
is positive, the motorcycle is unstable. ■
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Section 6.6  System Stability Using Control Design Software 419

6.6 SYSTEM STABILITY USING CONTROL DESIGN SOFTWARE

In this section we will see how the computer can assist us in the stability analysis by 
providing an easy and accurate method for computing the poles of the characteristic 
equation. For the case of the characteristic equation as a function of a single param-
eter, it will be possible to generate a plot displaying the movement of the poles as 
the parameter varies. The section concludes with an example.

The function introduced in this section is the function for, which is used to re-
peat a number of statements a specific number of times.

Routh–Hurwitz Stability. As stated earlier, the Routh–Hurwitz criterion is a nec-
essary and sufficient criterion for stability. Given a characteristic equation with 
fixed coefficients, we can use Routh–Hurwitz to determine the number of roots in 
the right half-plane. For example, consider the characteristic equation

( ) = + + + =q s s s s2 24 03 2

associated with the closed-loop control system shown in Figure 6.15. The corre-
sponding Routh–Hurwitz array is shown in Figure 6.16. The two sign changes in 
the first column indicate that there are two roots of the characteristic polynomial 
in the right half-plane; hence, the closed-loop system is unstable. We can verify the 
Routh–Hurwitz result by directly computing the roots of the characteristic equation, 
as shown in Figure 6.17, using the pole function. Recall that the pole function com-
putes the system poles.

Whenever the characteristic equation is a function of a single parameter, the 
Routh–Hurwitz method can be utilized to determine the range of values that the 
parameter may take while maintaining stability. Consider the closed-loop feedback 
system in Figure 6.18. The characteristic equation is

( ) = + + + =q s s s s K2 4 0.3 2

Using a Routh–Hurwitz approach, we find that we require < <K0 8 for stability (see 
Equation 6.12). We can verify this result graphically. As shown in Figure 6.19(b), we 

-

+
R(s) Y(s)

1
s3 + s2 + 2s + 23

G(s) =

FIGURE 6.15
Closed-loop con-
trol system with 

(
)

( )
( ) ( )

=
/ = / +

+ +

T s
Y s R s s

s s

1

 2 24 .

3

2

s3

s2

s1

s0

1

1

- 22

24

2

24

0

0

1st sign change

2nd sign change

FIGURE 6.16
Routh array for 
the closed-loop 
control system with 

(
)

( )
( ) ( )

=
/ =

/ + +
+

T s
Y s R s

s s
s

1
2 24 .

3 2
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Unstable poles

FIGURE 6.17
Using the pole 
function to 
 compute the 
closed-loop control 
system poles of the 
 system shown in 
Figure 6.16.

K
-

+
R(s) Y(s)

1

s3 + 2s2 + 4s

FIGURE 6.18
Closed-loop con-
trol system with 

(
)

( )
( ) ( )

=
/ = / +
+ +

T s
Y s R s K s

s s2  4    4 .
3

2

establish a vector of values for K at which we wish to compute the roots of the charac-
teristic equation. Then using the roots function, we calculate and plot the roots of the 
characteristic equation, as shown in Figure 6.19(a). It can be seen that as K increases, 
the roots of the characteristic equation move toward the right half-plane as the gain 
tends toward =K 8, and eventually into the right half-plane when >K 8.

The script in Figure 6.19 contains the for function. This function provides a 
mechanism for repeatedly executing a series of statements a given number of times. 
The for function connected to an end statement sets up a repeating calculation loop. 
Figure 6.20 describes the for function format and provides an illustrative example 
of its usefulness. The example sets up a loop that repeats ten times. During the ith 
iteration, where ≤ ≤i1 10, the ith element of the vector a is set equal to 20, and the 
scalar b is recomputed.

The Routh–Hurwitz method allows us to make definitive statements regard-
ing absolute stability of a linear system. The method does not address the issue of 
 relative stability, which is directly related to the location of the roots of the charac-
teristic equation. Routh–Hurwitz tells us how many poles lie in the right half-plane, 
but not the specific location of the poles. With control design software, we can easily 
calculate the poles explicitly, thus allowing us to comment on the relative stability.

EXAMPLE 6.11 Tracked vehicle control

The block diagram of the control system for the two-track vehicle is shown in 
Figure 6.8. The design objective is to find a and K such that the system is stable and 
the steady-state error for a ramp input is less than or equal to 24% of the command.

We can use the Routh–Hurwitz method to aid in the search for appropriate 
values of a and K. The closed-loop characteristic equation is

( ) ( )= + + + + + =q s s s s K s aK8 17 10 0.4 3 2

Using the Routh array, we find that, for stability, we require that

( )<
−

+ − > >K
K

K aK aK126,  
126

8
   10 8 0, and 0.
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FIGURE 6.19
(a) Plot of root 
locations of 

( ) = + +q s s s23 2  
4s + Kfor 

≤ ≤K0 20.  
(b) m-file script.

General format

Example

The end statement
must be included to
indicate the end of

the loop.

Counter i

a is a vector
with 10 elements.

b is a scalar that
changes as i increments.

oLoop

FIGURE 6.20
The for function 
and an illustrative 
example.
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422 Chapter 6  The Stability of Linear Feedback Systems

For positive K, it follows that we can restrict our search to < <K0 126  and >a 0. 
Our approach will be to use the computer to help find a parameterized a versus K 
region in which stability is assured. Then we can find a set of (a, K) belonging to the 
stable region such that the steady-state error specification is met. This procedure, 
shown in Figure 6.21, involves selecting a range of values for a and K and computing 
the roots of the characteristic polynomial for specific values of a and K. For each 
value of K, we find the first value of a that results in at least one root of the char-
acteristic equation in the right half-plane. The process is repeated until the entire 
selected range of a and K is exhausted. The plot of the (a, K) pairs defines the sepa-
ration between the stable and unstable regions. The region to the left of the plot of 
a versus K in Figure 6.21 is the stable region.

If we assume that ( ) = >r t At t,   0,  then the steady-state error is

( )( )( )
( )( )( ) ( )

= ⋅
+ + +

+ + + + +
=

→
e s

s s s s
s s s s K s a

A
s

A
aKs

lim  
1 2 5

1 2 5
 

10
,ss

0 2

where we have used the fact that

E s
G s G s

R s
s s s s

s s s s K s a
R s

c

1
1

  
1 2 5

1 2 5
   .( )

( ) ( )
( ) ( )( )( )

( )( )( ) ( )
( )=

+
=

+ + +
+ + + + +

Given the steady-state specification, <e A0.24 ,ss  we find that the specification is 
satisfied when

<
A

aK
A

10
  0.24 ,

(b)

Characteristic
polynomial.

For a given value of K, determine
first value of a for instability.

Range of a and K.

Initialize plot vectors as zero
vectors of appropriate lengths.

K

a

Stable region

(a = 0.6, K = 70)

20 40 60 80 100 120

2.5

2.0

1.5

1.0

0.5
0

(a)

FIGURE 6.21
(a) Stability region 
for a and K for 
 two-track vehicle 
turning control. 
(b) m-file script.
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Section 6.6  System Stability Using Control Design Software 423

or

 >aK 41.67. (6.34)

Any values of a and K that lie in the stable region in Figure 6.21 and satisfy Equation 
(6.34) will lead to an acceptable design. For example, =K 70 and =a 0.6 will sat-
isfy all the design requirements. The closed-loop transfer function (with =a 0.6 
and =K 70) is

( ) =
+

+ + + +
T s

s
s s s s

70 42
8 17 80 42

.
4 3 2

The associated closed-loop poles are

= −s 7.0767,

= −s 0.5781,

0.1726 3.1995, ands j= − +
0.1726 3.1995.s j= − −

The corresponding unit ramp input response is shown in Figure 6.22. The steady-
state error is less than 0.24, as desired. ■

0 2 4 6 8 10 12 14 16

Ramp input

y(
t)

u = unit ramp input

a = 0.6 and K = 70Linear simulation

(b)

(a)

Time (s)

0

2

4

6

8

10

12

14

16

y(t)

Steady-state error

FIGURE 6.22
(a) Ramp response 
for =a 0.6  and 

=K 70  for two-
track vehicle turning 
control. (b) m-file 
script.
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424 Chapter 6  The Stability of Linear Feedback Systems

The Stability of State Variable Systems. Now let us turn to determining the 
stability of systems described in state variable form. Suppose we have a system in 
state-space form as in Equation (6.22). The stability of the system can be evaluated 
with the characteristic equation associated with the system matrix A. The charac-
teristic equation is

 I A− =sdet( ) 0.  (6.35)

The left-hand side of the characteristic equation is a polynomial in s. If all of the 
roots of the characteristic equation have negative real parts (i.e., ( ) <siRe 0), then 
the system is stable.

When the system model is given in state variable form, we must calculate the 
characteristic polynomial associated with the A matrix. In this regard, we have sev-
eral options. We can calculate the characteristic equation directly from Equation 
(6.35) by manually computing the determinant of I A−s .  Then, we can compute 
the roots using the roots function to check for stability, or alternatively, we can use 
the Routh–Hurwitz method to detect any unstable roots. Unfortunately, the man-
ual computations can become lengthy, especially if the dimension of A is large. We 
would like to avoid this manual computation if possible. As it turns out, the com-
puter can assist in this endeavor.

The poly function can be used to compute the characteristic equation associ-
ated with A. The poly is used to form a polynomial from a vector of roots. It can 
also be used to compute the characteristic equation of A, as illustrated in Figure 
6.23. The input matrix A is

A =
− − −

















8 16 6
1 0 0
0 1 0

  ,

and the associated characteristic polynomial is

+ + + =s s s8 16 6 0.3 2

Coe�cients of characteristic
polynomial in descending order

n : n matrix

Characteristic polynomial

Stable

FIGURE 6.23
Computing the 
characteristic 
 polynomial of A with 
the poly function.
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Section 6.7  Sequential Design Example: Disk Drive Read System 425

If A is an ×n n  matrix, poly(A) is an +n 1 element row vector whose elements 
are the coefficients of the characteristic equation I A− =sdet( ) 0.

6.7 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

In this section, we will examine the stability of the disk drive read system as Ka  is 
adjusted and then reconfigure the system.

Let us consider the system as shown in Figure 6.24. Initially, we consider the 
case where the switch is open. Then the closed-loop transfer function is

 
1

,1 2

1 2

Y s
R s

K G s G s
K G s G s
a

a

( )
( )

( ) ( )
( ) ( )

=
+

 , (6.36)

where

G s
s

G s
s s

5000
1000

and
1

20
.1 2( ) ( )

( )
=

+
=

+

The characteristic equation is

 s s s Ka1020 20000 5000 0.3 2+ + + =  (6.37)

The Routh array is

s

s

s

s

K

b

K

a

a

1 20000
1020 5000

 

5000  

,

3

2

1

0

1

where

b
Ka20000 1020 5000

1020
.1

( )
=

−

The case =b 01  results in marginal stability when Ka 4080.=  Using the auxiliary 
equation, we have

+ =s 20000 0,2

- -

+ -

+
R(s)

Y(s)
Position

1
s

1
s + 20

Amplifier Motor coil

Ka G1(s)

H(s) = 1

Td (s)

Velocity

Position sensor

K1

Velocity sensor

Switch
FIGURE 6.24
The closed-loop 
disk drive head 
system with an 
optional velocity 
feedback.
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426 Chapter 6  The Stability of Linear Feedback Systems

or the roots of the ωj -axis are = ±s j141.4. In order for the system to be stable, 
Ka 4080.<

Now let us add the velocity feedback by closing the switch in the system of 
Figure 6.24. The closed-loop transfer function for the system is then

 
1 [ ] 1

1 2

1 2 1

Y s
R s

K G s G s
K G s G s K s

a

a

( )
( )

( ) ( )
( ) ( ) ( )

=
+ +

, (6.38)

since the feedback factor is equal to + K s1 ,1  as shown in Figure 6.25.
The characteristic equation is

K G s G s K sa1 [ ] 1 0,1 2 1( ) ( ) ( )+ + =

or

s s s K K sa20 1000 5000 1 0.1( )( ) ( )+ + + + =

Therefore, we have

s s K K s Ka a1020 [20000 5000 ] 5000 0.3 2
1+ + + + =

The Routh array is

s

s

s

s

K K

K

b

K

a

a

a

1 20000 5000
1020 5000

 

5000  

,

3

2

1

0

1

1

+

where

b
K K Ka a1020 20000 5000 5000

1020
.1

1( )
=

+ −

To guarantee stability, it is necessary to select the pair ,   1K Ka( )  such that >b 0,1  
where Ka 0.>  When =K 0.051  and Ka 100,=  we can determine the system 
response using the script shown in Figure 6.26. The settling time (with a 2% cri-
terion) is approximately =Ts 260 ms, and the percent overshoot is =P O. . 0%.  
The system performance is summarized in Table 6.3. The performance specifi-
cations are nearly satisfied, and some iteration of K1 is necessary to obtain the 
desired =Ts 250 ms.

-

+ -

+
R(s) Y(s)Ka G1(s)

1 + K1s

G2(s)

Td (s)

FIGURE 6.25
Equivalent system 
with the velocity 
feedback switch 
closed.
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Section 6.8  Summary 427

(b)

(a)

Time (s)

0 0.05 0.1 0.15 0.25 0.35 0.450.2 0.3 0.4 0.5

0.2

0.1

0

0.4

0.6

0.5

0.3

0.8

1

0.9

0.7

y(
t)

Select the velocity
feedback gain K1 and

amplifier gain Ka.

FIGURE 6.26
Response of the 
system with velocity 
feedback. (a) m-file 
script. (b) Response 
with =Ka 100  and 

=K 0.05.1

Table 6.3 Performance of the Disk Drive System Compared to the 
Specifications

Performance Measure Desired Value Actual Response

Percent overshoot Less than 5% 0%
Settling time Less than 250 ms 260 ms
Maximum response  
 to a unit disturbance Less than × −5 10 3 × −2 10 3

6.8 SUMMARY

In this chapter, we have considered the concept of the stability of a feedback control 
system. A definition of a stable system in terms of a bounded system response was out-
lined and related to the location of the poles of the system transfer function in the s-plane.
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428 Chapter 6  The Stability of Linear Feedback Systems

The Routh–Hurwitz stability criterion was introduced, and several examples 
were considered. The relative stability of a feedback control system was also consid-
ered in terms of the location of the poles and zeros of the system transfer function in 
the s-plane. The stability of state variable systems was considered.

SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or False, 
Multiple Choice, and Word Match. To obtain direct feedback, check your answers with 
the answer key provided at the conclusion of the end-of-chapter problems. Use the block 
 diagram in Figure 6.27 as specified in the various problem statements.

Gc(s) G(s)

Controller

R(s) Y(s)

Process

-

+

FIGURE 6.27 Block diagram for the Skills Check.

In the following True or False and Multiple Choice problems, circle the correct answer.

1. A stable system is a dynamic system with a bounded output response  
for any input. True or False

2. A marginally stable system has poles on the jω-axis. True or False

3. A system is stable if all poles lie in the right half-plane. True or False

4. The Routh–Hurwitz criterion is a necessary and sufficient criterion for  
determining the stability of linear systems. True or False

5. Relative stability characterizes the degree of stability. True or False

6. A system has the characteristic equation

( ) ( )= + + + + =q s s Ks K s4 5 10 0.3 2

The range of K for a stable system is:

a. ≥K 0.46

b. <K 0.46

c. < <K0 0.46

d. Unstable for all K

7. Utilizing the Routh–Hurwitz criterion, determine whether Systems 1 and 2 with the 
 following polynomials are stable or unstable:

( ) = + +10 5,1
2p s s s

( ) = + + + +5 20 10.2
4 3 2p s s s s s

a. System 1 is stable, System 2 is stable

b. System 1 is unstable, System 2 is stable

c. System 1 is stable, System 2 is unstable

d. System 1 is unstable, System 2 is unstable

M06_DORF2374_14_GE_C06.indd   428M06_DORF2374_14_GE_C06.indd   428 17/09/21   4:53 PM17/09/21   4:53 PM



Skills Check 429

8. Consider the feedback control system block diagram in Figure 6.27. Investigate closed-

loop stability for G s K s G s
s sc 1  and 

1
2 1

,( ) ( ) ( )
( )( )

= + =
+ −

 for the two cases where 

=K 1 and =K 3.

a. Unstable for =K 1 and stable for =K 3

b. Unstable for =K 1 and unstable for =K 3

c. Stable for =K 1 and unstable for =K 3

d. Stable for =K 1 and stable for =K 3

9. Consider a unity negative feedback system in Figure 6.27 with loop transfer function 
where

L s G s G s
K

s s s
c 1 0.5 1 0.5 0.25  

.
2( )

( ) ( ) ( )
( )

= =
+ + +

Determine the value of K for which the closed-loop system is marginally stable.

a. =K 10

b. =K 3

c. The system is unstable for all K

d. The system is stable for all K

10. A system is represented by �x Ax= , where

=
− − −



















A
0 1 0
0 0 1
5 10

  .
K

The values of K for a stable system are

a. < /K 1 2

b. > /K 1 2

c. = /K 1 2

d. The system is stable for all K

11. Use the Routh array to assist in computing the roots of the polynomial

( ) = + + + =q s s s s2 2 1 0.3 2

a. 1;  
2

2
 1 2,3= − = ±s s j

b. 1;  
2

2
 1 2,3= = ±s s j

c. 1;   1
2

21 2,3= − = ±s s j

d. = − =s s1;   11 2,3

12. Consider the following unity feedback control system in Figure 6.27 where

G s
s s s

G s
K s

sc
1

2 10 45
 and 

0.3
.

2( )
( )

( )
( )

( )
=

− + +
=

+

The range of K for stability is

a. <K 260.68
b. < <K50.06 123.98
c. < <K100.12 260.68
d. The system is unstable for all >K 0
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430 Chapter 6  The Stability of Linear Feedback Systems

In Problems 13 and 14, consider the system represented in a state-space form

=
− − −



















+



















x x�
0 1 0
0 0 1
5 10 5

 
0
0
20

  u

x= 



y 1 0 1 .

13. The characteristic equation is:

a. ( ) = + − −q s s s s5 10 63 2

b. ( ) = + + +q s s s s5 10 53 2

c. ( ) = − + −q s s s s5 10 53 2

d. ( ) = − +q s s s5 102

14. Using the Routh–Hurwitz criterion, determine whether the system is stable, unstable, or 
marginally stable.

a. Stable
b. Unstable
c. Marginally stable
d. None of the above

15. A system has the block diagram representation as shown in Figure 6.27, where 

( )
( ) ( )=

+
=

+
G s

s
G s

K
s

Kc 
10

15
 and 

80
,  where   is always positive.2  The limiting gain 

for a stable system is:

a. < <K0 28875

b. < <K0 27075

c. < <K0 25050

d. Stable for all >K 0

In the following Word Match problems, match the term with the definition by writing 
the correct letter in the space provided.

a.  Routh–Hurwitz  
criterion

A performance measure of a system.

b. Auxiliary polynomial A dynamic system with a bounded system 
 response to a bounded input.

c. Marginally stable The property that is measured by the relative 
real part of each root or pair of roots of the 
 characteristic equation.

d. Stable system A criterion for determining the stability of a 
 system by examining the characteristic equation 
of the transfer function.

e. Stability The equation that immediately precedes the zero 
entry in the Routh array.

f. Relative stability A system description that reveals whether a system 
is stable or not stable without consideration of other 
system attributes such as degree of stability.

g. Absolute stability A system possesses this type of stability if the zero 
input response remains bounded as t → ∞. 
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Exercises 431

E6.8 Designers have developed small, fast, vertical- take-
off fighter aircraft that are invisible to radar (stealth 
aircraft). This aircraft concept uses quickly turning 
jet nozzles to steer the airplane [16]. The control sys-
tem for the heading or direction control is shown in 
Figure E6.8. Determine the maximum gain of the sys-
tem for stable operation.

E6.9 A system has a characteristic equation 

2 1 8 0.3 2 ( )+ + + + =s s K s  

Find the range of K for a stable system.

Answer: K > 3

E6.10 Consider a feedback system with closed-loop 
transfer function

T s
s s s s s

( ) =
+ + + + +

4
4 8 8 7 4

.
5 4 3 2

Is the system stable?

E6.11 A system with a transfer function Y(s)/R(s) is

Y s

R s

s

s s s s

( )
( )

( )
=

+
+ + + +

24 1
6 2 3

.
4 3 2

Determine the steady-state error to a unit step input. 
Is the system stable?

E6.12 A system has the second-order characteristic equation

+ + =s as b 0,2

where a and b are constant parameters. Determine 
the necessary and sufficient conditions for the system 
to be stable. Is it possible to determine stability of 
a second-order system just by inspecting the coeffi-
cients of the characteristic equation?

E6.1 A system has a characteristic equation s3 + 5Ks2 + 
K s( )+ + =2 15 0.  Determine the range of K for a 

stable system.

Answer: K > 0

E6.2 A system has a characteristic equation s3 + 10s2 +
s + =2 30 0.  Using the Routh–Hurwitz criterion, 

show that the system is unstable.

E6.3 A system has the characteristic equation s4 + 10s3 + 
s s+ + =32 37 20 0.2  Using the Routh–Hurwitz cri-

terion, determine if the system is stable.

E6.4 A control system has the structure shown in Figure 
E6.4. Determine the gain at which the system will 
become unstable.

Answer: = /K 20 7
E6.5 A unity feedback system has a loop transfer 

function 
L s

K
s s s s( )

( )
( ) ( )

=
+ + +2 5 12

where K = 15.  Find the roots of the closed-loop 
 system’s characteristic equation.

E6.6 A negative feedback system has a loop transfer 
function

L s G s G s
K s

s sc( ) ( ) ( )
( )

( )
= =

+
−

1
2

.

(a) Find the value of the gain when the ζ  of the 
closed-loop roots is equal to 0.5. (b) Find the value of 
the gain when the closed-loop system has two roots 
on the imaginary axis.

E6.7 For the feedback system of Exercise E6.5, find the 
value of K when two roots lie on the imaginary axis.  
Determine the value of the roots.

Answer: s j= ± 2.5131

EXERCISES

FIGURE E6.4  
Feedforward system.

-
Y(s)

+

-

+ K
s(s + 4)

3
s + 1

R(s)

FIGURE E6.8  
Aircraft heading  
control.

-

Controller

+
R(s)

Aircraft dynamics

Y(s)
Heading

(s + 20)

s(s + 10)2K
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432 Chapter 6  The Stability of Linear Feedback Systems

E6.18 A system has a characteristic equation

9 9 0.3 2q s s s s( ) = + + + =

(a) Determine whether the system is stable, using the 
Routh–Hurwitz criterion. (b) Determine the roots of 
the characteristic equation.

E6.19 Determine whether the systems with the follow-
ing characteristic equations are stable or unstable:
(a) s s s+ + + =4 6 100 0,3 2

(b) s s s s+ + + + =6 10 17 6 0,4 3 2  and
(c) + + =s s6 3 0.2

E6.20 Find the roots of the following polynomials:
(a) + + + =s s s5 8 4 03 2  and
(b) + + + =s s s9 27 27 0.3 2

E6.21 A system has a transfer function ( ) ( )/ =Y s R s  
T s s s( ) ( )= / +1 1 . (a) Is this system stable? (b) If ( )r t  
is a unit step input, determine the response ( )y t .

E6.22 A system has the characteristic equation

( ) = + + + =q s s s s K15 30 0.3 2

Shift the vertical axis to the right by 1 by using 
= −s sn  1,  and determine the value of gain K so 

that the complex roots are 1 3 .s j= − ±

E6.23 The matrix differential equation of a state vari-
able model of a system is

0 1
0 0 1
1 2 1

.� ( ) ( )=
− − −



















t
k

tx x

Find the range of k where the system is stable.

E6.24 Consider the system represented in state variable 
form

�  ( ) ( ) ( )= +t t u tx Ax B

,( ) ( ) ( )= +y t t u tCx D

where

A B=
− − −



















=

















k k k

0 1 0
0 0 1 ,

0
0
1

1 0 0  , 0 .[ ]= 



 =C D

E6.13 Consider the feedback system in Figure E6.13. 
Determine the range of KP and KD for stability of the 
closed-loop system.

E6.14 By using magnetic bearings, a rotor is supported 
contactless. The technique of contactless support for 
rotors becomes more important in light and heavy 
industrial applications [14]. The matrix differential 
equation for a magnetic bearing system is

� t tx x
0 5 1
2 4 7
1 3 4

,( ) ( )=
−

−
−





















where ,   ,   ,�( )( ) ( ) ( ) ( )=t y t y t i tTx  ( ) =y t bearing  gap,  
and ( )i t  is the electromagnetic current. Determine 
whether the system is stable.

Answer: The system is stable.

E6.15 A system has a characteristic equation

( ) = + + +q s s s s s9 31.25 61.256 5 4 3

 + + + =s s67.75 14.75 15 0.2

(a) Determine whether the system is stable, using the 
Routh–Hurwitz criterion. (b) Determine the roots of 
the characteristic equation.

Answer: (a) The system is marginally stable.  
(b) = − − − ± ±s j j3,   4,   1 2 ,   0.5

E6.16 A system has a characteristic equation

q s s s s s s( ) = + + + + + =5 12 6 42 10 0.5 4 3 2

(a) Determine whether the system is stable, using the 
Routh–Hurwitz criterion. (b) Determine the roots of 
the characteristic equation.

E6.17 The matrix differential equation of a state vari-
able model of a system is

x x
6 1 3

4 3 3
4 1 7

.� ( ) ( )=
− −

−
− − −



















t t

(a) Determine the characteristic equation. (b) Deter-
mine whether the system is stable. (c) Determine the 
roots of the characteristic equation.

Answer: (a) ( ) = + + + =16 68 80 03 2q s s s s

KP + KDs

Controller

+

-

Process

4
s(s + 2)

R(s) Y(s)
FIGURE E6.13
Closed-loop sys-
tem with a pro-
portional plus 
derivative controller 

( ) = +G s K K sc P D .
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Problems 433

(e) + + + + =s s s s K3 2 04 3 2

(f) + + + + =s s s s2 6 05 4 3

(g) + + + + + =s s s s s K2 05 4 3 2

Determine the number of roots, if any, in the right-
hand plane. If it is adjustable, determine the range of 
K that results in a stable system.

P6.1 Utilizing the Routh–Hurwitz criterion, determine 
the stability of the following polynomials:

(a) + + =s s5 2 02

(b) + + + =s s s4 8 4 03 2

(c) + − + =s s s2 6 20 03 2

(d) + + + + =s s s s2 12 10 04 3 2

E6.26 Consider the closed-loop system in Figure E6.26, 
where

G s
s

G s
s Kc( ) ( )=

−
=

+
10

10
and

1
2

.

(a) Determine the characteristic equation associated 
with the closed-loop system.

(b) Determine the values of K for which the closed-
loop system is stable.

(a) What is the system transfer function? (b) For what 
values of k is the system stable?

E6.25 A closed-loop feedback system is shown in Figure 
E6.25. For what range of values of the parameters K 
and p is the system stable?

FIGURE E6.25 Closed-loop system with parameters 
K and p.

-

+
R(s) Y(s)Ks + 1

s2(s + p)

1

(b)

+

-

+

+

Controller

+

+
N(s)

R(s) Y(s)

Process

Td (s)

Ea(s)

(a)

Y(s)

Td(s)

1

1

N(s)

- 1

1

1

R(s)

s - 10

10

s - 10

10

2s + K

1

2s + K

1

FIGURE E6.26
Closed-loop 
 feedback  control 
system with 
 parameter K.

PROBLEMS
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434 Chapter 6  The Stability of Linear Feedback Systems

P6.4 A feedback control system is shown in Figure P6.4. The 
controller and process transfer functions are given by

( )
( ) ( )= =

+
+

G s K G s
s

s sc  and 
100

25
,

and the feedback transfer function is 1( ) = /H s   
(s + 50). (a) Determine the limiting value of gain K 
for a stable system. (b) For the gain that results in 
marginal stability, determine the magnitude of the 
imaginary roots. (c) Reduce the gain to one-third of 
the magnitude of the marginal value, and determine 
the relative stability of the system (1) by shifting the 
axis and using the Routh–Hurwitz criterion and (2) 
by determining the root locations. Show the roots are 
between −4 and −5.

P6.5 Determine the relative stability of the systems with 
the following characteristic equations (1) by shifting 
the axis in the s-plane and using the Routh–Hurwitz 
criterion, and (2) by determining the location of the 
complex roots in the s-plane:

(a) s s s+ + + =3 4 2 0.3 2

(b) + + + + =s s s s9 30 42 20 0.4 3 2

(c) s s s+ + + =19 110 200 0.3 2

P6.6 A unity-feedback control system is shown in 
Figure P6.6. Determine the stability of the system 

P6.2 An antenna control system was analyzed in 
Problem P4.5, and it was determined that, to reduce 
the effect of wind disturbances, the gain of the mag-
netic amplifier, ka ,  should be as large as possible. (a) 
Determine the limiting value of gain for maintaining 
a stable system. (b) We want to have a system settling 
time equal to 1.5 seconds. Using a shifted axis and the 
Routh–Hurwitz criterion, determine the value of 
the  gain that satisfies this requirement. Assume 
that the complex roots of the closed-loop system 
 dominate the transient response. (Is this a valid ap-
proximation in this case?)

P6.3 Arc welding is one of the most important areas 
of application for industrial robots [11]. In most 
manufacturing welding situations, uncertainties in 
 dimensions of the part, geometry of the joint, and 
the welding process itself require the use of sensors 
for maintaining weld quality. Several systems use a 
 vision system to measure the geometry of the puddle 
of melted metal, as shown in Figure P6.3. This system 
uses a constant rate of feeding the wire to be melted. 
(a) Calculate the maximum value for K for the sys-
tem that will result in a stable system. (b) For half of 
the maximum value of K found in part (a), determine 
the roots of the characteristic equation. (c) Estimate 
the overshoot of the system of part (b) when it is 
 subjected to a step input.

Gc(s) G(s)
Ea(s)

Controller

+

-

Process

R(s) Y(s)

FIGURE P6.6
Unity feedback 
system.

-

Controller

+ 1
(0.5s + 1)(s + 1)

1
0.005s + 1

K
s + 2

Desired
diameter

Puddle
diameter

Error
Arc

current

Wire-melting process

Measured
diameter

Vision system

FIGURE P6.3
Welder control.

Gc(s) G(s)
Ea(s)

H(s)

Controller

+

-
Sensor

Process

R(s) Y(s)

FIGURE P6.4
Nonunity feedback 
system.
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with the following loop transfer functions using the 
Routh–Hurwitz criterion:

(a) G s G s
s s

s sc( ) ( )
( )( )

( )
=

+ +
−

10 30 1
22

(b) G s G s
s s s s

c ( )
( ) ( ) =

+ + +
10

2 5 23 2

(c) G s G s
s s

s s sc( ) ( )
( )( )

=
+ +

+ +
3

1 2

2

P6.7 The linear model of a phase detector (phase-lock 
loop) can be represented by Figure P6.7 [9]. The 
phase-lock systems are designed to maintain zero dif-
ference in phase between the input carrier signal and 
a local voltage-controlled oscillator. The filter for a 
particular application is chosen as

F s
s

s s
( )

( )
( )( )

=
+

+ +
5 60

3 100
.

We want to minimize the steady-state error of the 
system for a ramp change in the phase information 
signal. (a) Determine the limiting value of the gain
K K Ka = υ  in order to maintain a stable system. (b) 
A steady-state error equal to 3° is acceptable for a 
ramp signal of 120 rad/s. For that value of gain ,Kυ  
determine the location of the roots of the system.

P6.8 A very interesting and useful velocity control 
 system has been designed for a wheelchair control 
system. A proposed system utilizing velocity sensors 
mounted in a headgear is shown in Figure P6.8. The 
headgear sensor provides an output proportional 
to the magnitude of the head movement. There is a 
sensor mounted at 90° intervals so that forward, left, 
right, or reverse can be commanded. Typical values 
for the time constants are τ τ= =0.5 s,  1 s,1 2  and 

1 4  s.3τ =

(a) Determine the limiting gain =K K K K1 2 3 for a 
stable system.

(b) When the gain K is set equal to one-third of the 
limiting value, determine whether the settling 
time (to within 2% of the final value of the sys-
tem) is ≤Ts 4 s .

(c) Determine the value of gain that results in a sys-
tem with a settling time of ≤Ts 4 s . Also, obtain 
the value of the roots of the characteristic equa-
tion when the settling time is ≤Ts 4 s .

P6.9 A cassette tape storage device has been designed 
for mass-storage [1]. It is necessary to control the 
velocity of the tape accurately. The speed control of 
the tape drive is represented by the system shown in 
Figure P6.9.

-

+ K
s + 100

10

(s + 20)2R(s) Y(s)

Power
amplifier

Motor and
drive mechanism

FIGURE P6.9
Tape drive control.

-

+ K1

t1s + 1

K3

(t2s + 1)(t3s + 1)
Desired
velocity

Head
nod

Sensor
in hat

Amplifier
Wheelchair
dynamics

VelocityK2

FIGURE P6.8
Wheelchair control 
system.

-

+ K
s

uin(s) uo(s)

Amplifier Filter
Voltage-controlled

oscillator

Ka F(s)

FIGURE P6.7
Phase-lock loop 
system.
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436 Chapter 6  The Stability of Linear Feedback Systems

P6.15 The stability of a motorcycle and rider is an import-
ant area for study [12, 13]. The handling characteristics 
of a motorcycle must include a model of the rider as 
well as one of the vehicle. The dynamics of one motor-
cycle and rider can be represented by the loop transfer 
function

40 600

10 20 500 80 2000
.

2

2 2

( )
( )( )

( )
( )

=
+ +

+ + + + +
L s

K s s

s s s s s s

(a) As an approximation, calculate the acceptable 
range of K for a stable unity negative feedback sys-
tem when the numerator polynomial (zeros) and the 
denominator polynomial s s( )+ +80 20002  are ne-
glected. (b) Calculate the actual range of acceptable K, 
account for all zeros and poles.

P6.16 A system has a closed-loop transfer function

T s
s s s s

( ) =
+ + + +

1
2 16 20 4

.
4 3 2

(a) Determine whether the system is stable. (b) Deter-
mine the roots of the characteristic equation. (c) Plot the 
response of the system to a unit step input.

P6.17 The elevator in Yokohama’s 70-story Landmark 
Tower operates at a peak speed of 45 km/hr. To reach 
such a speed without inducing discomfort in pas-
sengers, the elevator accelerates for longer periods, 
rather than more precipitously. Going up, it reaches 
full speed only at the 27th floor; it begins decelerat-
ing 15  floors later. The result is a peak acceleration 
similar to that of other skyscraper elevators—a bit 
less than a tenth of the force of gravity. Admirable 
ingenuity has gone into making this safe and com-
fortable. Special ceramic brakes had to be developed; 
iron ones would melt. Computer-controlled systems 
damp out vibrations. The lift has been streamlined to 
reduce the wind noise as it speeds up and down [19]. 
One proposed control system for the elevator verti-
cal position is shown in Figure P6.17. Determine the 
range of K for a stable system, where K > 0.

(a) Determine the limiting gain for a stable system.
(b) Determine a suitable gain so that the percent 

overshoot to a step command is =P O. . 5%.

P6.10 Robots can be used in manufacturing and assem-
bly operations that require accurate, fast, and versa-
tile manipulation [10, 11]. The loop transfer function 
of a direct-drive arm is

G s G s
K s

s s s s
c ( )
( ) ( )

( )
=

+
+ + +

4

5 17 10
.

3 2

(a) Determine the value of gain K when the system 
oscillates. (b) Calculate the roots of the closed-loop 
system for the K determined in part (a).

P6.11 A feedback control system has a characteristic 
equation

s K s s K( )( )+ + + + + =1 10 5 15 0.3 2

The parameter K must be positive. What is the maxi-
mum value K can assume before the system becomes 
unstable? When K is equal to the maximum value, 
the system oscillates. Determine the frequency of 
oscillation.

P6.12 A system has the third-order characteristic equation

+ + + =s as bs c 0,3 2

where a, b, and c are constant parameters. Determine 
the necessary and sufficient conditions for the system 
to be stable. Is it possible to determine stability of the 
system by just inspecting the coefficients of the char-
acteristic equation?

P6.13 Consider the system in Figure P6.13. Determine 
the conditions on K, p, and z that must be satisfied 
for closed-loop stability. Assume that >K 0, ζ > 0, 
and ω >n 0 .

P6.14 A feedback control system has a characteristic 
equation

s s s s s s+ + + + + + =2 12 4 21 2 10 0.6 5 4 3 2

Determine whether the system is stable, and deter-
mine the values of the roots.

-

+
R(s)

Controller Process

Y(s)
vn

2

s(s + 2zvn)

s + z

s + p
KFIGURE P6.13

Control system with 
controller with three 
parameters K, p, 
and z.

-

+
R(s)

Desired
vertical
position

Controller Elevator dynamics

1

s(s2 + 4s + 2)
K + 2

Y(s)
Vertical
positionFIGURE P6.17

Elevator control 
system.
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for which the system is marginally stable and the roots 
of the characteristic equation for this value of K.

P6.20 A personal vertical take-off and landing (VTOL) 
aircraft is shown in Figure P6.20(a). A possible control 
system for aircraft altitude is shown in Figure P6.20(b). 
(a) For =K 17, determine whether the system is stable. 
(b) Determine a range of stability, if any, for >K 0.

P6.21 Consider the system described in state variable 
form by

�  ( ) ( ) ( )= +t t u tx Ax B

( ) ( )=y t tCx

where

0 1
 

, 0
1

, and  [ 1 1 ],
1 2

=
− −

















=










 = −

k k
A B C

and where ≠k k   1 2 and both k1  and k2  are real 
numbers.
(a) Compute the state transition matrix ( )Φ t,  0 .
(b) Compute the eigenvalues of the system matrix A.
(c) Compute the roots of the characteristic polyno-

mial. (d) Discuss the results of parts (a)–(c) in 
terms of stability of the system.

P6.18 Consider the case of rabbits and foxes. The number 
of rabbits is x1 and, if left alone, it would grow indef-
initely (until the food supply was exhausted) so that

=�x kx .1 1

However, with foxes present, we have

= −�x kx ax ,1 1 2

where x2  is the number of foxes. Now, if the foxes 
must have rabbits to exist, we have

= − +�x hx bx .2 2 1

Determine whether this system is stable and thus 
decays to the condition ( ) ( )= =x t x t 01 2  at = ∞t . 
What are the requirements on a, b, h, and k for a stable 
system? What is the result when k is greater than h?

P6.19 The goal of vertical takeoff and landing (VTOL) 
aircraft is to achieve operation from relatively small 
airports and yet operate as a normal aircraft in level 
flight [16]. An aircraft taking off in a form similar 
to a rocket is inherently unstable. A control system 
using adjustable jets can control the vehicle, as shown 
in Figure P6.19. (a) Determine the range of gain for 
which the system is stable. (b) Determine the gain K 

-

Controller

+
Aircraft dynamics

K(s + 4.5)

s + 19.4

1
s(s - 2.75)

R(s)
Desired
vertical

path

Y(s)
Actual
vertical

pathFIGURE P6.19
Control of a 
jump-jet aircraft.

(a)

FIGURE P6.20
(a) Personal 
VTOL  aircraft. 
(Cheskyw/123RF.) 
(b) Control system.

-

+ K(s2 + 4s + 3)
s

1

s2(s2 + s + 20)
R(s) Y(s)

(b)
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438 Chapter 6  The Stability of Linear Feedback Systems

Operator
commands

Feedback

Human
operator

Remote
machine

FIGURE AP6.1 Model of a teleoperated machine.

AP6.1 A teleoperated control system incorporates both 
a person (operator) and a remote machine. The nor-
mal teleoperation system is based on a one-way link 
to the machine and limited feedback to the operator. 
However, two-way coupling using bilateral informa-
tion exchange enables better operation [18]. In the 
case of remote control of a robot, force feedback plus 
position feedback is useful. The characteristic equation 
for a teleoperated system, as shown in Figure AP6.1, is

s s K s s K+ + + + =12 2 10 0,4 3
1

2
2

where K1  and K2 are feedback gain factors. Deter-
mine and plot the region of stability for this system 
for K1  and K .2

AP6.2 Consider the case of a navy pilot landing an air-
craft on an aircraft carrier. The pilot has three basic 
tasks. The first task is guiding the aircraft’s approach 
to the ship along the extended centerline of the run-
way. The second task is maintaining the aircraft on 
the correct glideslope. The third task is maintaining 
the correct speed. A model of a lateral position con-
trol system is shown in Figure AP6.2. Determine the 
range of stability for ≥K 0.

AP6.3 A control system is shown in Figure AP6.3. We 
want the system to be stable and the steady-state 
error for a unit step input to be less than or equal to 
0.1. (a) Determine the range of α that satisfies the 
error requirement. (b) Determine the range of α that 
satisfies the stability requirement. (c) Select an α that 
meets both requirements.

AP6.4 A bottle-filling line uses a feeder screw mech-
anism, as shown in Figure AP6.4. The tachometer 
feedback is used to maintain accurate speed control. 
Determine and plot the range of K and p that permits 
stable operation.

AP6.5 Consider the closed-loop system in Figure AP6.5.  
Suppose that all gains are positive, that is, 

> > > >K K K K0, 0,   0,   0,1 2 3 4  and >K 0.5
(a) Determine the closed-loop transfer function 

( ) ( ) ( )=T s Y s R s/ .
(b) Obtain the conditions on selecting the gains 

K K K K,   ,   ,   ,1 2 3 4  and K ,5  so that the closed-
loop system is guaranteed to be stable.

(c) Using the results of part (b), select values of 
the five gains so that the closed-loop system is 
 stable, and plot the unit step response.

AP6.6 A spacecraft with a camera is shown in Figure 
AP6.6(a). The camera slews about 16° in a canted 
plane relative to the base. Reaction jets stabilize the 
base against the reaction torques from the slewing 
motors. Suppose that the rotational speed control for 
the camera slewing has a plant transfer function

G s
s s s

( )
( )( )( )

=
+ + +

1
1 2 4

.

ADVANCED PROBLEMS

-

+ K(s + 1)
s

1

(s - 1)(s2 + 10s + 40)

Controller
R(s)

Center
line

Pilot Aircraft

Ailerons and
aircraft

Y(s)
Lateral
position

FIGURE AP6.2
Lateral position 
 control for  landing 
on an aircraft 
carrier.

-

+R(s) Y(s)s + a

s3 + (2 + a) s2 + (6a - 1)s + (1 - a)
FIGURE AP6.3
Third-order unity 
feedback system.
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(b)

(a)

-

+
Controller

R(s) Y(s)
Speed

Motor and screw

K
s

s + 2
(s + 4)(s + p)

Controller

Bottle fillers

Direction
of travel

Tachometer
feedback Motor

Tachometer

FIGURE AP6.4
Speed control of 
a bottle-filling line. 
(a) System layout. 
(b) Block diagram.
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3K1

-K3 -K5

-K4

K2

1
s + 1

1
2s - 4

10
s - 10

R(s) Y(s)

Y(s)R(s)

(b)

K1

K3

K4

1
2s - 4

- -

+

-

+
K2

K5

3
1

s + 1
10

s - 10

FIGURE AP6.5 Multiloop feedback control system. (a) Signal flow graph. (b) Block diagram.
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440 Chapter 6  The Stability of Linear Feedback Systems

The extender is worn by the human; the physical 
contact between the extender and the human allows 
the direct transfer of mechanical power and informa-
tion signals. Because of this unique interface, control 
of the extender trajectory can be accomplished with-
out any type of joystick or keyboard. The human 
provides a control system for the extender, while 
the extender actuators provide most of the strength 
necessary for the task. The human becomes a part 
of the extender and “feels” a scaled-down version of 
the load that the extender is carrying. An extender 
is shown in Figure AP6.7(a) [23]. The block diagram 
of the system is shown in Figure AP6.7(b). Consider 
the proportional plus derivative controller

( ) = +G s K K sc p D .

Determine the range of values of the controller gains
KP and KD  such that the closed-loop system is stable.

A proportional plus derivative controller is used in a 
system as shown in Figure AP6.6(b), where

,G s K K sc p D( ) = +

and where Kp 0>  and KD 0> . Obtain and plot the 
relationship between Kp and KD that results in a sta-
ble closed-loop system.

AP6.7 A human’s ability to perform physical tasks is 
limited not by intellect but by physical strength. If, 
in an appropriate environment, a machine’s mechan-
ical power is closely integrated with a human arm’s 
mechanical strength under the control of the human 
intellect, the resulting system will be superior to a 
loosely integrated combination of a human and a fully 
automated robot.

Extenders are defined as a class of robot ma-
nipulators that extend the strength of the human 
arm while maintaining human control of the task 
[23]. The defining characteristic of an extender is the 
transmission of both power and information signals. 

Boom

Solar panel

Camera

(a)

FIGURE AP6.6
(a) Spacecraft 
with a camera. 
(b) Feedback 
 control system. (b)

-

+

+

+

Td(s)

Y(s)

Controller Plant

R(s) KP + KDs 1
(s + 1)(s + 2)(s + 4)

Ea(s)
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(a)

(b)

8
s(2s + 1)(0.05s + 1)

R(s)
Human
input

Y(s)
Output

Gc(s)
+

-

Actuator

FIGURE AP6.7
Extender robot 
control.

CDP6.1 The capstan drive system of problem CDP5.1 
uses the amplifier as the controller. Determine the 
maximum value of the gain Ka  before the system be-
comes unstable.

DP6.1 The control of the spark ignition of an automo-
tive engine requires constant performance over a 
wide range of parameters [15]. The control system is 
shown in Figure DP6.1, with a controller gain K to be 
selected. The parameter p is equal to 2 for many autos 
but can equal zero for those with high performance. 

Select a gain K that will result in a stable system for 
both values of p.

DP6.2 An automatically guided vehicle on Mars is rep-
resented by the system in Figure DP6.2. The system 
has a steerable wheel in both the front and back of the 
vehicle, and the design requires that ( ) = +H s Ks 1.  
Determine (a) the value of K required for stability, 
(b) the value of K when one root of the character-
istic equation is equal to s = −1,  and (c) the value 
of the two remaining roots for the gain selected in  

DESIGN PROBLEMS

- -

-
Y(s)

+
R(s)

1
s + 5

1
s + p

1
s

1
5

1
5

K

FIGURE DP6.1
Automobile engine 
control.
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R(s)
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Y(s)
Direction
of travel

H(s)

-

+ 10
s + 2

1

s2

FIGURE DP6.2
Mars guided vehicle 
control.

-

+ (s + m)(s + 4)
s
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Controller

FIGURE DP6.4
Rocket attitude 
control.

-

+R(s)
Desired
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Y(s)
Actual
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Sensor

Controller
Throttle, engine,
and automobile

1

s2 + 15s + 25
K
s

FIGURE DP6.5
Traffic distance 
control.

part (b). (d) Find the response of the system to a step 
command for the gain selected in part (b).

DP6.3 A unity negative feedback system with

L s G s G s
K s

s s sc τ ( )
( ) ( ) ( )

( )
( )

= =
+

+ +
1 2

1 1 5

has two parameters to be selected. (a) Determine 
and plot the regions of stability for this system. (b) 
Select τ  and K so that the steady-state error to a unit 
ramp input is less than or equal to 0.1. (c) Determine 
the percent overshoot for a step input for the design 
 selected in part (b).

DP6.4 The attitude control system of a rocket is shown 
in Figure DP6.4 [17]. (a) Determine the range of gain 
K and parameter m so that the system is stable, and 
plot the region of stability. (b) Select the gain and pa-
rameter values so that the steady-state error to a ramp 
input is less than or equal to 10% of the input magni-
tude. (c) Determine the percent overshoot for a step 
input for the design selected in part (b).

DP6.5 A traffic control system is designed to control the 
distance between vehicles, as shown in Figure DP6.5 
[15]. (a) Determine the range of gain K for which the 
system is stable. (b) If Km  is the maximum value of 
K so that the characteristic roots are on the ωj -axis, 
then let K K Nm ,= /  where N  is to be selected. We 
want the peak time to be Tp 2≤  s and the percent 

overshoot to be ≤P O. . 20%. Determine an appropri-
ate value for N.

DP6.6 Consider the single-input, single-output system as 
described by

� ( ) ( ) ( )= +t t u tx Ax B

( ) ( )=y t tCx

where

0 1
2 2

, 0
1

, 1 0 .A B C=
−











 =











 = 





Assume that the input is a linear combination of the 
states, that is,

,( ) ( ) ( )= − +u t t r tKx

where ( )r t  is the reference input. The matrix K = 
K K[ ]1 2  is known as the gain matrix. If you substi-

tute ( )u t  into the state variable equation you  obtain 
the closed-loop system

� ( ) [ ] ( ) ( )= − +t t r tx A BK x B

( ) ( )=y t tCx .

For what values of K is the closed-loop system stable? 
Determine the region of the left half-plane where 
the desired closed-loop eigenvalues should be placed 
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such  that the closed-loop system ( ) ( ) ( )= /T s Y s R s  
is stable.

DP6.8 Consider the feedback system shown in Figure 
DP6.8. The process transfer function is marginally 
stable. The controller is the proportional-derivative 
(PD) controller

G s K K sc P D .( ) = +

Determine if it is possible to find values of KP and KD 
such that the closed-loop system is stable. If so, obtain 
values of the controller parameters such that the steady-
state tracking error ( ) ( ) ( )= −E s R s Y s  to a unit step 
input 1( ) = /R s s is lim   0.01ss ( )= ≤

→∞
e e t

t
 and the 

damping of the closed-loop system is 2 2.ζ = /

so that the percent overshoot to a unit step input, 
1 ,( ) = /R s s  is <P O. . 5% and the settling time is 

T ss   4  .<  Select a gain matrix, K, so that the system 
step response meets the specifications <P O. . 5% and 
T ss   4  .<

DP6.7 Consider the feedback control system in Figure 
DP6.7. The system has an inner loop and an outer 
loop. The inner loop must be stable and have a quick 
speed of response. (a) Consider the inner loop first. 
Determine the range of K1  resulting in a stable inner 
loop. That is, the transfer function ( ) ( )/Y s U s  must be 
stable. (b) Select the value of K1  in the stable range 
leading to the fastest step response. (c) For the value 
of K1  selected in (b), determine the range of K2 

- -

+

+R(s)

U(s)

Y(s)
K2

5
s(s + 4)

Process

Controller

Inner loop

1 +
K1
sFIGURE DP6.7

Feedback system 
with inner and 
outer loop.

R(s) Y(s)KP + KDs
Ea(s)

Controller

+

-

Process

2
s2 + 2FIGURE DP6.8

A marginally 
 stable plant with 
a PD controller in 
the loop.

CP6.1 Determine the roots of the following characteris-
tic equations:
(a) q s s s s( ) = + + + =3 10 14 0.3 2

(b) ( ) = + + + + =q s s s s s8 24 32 16 0.4 3 2

(c) ( ) = + + =q s s s2 1 0.4 2

CP6.2 Consider a unity negative feedback system with

G s K G s
s s
s sc( ) ( )= =

− +
+ +

 and 
2

2 1
.

2

2

Develop an m-file to compute the roots of the closed-
loop transfer function characteristic polynomial for 
K = 1, 2, and 5.  For which values of K is the closed-
loop system stable?

CP6.3 A unity negative feedback system has the loop 
transfer function

4
10 4 25

.
3 2

( ) ( ) ( )= =
+

+ + +
L s G s G s

s
s s s

c

Develop an m-file to determine the closed-loop trans-
fer function, and show that the roots of the charac-
teristic equation are s = −9.791  and s j= − ±0.104 1.7178.2,3

s j= − ±0.104 1.7178.2,3

CP6.4 Consider the closed-loop transfer function

T s
s

s s s
( ) =

+
+ + +

6
4 15 42

.
3 2

(a) Using the Routh–Hurwitz method, determine 
whether the system is stable. If it is not stable, how 

COMPUTER PROBLEMS
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444 Chapter 6  The Stability of Linear Feedback Systems

-

+
Y(s)R(s)

1

s3 + 5s2 + (K - 3)s + K
FIGURE CP6.6
A single-loop 
 feedback  control 
system with 
 parameter K.

-

+ -(s + 5)

s(s2 + 3s + 5)

-12
s + 12

-K(t1s + 1)(ts - 2)

(t2s + 1)(ts + 2)
ud(s) u(s)

Pilot
model

Elevator
servo

Aircraft
model

¯ ¯

FIGURE CP6.5
An aircraft with a 
pilot in the loop.

(a) Compute the characteristic equation using the 
poly function. (b) Compute the roots of the charac-
teristic equation, and determine whether the system 
is stable. (c) Obtain the response plot of ( )y t  when 

( )u t  is a unit step and when the system has zero ini-
tial conditions.

CP6.8 Consider the feedback control system in Figure 
CP6.8. (a) Using the Routh–Hurwitz method, 
 determine the range of K1  resulting in closed-loop 
stability. (b) Develop an m-file to plot the pole 
 locations as a function of < <K0 301  and comment 
on the results.

CP6.9 Consider a system represented in state variable 
form

� ( ) ( ) ( )= +t t u tx Ax B

,( ) ( ) ( )= +y t t u tCx D

where
0 1 0
0 0 1

15 3
,  

0
2
0

,=
− − −



















=

















k

A B

C D= =[4 0 1], [0].

(a) For what values of k is the system stable?
(b) Develop an m-file to plot the pole locations 

as a function of k< <0 50, and comment on 
the results.

many poles are in the right half-plane? (b) Compute 
the poles of  ( )T s , and verify the result in part (a). 
(c) Plot the unit step response, and discuss the results.

CP6.5 A “paper-pilot” model is sometimes utilized in air-
craft control design and analysis to represent the pilot 
in the loop. A block diagram of an aircraft with a pilot 
“in the loop” is shown in Figure CP6.5. The  variable 
τ  represents the pilot’s time delay. Assume that we 
have a fast pilot with τ = 0.1  and K = 1.  Develop an 
m-file to obtain the region of stability for τ1  and τ ,2  
changing in the range of 0 to 5. Show step responses for 
two points: one inside and one outside of this region.

CP6.6 Consider the feedback control system in Figure 
CP6.6. Using the for function, develop an m-file script 
to compute the closed-loop transfer function poles 
for ≤ ≤K0 5 and plot the results denoting the poles 
with the ×" " symbol. Determine the maximum range 
of K for stability with the Routh–Hurwitz method. 
Compute the roots of the characteristic equation 
when K is the minimum value allowed for stability.

CP6.7 Consider a system in state variable form:

0 1 0
0 0 1
5 12 8

0
0
1

,� ( ) ( ) ( )=
− − −



















+



















t t u tx x

x( ) ( )=y t t[1 1 0] .

-

+
R(s) Y(s)

5
s(s + 10)

Process

Controller

2 +
K1
s

FIGURE CP6.8
Nonunity  feedback 
system with 
 parameter K .1
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Terms and Concepts 445

Routh–Hurwitz criterion A criterion for determining 
the stability of a system by examining the character-
istic equation of the transfer function. The criterion 
states that the number of roots of the characteristic 
equation with positive real parts is equal to the num-
ber of changes of sign of the coefficients in the first 
column of the Routh array.

Stability A performance measure of a system. A system 
is stable if all the poles of the transfer function have 
negative real parts.

Stable system A dynamic system with a bounded system 
response to a bounded input.

Absolute stability A system description that reveals 
whether a system is stable or not stable without con-
sideration of other system attributes such as degree 
of stability.

Auxiliary polynomial The equation that immediately 
precedes the zero entry in the Routh array.

Marginally stable A system is marginally stable if and 
only if the zero input response remains bounded as 

.→ ∞t

Relative stability The property that is measured by the 
relative real part of each root or pair of roots of the 
characteristic equation.

ANSWERS TO SKILLS CHECK

True or False: (1) False; (2) True; (3) False; (4) True; 
(5) True

Multiple Choice: (6) a; (7) c; (8) a; (9) b; (10) b; (11) a; 
(12) c; (13) b; (14) a; (15) b

Word Match (in order, top to bottom): e, d, f, a, b,  
g, c

TERMS AND CONCEPTS
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C H A P T E R

7 The Root Locus Method
7.1 Introduction 447

7.2 The Root Locus Concept 447

7.3 The Root Locus Procedure 452

7.4 Parameter Design by the Root Locus Method 466

7.5 Sensitivity and the Root Locus 472

7.6 PID Controllers 477

7.7 Negative Gain Root Locus 488

7.8 Design Examples 493

7.9 The Root Locus Using Control Design Software 502

7.10 Sequential Design Example: Disk Drive Read System 508

7.11 Summary 510

PREVIEW

The performance of a feedback system can be described in terms of the  location 
of the roots of the characteristic equation in the s-plane. A graph showing how the 
roots of the characteristic equation move around the s-plane as a single parameter 
varies is known as a root locus plot. The root locus is a powerful tool for design-
ing and analyzing feedback control systems. We will discuss practical techniques 
for obtaining a sketch of a root locus plot. We also consider computer-generated 
root locus plots and illustrate their  effectiveness in the design process. We show 
that it is possible to use root locus methods for controller design when more than 
one parameter varies. This is important because we know that the response of a 
closed-loop feedback system can be adjusted to achieve the desired performance 
by judicious selection of one or more controller parameters. The popular PID con-
troller is introduced as a practical controller structure. We also define a measure of 
sensitivity of a specified root to a small incremental change in a system parameter. 
The  chapter concludes with a controller design based on root locus methods for the 
Sequential Design Example: Disk Drive Read System.

DESIRED OUTCOMES

Upon completion of Chapter 7, students should be able to:

	❏ Describe the powerful concept of the root locus and its role in control system design.

	❏ Create a root locus plot by sketching or using computers.

	❏ Identify the PID controller as a key element of many feedback systems.

	❏ Explain the role of root locus plots in parameter design and system sensitivity analysis.

	❏ Design controllers to meet desired specifications using root locus methods.
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Section 7.2 The Root Locus Concept 447

7.1 INTRODUCTION

The relative stability and the transient performance of a closed-loop control sys-
tem are directly related to the location of the closed-loop roots of the characteristic 
equation in the s-plane. It is frequently necessary to adjust one or more system 
parameters in order to obtain suitable root locations. Therefore, it is worthwhile to 
determine how the roots of the characteristic equation of a given system migrate 
about the s-plane as the parameters are varied; that is, it is useful to determine the 
locus of roots in the s-plane as a parameter is varied. The root locus method was in-
troduced by Evans in 1948 and has been developed and utilized extensively in con-
trol engineering practice [1–3]. The root locus technique is a graphical method for 
sketching the locus of roots in the s-plane as a parameter is varied. The root locus 
method provides the engineer with a measure of the sensitivity of the roots of the 
system to a variation in the parameter being considered. The root locus technique 
may be used to great advantage in conjunction with the Routh–Hurwitz criterion.

The root locus method provides graphical information, and therefore an 
 approximate sketch can be used to obtain qualitative information concerning the 
stability and performance of the system. Furthermore, the locus of roots of the 
characteristic equation of a multiloop system may be investigated as readily as for a 
 single-loop system. If the root locations are not satisfactory, the necessary parameter 
adjustments often can be readily ascertained from the root locus [4].

7.2 THE ROOT LOCUS CONCEPT

The dynamic performance of a closed-loop control system is described by the 
closed-loop transfer function

 ,T s
Y s

R s

p s

q s
( )

( )
( )

( )
( )

= =  (7.1)

where p(s) and q(s) are polynomials in s. The roots of the characteristic equa-
tion q(s) determine the modes of response of the system. In the case of the simple 
 single-loop system shown in Figure 7.1, we have the characteristic equation

 KG s( )+ =1 0,  (7.2)

where K is a variable parameter and K≤ < ∞0 .  The characteristic roots of the 
system must satisfy Equation (7.2), where the roots lie in the s-plane. Because s is a 
complex variable, Equation (7.2) may be rewritten in polar form as

 ( ) ( ) = − +1 0,KG s KG s j  (7.3)

-
G (s )K Y (s )R (s )

+FIGURE 7.1
Closed-loop control 
system with a vari-
able parameter K.
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448 Chapter 7  The Root Locus Method

and therefore it is necessary that

( ) = 1KG s

and

 180° 360°,( ) = +KG s k  (7.4)

where k = ± ± ±0,   1,   2,   3,  . . . .

-
K Y (s)R (s )

+ 1
s(s + 2)

FIGURE 7.2
Unity feedback 
control system. The 
gain K is a variable 
parameter.

The root locus is the path of the roots of the characteristic equation traced 
out in the s-plane as a system parameter varies from zero to infinity.

Consider the second-order system shown in Figure 7.2. The characteristic 
 equation is

s KG s
K

s s
( ) ( )

( )
∆ = + = +

+
=1 1

2
0,

or, alternatively,

 2 2 0.2 2 2s s s K s sn nζω ω( )∆ = + + = + + =  (7.5)

The locus of the roots as the gain K is varied is found by requiring that

 ( )
( )

=
+

=
2

  1KG s
K

s s
 (7.6)

and

 180°,   540°,  . . . .( ) = ± ±KG s  (7.7)

The gain K is varied from zero to infinity. For a second-order system, the roots are

 s s n nζω ω ζ= − ± −,   1,1 2
2  (7.8)

and for ζ < 1, we know that θ ζ= −cos   .1  Graphically, for two open-loop poles as 
shown in Figure 7.3, the locus of roots is a vertical line for ζ ≤ 1 in order to satisfy 
the angle requirement, Equation (7.7). For example, as shown in Figure 7.4, at a 
root s ,1  the angles are

 θ θ
( )

( ) ( )
+

= − − + = − − + = −
=2

  2 [ 180° ] 180°.1 1

1

K
s s

s s
s s

 (7.9)
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Section 7.2 The Root Locus Concept 449

This angle requirement is satisfied at any point on the vertical line that is a perpen-
dicular bisector of the line 0 to −2. Furthermore, the gain K at the particular points 
is found by using Equation (7.6) as

 
( )+

=
+

=
=2 2

1,
1 1

1

K
s s

K
s s

s s

 (7.10)

and thus

 K s s= + 2 ,1 1  (7.11)

where 1s  is the magnitude of the vector from the origin to s ,1  and s + 21  is the 
magnitude of the vector from −2 to s .1

For a multiloop closed-loop system, using the Mason’s signal-flow gain for-
mula yields

 
1    ,

1 ,   
nontouching

,  , 
nontouching

s L L L L L L
n

N

n
n m

n m
n m p

n m p �∑ ∑ ∑( )∆ = − + − +
=  (7.12)

K2

K1

Ke

K1

K2

K
increasing

K
increasing

jv

vn

- 1 = -1vn

vn

u u
s

= roots of the
   closed-loop
   system
= poles of the
   open-loop
    system

- 2

FIGURE 7.3
Root locus for 
a second-order 
system when 

< <K K Ke .1 2  The 
locus is shown as 
heavy lines, with ar-
rows indicating the 
direction of increas-
ing K. Note that 
roots of the charac-
teristic equation are 
 denoted by �“ ” on 
the root locus.

0 s1 + 2 0

s1

0 s1 0

- 1- 2

s1s1 + 2

FIGURE 7.4
Evaluation of the 
angle and gain at s1 
for gain =K K .1
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450 Chapter 7  The Root Locus Method

where Ln  equals the value of the nth self-loop transmittance. Hence, we have a 
characteristic equation, which may be written as

 q s s F s( ) ( ) ( )= ∆ = +1 .  (7.13)

To find the roots of the characteristic equation, we set Equation (7.13) equal to zero 
and obtain

 F s( )+ =1 0.  (7.14)

Equation (7.14) may be rewritten as

 F s j( ) = − +1 0,  (7.15)

and the roots of the characteristic equation must also satisfy this relation.
In general, the function F s( ) may be written as

F s
K s z s z s z s z

s p s p s p s p
M

n

�
�( )( )( ) ( )

( ) ( )( )( ) ( )
=

+ + + +
+ + + +

.1 2 3

1 2 3

Then the magnitude and angle requirement for the root locus are

 
�
�

F s
K s z s z

s p s p
( ) =

+ +
+ +

= 11 2

1 2
 (7.16)

and

1 2 �( ) = + + + +F s s z s z

 ( ) 180° 360°,1 2 �− + + + + = +s p s p k  (7.17)

where k is an integer. The magnitude requirement in Equation (7.16) enables us to 
determine the value of K for a given root location s .1  A test point in the s-plane, s ,1  
is verified as a root location when Equation (7.17) is satisfied. All angles are mea-
sured in a counterclockwise direction from a horizontal line.

To further illustrate the root locus procedure, let us consider the second-order 
system of Figure 7.5(a) where a > 0 . The effect of varying the parameter a can 

(a) (b)

-

+
R (s )

G (s )

K
1

s (s + a )
Y (s )

jÈK

s1

s1
s2

s1 -  jÈK

- j  K

s1 + jÈK

È

FIGURE 7.5
(a) Single-loop sys-
tem. (b) Root locus 
as a function of the 
parameter a, where 

>a 0.
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Section 7.2 The Root Locus Concept 451

be effectively portrayed by rewriting the characteristic equation for the root locus 
form with a as the multiplying factor in the numerator. Then the characteristic 
equation is

KG s
K

s s a
( )

( )
+ = +

+
=1 1 0,

or, alternatively,

s as K+ + = 0.2

Dividing by the factor s K+ ,2  we obtain

 
as

s K
+

+
=1 0.

2
 (7.18)

Then the magnitude criterion is satisfied when

 
a s

s K
11

1
2 +

=  (7.19)

at the root s .1  The angle criterion is

( ) 180°,   540°,  . . . .1 1 1− + + − = ± ±s s j K s j K

In principle, we could construct the root locus by determining the points in the 
s-plane that satisfy the angle criterion. In the next section, we develop a multi step 
procedure to sketch the root locus. The root locus for the characteristic  equation 
in Equation (7.18) is shown in Figure 7.5(b). Specifically at the root s ,1  the magni-
tude of the parameter a is found from Equation (7.19) as

 .
1 1

1
a

s j K s j K

s
=

− +
 (7.20)

The roots of the system merge on the real axis at the point s2  and provide a crit-
ically damped response to a step input. The parameter a has a magnitude at the 
critically damped roots, s σ= ,2 2  equal to

 a
j K j K

K K
1

   2 ,
2 2

2 2
2
2

σ σ

σ σ
σ( )=

− +
= + =  (7.21)

where σ2 is evaluated from the s-plane vector lengths as Kσ = .2  As a increases 
beyond the critical value, the roots are both real and distinct; one root is larger than 
σ ,2  and one is smaller.

In general, we desire an orderly process for locating the locus of roots as a pa-
rameter varies. In the next section, we will develop such an orderly approach to 
sketching a root locus diagram.
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452 Chapter 7  The Root Locus Method

7.3 THE ROOT LOCUS PROCEDURE

The roots of the characteristic equation of a system provide valuable insight con-
cerning the response of the system. To locate the roots of the characteristic equa-
tion in a graphical manner on the s-plane, we develop an orderly procedure of seven 
steps that facilitates the rapid sketching of the locus.

Step 1: Prepare the root locus sketch. Begin by writing the characteristic equa-
tion as

 F s( )+ =1 0.  (7.22)

Rearrange the equation, if necessary, so that the parameter of interest, K, appears 
as the multiplying factor in the form,

 KP s( )+ =1 0. (7.23)

We are interested in determining the locus of roots when K varies as 0 ≤ K< ∞. In 
Section 7.7, we consider the case when K varies as −∞ < K≤ 0.

Factor P s( ), and write the polynomial in the form of poles and zeros as follows:

 K

s z

s p

i

M

i

j

n

j

∏

∏( )

( )
+

+

+
==

=

1 0.1

1

 (7.24)

Locate the poles pi−  and zeros zi−  on the s-plane with selected symbols. By con-
vention, we use “x” to denote poles and “o” to denote zeros.

Rewriting Equation (7.24), we have

 s p K s z
j

n

j
i

M

i∏ ∏( ) ( )+ + + =
= =

0.
1 1

 (7.25)

Note that Equation (7.25) is another way to write the characteristic equation. When 
K = 0, the roots of the characteristic equation are the poles of P s( ). To see this, 
consider Equation (7.25) with K = 0. Then, we have

s p
j

n

j∏( )+ =
=

0.
1

When solved, this yields the values of s that coincide with the poles of P s( ). 
Conversely, as → ∞K ,  the roots of the characteristic equation are the zeros of P s( ).  
To see this, first divide Equation (7.25) by K. Then, we have

K
s p s z

j

n

j
j

M

j∏ ∏( ) ( )+ + + =
= =

1
   0,

1 1
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Section 7.3 The Root Locus Procedure 453

which, as → ∞K ,  reduces to

s z
j

M

j∏( )+ =
=

0.
1

When solved, this yields the values of s that coincide with the zeros of P s( ).  
Therefore, we note that the locus of the roots of the characteristic equation 
1 0+ =KP s( )  begins at the poles of P s( )  and ends at the zeros of P s( )  as K  
increases from zero to infinity. For most functions P s( ) that we will encounter, sev-
eral of the zeros of P s( ) lie at infinity in the s-plane. This is because most of our 
functions have more poles than zeros. With n poles and M zeros and n M> , we 
have n M−  branches of the root locus approaching the n M−  zeros at infinity.

Step 2: Locate the segments of the real axis that are root loci. The root locus on the 
real axis always lies in a section of the real axis to the left of an odd number of poles and 
zeros. This fact is ascertained by examining the angle criterion of Equation (7.17). These 
two useful steps in plotting a root locus will be illustrated by a suitable example.

EXAMPLE 7.1 Second-order system

A feedback control system possesses the characteristic equation

 
1 1

1
0.

2

1
2

1
4

( )
( ) ( )+ = +

+

+
=G s G s

K s

s s
c

 
(7.26)

Step 1: The characteristic equation can be written as

K
s

s s
( )

+
+

+
=1

2 2
4

0,
2

where

P s
s

s s
( ) ( )

=
+

+
2 2

4
.

2

The transfer function, P s( ), is rewritten in terms of poles and zeros as

 K
s

s s
( )
( )

+
+
+

=1
2 2

4
0.  (7.27)

To determine the locus of roots for the gain ≤ < ∞K0 ,  we locate the poles and 
zeros on the real axis as shown in Figure 7.6(a).

(a) (b) (c)

0s1 + 2 0

0s1 + 4 0
s1s2

0s1 0

- 4 - 2
0

Roots

- 4 - 2 0

Poles
Zero

up2
uz1

- 4 - 2 0

Root locus
segments

K K

p1

p2

FIGURE 7.6
(a) The zero and 
poles of a second- 
order system, 
(b) the root locus 
 segments, and 
(c) the magnitude of 
each vector at s .1
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454 Chapter 7  The Root Locus Method

Step 2: The angle criterion is satisfied on the real axis between the points 0 and 
−2, because the angle from pole p1 at the origin is 180°, and the angle from the zero 
and pole p2  at s = −4 is zero degrees. The locus begins at the pole and ends at the 
zeros, and therefore the locus of roots appears as shown in Figure 7.6(b), where the 
direction of the locus as K is increasing ↑K( )  is shown by an arrow. We note that 
because the system has two real poles and one real zero, the second locus segment 
ends at a zero at negative infinity. To evaluate the gain K at a specific root location 
on the locus, we use the magnitude criterion, Equation (7.16). For example, the gain 
K at the root s s= = −11  is found from (7.16) as

( ) +
+

=
2 2

4
11

1 1

K s

s s

or

 =
− − +

− +
=

1 1 4

2 1 2
3
2

.K  (7.28)

This magnitude can also be evaluated graphically, as shown in Figure 7.6(c). For the 
gain of K 3 2,=  one other root exists, located on the locus to the left of the pole at 
−4. The location of the second root is found graphically to be located at s = −6,  as 
shown in Figure 7.6(c).

Now, we determine the number of separate loci, SL. Because the loci begin at 
the poles and end at the zeros, the number of separate loci is equal to the number 
of poles since the number of poles is greater than or equal to the number of zeros. 
Therefore, as we found in Figure 7.6, the number of separate loci is equal to two 
because there are two poles and one zero.

Note that the root loci must be symmetrical with respect to the horizontal real 
axis because the complex roots must appear as pairs of complex conjugate roots. ■

We now return to developing a general list of root locus steps.
Step 3: The loci proceed to the zeros at infinity along asymptotes centered at 

Aσ    and with angles Aφ . When the number of finite zeros of P s( ), M, is less than the 
number of poles n by the number N n M= − ,  then N sections of loci must end at 
zeros at infinity. These sections of loci proceed to the zeros at infinity along asymp-
totes as K approaches infinity. These linear asymptotes are centered at a point on 
the real axis given by

 
 poles of P  zeros of P

   

.
1 1s s

n M

p z

n M
A

j

n

j
i

M

i
∑ ∑

∑ ∑
σ

( )
( ) ( )

( )

=
−

−
=

− − −

−
= =

 (7.29)

The angle of the asymptotes with respect to the real axis is

 
k

n M
k n MAφ ( )=

+
−

= … − −
2 1

  180°, 0,  1,  2, ,   1  (7.30)

M07_DORF2374_14_GE_C07.indd   454M07_DORF2374_14_GE_C07.indd   454 26/08/21   12:49 PM26/08/21   12:49 PM



Section 7.3 The Root Locus Procedure 455

where k is an integer index [3]. The usefulness of this rule is obvious for sketching 
the approximate form of a root locus. Equation (7.30) can be readily derived by 
considering a point on a root locus segment at a remote distance from the finite 
poles and zeros in the s-plane. The net phase angle at this remote point is 180°, be-
cause it is a point on a root locus segment. The finite poles and zeros of P s( ) are a 
great distance from the remote point, and so the angles from each pole and zero, φ,  
are essentially equal, and therefore the net angle is simply n M φ( )− , where n and 
M are the number of finite poles and zeros, respectively. Thus, we have

n M φ( )− = 180°,

or, alternatively,

n M
φ =

−
180°

.

Accounting for all possible root locus segments at remote locations in the s-plane, 
we obtain Equation (7.30).

The center of the linear asymptotes, often called the asymptote centroid, is de-
termined by considering the characteristic equation in Equation (7.24). For large 
values of s, only the higher-order terms need be considered, so that the characteris-
tic equation reduces to

Ks
s

M

n
+ =1 0.

However, this relation, which is an approximation, indicates that the centroid of 
n M−  asymptotes is at the origin, s = 0. A better approximation is obtained if we 
consider a characteristic equation of the form

K

s A
n Mσ( )

+
−

=−1 0

with a centroid at Aσ .
The centroid is determined by considering the first two terms of Equation (7.24), 

which may be found from the relation

1 1 .1

1

1
1

0

1
1

0

K s z

s p

K
s b s b
s a s a

i

M

i

j

n

j

M
M

M

n
n

n
�

�

∏

∏( )

( )
+

+

+
= +

+ + +
+ + +

=

=

−
−

−
−

We note that

b z a pM
i

M

i n
j

n

j∑ ∑= =−
=

−
=

  and .1
1

1
1

Considering only the first two terms of this expansion, we have

1 0.
1 1

1

K

s a b sn M
n M

n M( )
+

+ −
=

−
− −

− −
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456 Chapter 7  The Root Locus Method

The first two terms of

1 0
K

s A
n Mσ( )

+
−

=
−

are

1 0.
1

K

s n M sn M
A

n Mσ( )
+

− −
=

− − −

Equating the term for sn M− − ,1  we obtain

a b n Mn M Aσ( )− = − −− − ,1 1

or

1 1

p z

n M
A

i

n

i
i

M

i∑ ∑
σ

( ) ( )

=

− − −

−
= =

which is Equation (7.29).
For example, reexamine the system shown in Figure 7.2 and discussed in 

Section 7.2. The characteristic equation is written as

K
s s( )

+
+

=1
2

0.

Because n M− = 2, we expect two loci to end at zeros at infinity. The asymptotes 
of the loci are located at a center

Aσ =
−

= −
2

2
1

and at angles of

A Aφ φ= = = =90° (for k 0) and 270° (for k 1).

The root locus is readily sketched, and the locus shown in Figure 7.3 is obtained. An 
example will further illustrate the process of using the asymptotes.

EXAMPLE 7.2 Fourth-order system

A unity negative feedback control system has a characteristic equation as follows:

 1 1
1

2 4
.2( ) ( ) ( )

( )( )
+ = +

+

+ +
G s G s

K s

s s s
c  (7.31)

We wish to sketch the root locus in order to determine the effect of the gain K. The 
poles and zeros are located in the s-plane, as shown in Figure 7.7(a). The root loci on 
the real axis must be located to the left of an odd number of poles and zeros; they are 
shown as heavy lines in Figure 7.7(a). The intersection of the asymptotes is

 Aσ
( ) ( ) ( )

=
− + − − −

−
=

−
= −

2 2 4 1
4 1

9
3

3. (7.32)
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Section 7.3 The Root Locus Procedure 457

The angles of the asymptotes are

kA 60° 0 ,φ ( )= + =
kAφ ( )= =180°    1 ,  and

kAφ ( )= =300°    2 ,

where there are three asymptotes, since n M− = 3. Also, we note that the root loci 
must begin at the poles; therefore, two loci must leave the double pole at s = −4.  
Then with the asymptotes sketched in Figure 7.7(b), we may sketch the form of the 
root locus as shown in Figure 7.7(b). The actual shape of the locus in the area near 

Aσ  would be graphically evaluated, if necessary. ■

We now proceed to develop more steps for the process of determining the root loci.
Step 4: Determine where the locus crosses the imaginary axis (if it does so), 

using the Routh–Hurwitz criterion. The actual point at which the root locus 
crosses the imaginary axis is readily evaluated by using the criterion.

Step 5: Determine the breakaway point on the real axis (if any). The root 
locus in Example 7.2 left the real axis at a breakaway point. The locus breakaway 
from the real axis occurs where the net change in angle caused by a small dis-
placement is zero. The locus leaves the real axis where there is a multiplicity of 
roots (typically, two). The breakaway point for a simple second-order system is 
shown in Figure 7.8(a) and, for a special case of a fourth-order system, is shown 
in Figure 7.8(b). In general, due to the phase criterion, the tangents to the loci at 
the breakaway point are equally spaced over 360°. Therefore, in Figure 7.8(a), we 
find that the two loci at the breakaway point are spaced 180° apart, whereas in 
Figure 7.8(b), the four loci are spaced 90° apart.

The breakaway point on the real axis can be evaluated graphically or 
 analytically. The most straightforward method of evaluating the breakaway point 

(a) (b)

Asymptote

- 1- 2- 4

- j6

- j2

- j4

j6

j4

j2

0

sA

Root loci sections

Double pole

- 1- 2- 4 0

FIGURE 7.7
A fourth-order 
 system with (a) a 
zero and (b) root 
locus.
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458 Chapter 7  The Root Locus Method

involves the rearranging of the characteristic equation to isolate the multiplying 
factor K. Then the characteristic equation is written as

 p s K=( ) . (7.33)

For example, consider a unity feedback closed-loop system with a loop transfer 
function

L s KG s
K

s s
( ) ( )

( )( )
= =

+ +2 4
,

which has the characteristic equation

 KG s
K

s s
( )

( )( )
+ = +

+ +
=1 1

2 4
0. (7.34)

Alternatively, the equation may be written as

 K p s s s( ) ( )( )= = − + +2 4 . (7.35)

The root loci for this system are shown in Figure 7.8(a). We expect the breakaway 
point to be near s σ= = −3 and plot p s s( ) σ=|  near that point, as shown in Figure 
7.9. In this case, p s( ) equals zero at the poles s = −2 and s = −4.  The plot of 
p s( ) versus s σ−  is symmetrical, and the maximum point occurs at σ= = −3,s  
the breakaway point.

(a) (b)

0- 4 - 2

Breakaway
point

- 2 0

j1

- j1

- 1 - j1

- 1 + j1

45°

45°
- 3

FIGURE 7.8
Illustration of the 
breakaway point 
(a) for a simple 
second-order 
system and (b) for 
a fourth-order 
system.

p (s )

1.00

0.75

- 4 - 3 - 2 0
s

FIGURE 7.9
A graphical 
 evaluation of the 
breakaway point.
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Section 7.3 The Root Locus Procedure 459

Analytically, the very same result may be obtained by determining the  maximum 
of K p s( )= . To find the maximum analytically, we differentiate, set the differenti-
ated polynomial equal to zero, and determine the roots of the polynomial. Therefore, 
we may evaluate

 
dK
ds

dp s
ds
( )

= = 0  (7.36)

in order to find the breakaway point. Equation (7.36) is an analytical expression of 
the graphical procedure outlined in Figure 7.9 and will result in an equation of only 
one degree less than the total number of poles and zeros n M+ − 1.

The proof of Equation (7.36) is obtained from a consideration of the character-
istic equation

F s
KY s
X s

( ) ( )
( )

+ = + =1 1 0,

which may be written as

 X s KY s( ) ( )+ = 0. (7.37)

For a small increment in K, we have

X s K K Y s( ) ( ) ( )+ + ∆ = 0.

Dividing by X s KY s( ) ( )+  yields

 
KY s

X s KY s
( )

( ) ( )
+

∆
+

=1 0. (7.38)

Because the denominator is the original characteristic equation, a multiplicity m of 
roots exists at a breakaway point, and

 
Y s

X s KY s
C

s s

C

s
i

i
m

i
m

( )
( ) ( ) ( ) ( )+

=
−

=
∆

.  (7.39)

Then we may write Equation (7.38) as

 
KC

s
i

m( )
+

∆

∆
=1 0, (7.40)

or, alternatively,

 
K
s

s
C

m

i

( )∆
∆

=
− ∆ −

.
1

 (7.41)

Therefore, as we let s∆  approach zero, we obtain

 
dK
ds

= 0  (7.42)

at the breakaway points.
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460 Chapter 7  The Root Locus Method

Now, considering again the specific case where

L s KG s
K

s s
( ) ( )

( )( )
= =

+ +2 4
,

we obtain

 p s K s s s s( )( ) ( )( )= = − + + = − + +2 4 6 8 .2  (7.43)

Then, when we differentiate, we have

 
dp s

ds
s

( ) ( )= − + =2 6 0, (7.44)

or the breakaway point occurs at s = −3.  A more complicated example will illus-
trate the approach and demonstrate the use of the graphical technique to determine 
the breakaway point.

EXAMPLE 7.3 Third-order system

A feedback control system is shown in Figure 7.10. The characteristic equation is

 1 1
1

2 3
0.( ) ( ) ( )

( )( )
+ = +

+
+ +

=G s H s
K s

s s s
 (7.45)

The number of poles n minus the number of zeros M is equal to 2, and so we have 
two asymptotes at ±90° with a center at Aσ = −2. The asymptotes and the sections 
of loci on the real axis are shown in Figure 7.11(a). A breakaway point occurs be-
tween s = −2 and s = −3.  To evaluate the breakaway point, we rewrite the charac-
teristic equation so that K is separated; thus,

s s s K s( )( ) ( )+ + + + =2 3 1 0,

or

 p s
s s s

s
K( ) ( )( )

=
− + +

+
=

2 3
1

. (7.46)

Then, evaluating p s( ) at various values of s between s = −2 and s = −3, we obtain 
the results of Table 7.1, as shown in Figure 7.11(b). Alternatively, we differentiate

-

+
R (s ) Y (s )K (s + 1)

s (s + 2)

1
s + 3

H (s )

G (s )

FIGURE 7.10
Closed-loop 
system.
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Section 7.3 The Root Locus Procedure 461

Equation (7.46) and set it equal to zero to obtain

d
ds

s s s
s

s s s s s s

s

( ) ( )( )( )
( )

( )

( )
− + +

+









 =

+ + − + + +

+
= 

2 3
1

5 6 1 3 10 6

1
0

3 2 2

2

 s s s+ + + =2 8 10 6 0.3 2  (7.47)

Now to locate the maximum of p s( ), we locate the roots of Equation (7.47) to ob-
tain s j= − − ±2.46,   0.77 0.79 . The only value of s on the real axis in the interval 
s = −2 to s = −3 is s = −2.46; hence this must be the breakaway point. It is evi-
dent from this one example that the numerical evaluation of p s( ) near the expected 
breakaway point provides an effective method of evaluating the breakaway point. ■

Step 6: Determine the angle of departure of the locus from a pole and the 
angle of arrival of the locus at a zero, using the phase angle criterion. The angle 
of locus departure from a pole is the difference between the net angle due to all 
other poles and zeros and the criterion angle of 180° (2 1),± +k   and similarly for 
the locus angle of arrival at a zero. The angle of departure (or arrival) is particu-
larly of interest for complex poles (and zeros) because the information is helpful 
in completing the root locus. For example, consider the third-order loop transfer 
function

 
2

.
3

2 2ζω ω( )( )
( ) ( ) ( )= =

+ + +
L s G s H s

K
s p s sn n

 (7.48)

The pole locations and the vector angles at one complex pole p− 1 are shown in 
Figure 7.12(a). The angles at a test point s ,1  an infinitesimal distance from p− ,1  
must meet the angle criterion. Therefore, since θ = 90°,2  we have

Table 7.1

p s( ) 0 0.411 0.419 0.417 0.390+ 0

s 2.00− 2.40− 2.46− 2.50− 2.60− 3.0−

(a) (b)

Asymptote

- 3 - 2 - 1 0 - 2- 3 - 2.46

p (s )

0.50
0.419

0.25

0

Maximum

FIGURE 7.11
Evaluation of the 
(a) asymptotes 
and (b) breakaway 
point.
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462 Chapter 7  The Root Locus Method

θ θ θ θ θ+ + = + + = +90° 180°,1 2 3 1 3

or the angle of departure at pole p1 is

θ θ= −90° ,1 3

as shown in Figure 7.12(b). The departure at pole p− 2  is the negative of that at p− ,1  
because p− 1 and p− 2  are complex conjugates. Another example of a departure 
angle is shown in Figure 7.13. In this case, the departure angle is found from

kθ θ θ( )− + + = +90° 180° 360°.2 1 3

Since θ θ γ− =2 3  in the diagram, we find that the departure angle is θ γ= +90° .1

Step 7: The final step in the root locus sketching procedure is to complete the 
sketch. This entails sketching in all sections of the locus not covered in the previous 
six steps.

A point a small
distance from - p1

u3

u3

u3
u1

- p1

s1

- p3

- p2

- p2

- p3

- p1

(a) (b)

0 0

Departure
vector

u3

u2

FIGURE 7.12
Illustration of the 
angle of departure. 
(a) Test point infin-
itesimal distance 
from −p .1  (b) Actual 
departure vector  
at −p .1

u3

u2

- p1

Departure
vector

g

g

0

90°FIGURE 7.13
Evaluation of the 
angle of departure.
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Section 7.3 The Root Locus Procedure 463

In some situation, we may want to determine a root location sx  and the value of 
the parameter Kx at that root location. Determine the root locations that satisfy the 
phase criterion at the root s x nx = …,   1,  2, ,   , using the phase criterion. The phase 
criterion, given in Equation (7.17), is

180° 360°, and 0,   1,   2, .( ) = + = ± ± …P s k k

To determine the parameter value Kx at a specific root sx , we use the magnitude 
requirement (Equation 7.16). The magnitude requirement at sx  is

∏

∏
=

+

+

=

= =

.1

1

K

s p

s z
x

j

n

i

i

M

i

s sx

The seven steps utilized in the root locus method are summarized in Table 7.2.

Table 7.2 Seven Steps for Sketching a Root Locus

Step Related Equation or Rule

1. Prepare the root locus sketch.
(a) Write the characteristic equation so that the 

 parameter of interest, K, appears as a multiplier.

(b) Factor P s( )  in terms of n poles and M zeros.

(c) Locate the open-loop poles and zeros of P s( )   
in the s-plane with selected symbols.

(d) Determine the number of separate loci, SL.
(e) The root loci are symmetrical with respect to the 

horizontal real axis.
2. Locate the segments of the real axis that are root loci.
3. The loci proceed to the zeros at infinity along

asymptotes centered at Aσ  and with angles A.φ

4. Determine the points at which the locus crosses the  
imaginary axis (if it does so).

5. Determine the breakaway point on the real axis (if any).

6. Determine the angle of locus departure from complex 
poles and the angle of locus arrival at complex zeros, 
using the phase criterion.

7. Complete the root locus sketch.

KP s1 0.( )+ =

K

s z

s p

i

M

i

j

n

j

1 0.1

1

∏

∏( )

( )
+

+

+
==

=

○poles,  zeros× = =
Locus begins at a pole and ends at a zero.
SL n=  when n M n;   number≥ =  of finite poles, 
M = of finite zeros.

Locus lies to the left of an odd number of poles and 
zeros.

p z

n M
A

j i
.

∑ ∑
σ

( ) ( )
=

− − −

−
k

n M
k n MA

2 1
  180°,   0,  1,  2,   ,   1 .φ ( )=

+
−

= … − −

Use Routh–Hurwitz criterion.

a) Set K p s .( )=
b) Determine roots of dp s ds 0( )/ =  or use 

graphical method to find maximum of p s( ) . 
180° 360°( ) = +P s k  at s pj  = −  or zi .−
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464 Chapter 7  The Root Locus Method

EXAMPLE 7.4 Fourth-order system

1. (a)  Consider the root locus for the characteristic equation of a system as K varies 
for K≤ < ∞0  when

K
s s s s

+
+ + +

=1
12 64 128

0.
4 3 2

(b) Determining the poles, we have

 
K

s s s j s j( )( )( )
+

+ + + + −
=1

4 4 4 4 4
0. (7.49)

This system has no finite zeros.

(c) The poles are located on the s-plane as shown in Figure 7.14(a).

(d) Because the number of poles n is equal to 4, we have four separate loci.

(e) The root loci are symmetrical with respect to the real axis.

2. A segment of the root locus exists on the real axis between s = 0 and s = −4.
3. The angles of the asymptotes are

k
kAφ

( )
=

+
=

2 1
4

  180°, 0,  1,  2,  3;  

Aφ = +45°,  135°,  225°,  315°.

The center of the asymptotes is
j j

Aσ =
− − − − +

= −
4 4 4 4 4

4
3.

Then the asymptotes are drawn as shown in Figure 7.14(a).

(a) (b)

- 4 - 3 - 2 - 1

u1

u3

- p1

sA

Crossover
point

Breakaway
point

Departure
vector

+ jv

j4

j3

j2

j

- j

- j2

- j3

- j4

0

45°

- 6 - 4 - 2 - 1

- p1

s2

s1

+ jv

j4

j3

j2

j

- j

- j2

- j3

- j4

0

45°

K = 126

s1ˆ

s2ˆ

- p1ˆ

FIGURE 7.14
The root locus 
for Example 7.4. 
Locating (a) the 
poles and (b) the 
asymptotes.
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Section 7.3 The Root Locus Procedure 465

4. The characteristic equation is rewritten as

 s s s s K s s s s K( )( )+ + + + = + + + + =4 8 32 12 64 128 0.2 4 3 2  (7.50)

Therefore, the Routh array is

s

s

s

s

s

K

b K

c

K

 

1 64
12 128

 
 

,

4

3

2

1

0

1

1

where

b c
K( ) ( )

=
−

= =
−12 64 128

12
53.33 and

53.33 128 12
53.33

.1 1

Hence, the limiting value of gain for stability is K = 568.89,  and the roots of the 
auxiliary equation are

s s s j s j( ) ( )( )+ = + = + −53.33 568.89 53.33 10.67 53.33 3.266 3.266 .2 2  (7.51)

The points where the locus crosses the imaginary axis are shown in Figure 7.14(a). 
Therefore, when K = 568.89,  the root locus crosses the j -axisω  at s j= ± 3.266.

5. The breakaway point is estimated by evaluating

K p s s s s j s j( )( )( ) ( )= = − + + + + −4 4 4 4 4

between s = −4 and s = 0. We expect the breakaway point to lie between s = −3 
and s = −1, so we search for a maximum value of p s( ) in that region. The resulting 
values of p s( ) for several values of s are given in Table 7.3. The maximum of p s( ) is 
found to lie at approximately s = −1.577, as indicated in the table. A more accurate 
estimate of the breakaway point is normally not necessary. The breakaway point is 
then indicated on Figure 7.14(a).

6. The angle of departure at the complex pole p1 can be estimated by utilizing the 
angle criterion as follows:

kθ θ+ + + = +90° 90° 180° 360°.1 3

Here, θ  3 is the angle subtended by the vector from pole p .3  The angles from the pole 
at s = −4 and s j= − −4 4 are each equal to 90°. Since θ = 135°,3  we find that

θ = − ≡ +135° 225°,1

as shown in Figure 7.14(a).

7. Complete the sketch as shown in Figure 7.14(b).

Table 7.3

p s( ) 0 51.0 68.44 80.0 83.57 75.0 0

s 4.0− 3.0− 2.5− 2.0− 1.577− 1.0− 0
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466 Chapter 7  The Root Locus Method

Using the information derived from the seven steps of the root locus method, 
the complete root locus sketch is obtained by filling in the sketch as well as possi-
ble by visual inspection. The root locus for this system is shown in Figure 7.14(b). 
When the complex roots near the origin have a damping ratio of ζ = 0.707,  
the gain K can be determined graphically as shown in Figure 7.14(b). The vector 
lengths to the root location s1 from the open-loop poles are evaluated and result 
in a gain at s1 of

 4 ˆ 1.9 2.9 3.8 6.0 126.1 1 1 1 1 1K s s s p s p ( )( )( )( )= + − − = =  (7.52)

The remaining pair of complex roots occurs at s2 and ŝ ,2  when K = 126. The effect 
of the complex roots at s2 and ŝ2  on the transient response will be negligible com-
pared to the roots s1 and ŝ .1  This fact can be ascertained by considering the damping 
of the response due to each pair of roots. The damping due to s1 and ŝ  1 is

e et tn =ζ ω σ− − ,1 1 1

and the damping factor due to s2 and ŝ2  is

e et tn =ζ ω σ− − ,2 2 2

where σ2 is approximately five times as large as σ .1  Therefore, the transient re-
sponse term due to s2 will decay much more rapidly than the transient response 
term due to s1. Thus, the response to a unit step input may be written as

 y t c e t c e tt tω θ ω θ( ) ( ) ( )= + + + +σ σ− −1  sin  sin1 1 1 2 2 21 2

 c e tt ω θ( )≈ + +σ−1  sin .1 1 11  (7.53)

The complex conjugate roots near the origin of the s-plane relative to the other 
roots of the closed-loop system are labeled the dominant roots of the system because 
they represent or dominate the transient response. The relative dominance of the 
 complex roots, in a third-order system with a pair of complex conjugate roots, is 
determined by the ratio of the real root to the real part of the complex roots and will 
result in approximate dominance for ratios exceeding 5.

The dominance of the second term of Equation (7.53) also depends upon the 
relative magnitudes of the coefficients c1 and c2. These coefficients, which are the  
residues evaluated at the complex roots, in turn depend upon the location of 
the zeros in the s-plane. Therefore, the concept of dominant roots is useful for 
estimating the response of a system, but must be used with caution and with a 
comprehension of the underlying assumptions. ■

7.4 PARAMETER DESIGN BY THE ROOT LOCUS METHOD

Originally, the root locus method was developed to determine the locus of roots 
of the characteristic equation as the system gain, K, is varied from zero to infinity. 
However, as we have seen, the effect of other system parameters may be readily 
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Section 7.4 Parameter Design by the Root Locus Method 467

investigated by using the root locus method. Fundamentally, the root locus method 
is concerned with a characteristic equation (Equation 7.22), which may be written as

 F s( )+ =1 0.  (7.54)

Then the standard root locus method we have studied may be applied. The ques-
tion arises: How do we investigate the effect of two parameters, α and β? It ap-
pears that the root locus method is a single-parameter method; fortunately, it can 
be readily extended to the investigation of two or more parameters. This method of 
parameter design uses the root locus approach to select the values of the parameters.

The characteristic equation of a dynamic system may be written as

 a s a s a s an
n

n
n �+ + + + =−

− 0.1
1

1 0  (7.55)

Hence, the effect of varying 0 1a≤ < ∞  may be ascertained from the root locus 
equation

 
a s

a s a s a s an
n

n
n �

+
+ + + +

=
−

−1 0.1

1
1

2
2

0
 (7.56)

If the parameter of interest, α, does not appear solely as a coefficient, the parame-
ter may be isolated as

 a s a s a s s a s an
n

n
n

n q
n q n q� �α α( )+ + + − + + + + =−

−
−

− − 0.1
1

1 0  (7.57)

For example, a third-order equation of interest might be

 s s sα( )+ + + + =3 3 6 0.3 2  (7.58)

To ascertain the effect of the parameter α, we isolate the parameter and rewrite the 
equation in root locus form, as shown in the following steps:

 s s s sα+ + + + =3 3 6 0;  3 2 2  (7.59)

 
s

s s s
α

+
+ + +

=1
3 3 6

0.
2

3 2
 (7.60)

Then, to determine the effect of two parameters, we must repeat the root locus 
approach twice. Thus, for a characteristic equation with two variable parameters, α 
and β, we have

a s a s a s sn
n

n
n

n q
n q n q� �α α( )+ + + − + +−

−
−

− −
1

1

 a s s a s an r
n r n r �β β( )+ − + + + + =−

− − 0.1 0  (7.61)

The two variable parameters have been isolated, and the effect of α will be 
 determined. Then, the effect of β  will be determined. For example, for a certain 
third- order characteristic equation with α and β  as parameters, we obtain

 s s sβ α+ + + = 0.3 2  (7.62)

In this particular case, the parameters appear as the coefficients of the characteristic 
equation. The effect of varying β  from zero to infinity is determined from the root 
locus equation
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468 Chapter 7  The Root Locus Method

 
s

s s
β

α
+

+ +
=1 0.

3 2
 (7.63)

We note that the denominator of Equation (7.63) is the characteristic equation of 
the system with β = 0.  Therefore, we must first evaluate the effect of varying α 
from zero to infinity by using the equation

s s α+ + = 0,3 2

rewritten as

 
s s

α
( )

+
+

=1
1

0,
2

 (7.64)

where β  has been set equal to zero in Equation (7.62). Then, upon evaluating the 
effect of α, a value of α is selected and used with Equation (7.63) to evaluate the ef-
fect of β. This two-step method of evaluating the effect of α and then β  may be car-
ried out as two root locus procedures. First, we obtain a locus of roots as α varies, 
and we select a suitable value of α; the results are satisfactory root locations. Then, 
we obtain the root locus for β  by noting that the poles of Equation (7.63) are the 
roots evaluated by the root locus of Equation (7.64). A limitation of this approach 
is that we will not always be able to obtain a characteristic  equation that is linear in 
the parameter under consideration.

To illustrate this approach, let us obtain the root locus for α and then β  for 
Equation (7.62). A sketch of the root locus as α varies for Equation (7.64) is shown  
in Figure 7.15(a), where the roots for two values of gain α are shown. If the gain 
α is selected as α ,1  then the resultant roots of Equation (7.64) become the poles 
of Equation (7.63). The root locus of Equation (7.63) as β  varies is shown in 
Figure 7.15(b), and a suitable β  can be selected on the basis of the desired root 
locations.

Using the root locus method, we will further illustrate this parameter design 
approach by a specific design example.

(a) (b)

0a1

a1

a1

b

b

0

a1

a2

a1

a2 a1

a2

a

- 1

Double
pole

FIGURE 7.15
Root loci as a func-
tion of α  and β. 
(a) Loci as α  var-
ies. (b) Loci as β  
varies for one value 
of α α= .1
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Section 7.4 Parameter Design by the Root Locus Method 469

EXAMPLE 7.5 Welding head control

A welding head for an auto body requires an accurate control system for position-
ing the welding head [4]. The feedback control system is to be designed to satisfy 
the following specifications:

1. Steady-state error for a ramp input is ess ≤  35% of input slope

2. Damping ratio of dominant roots is ζ ≥  0.707
3. Settling time to within 2% of the final value is Ts ≤  3  s.

The structure of the feedback control system is shown in Figure 7.16, where the am-
plifier gain K1 and the derivative feedback gain K2 are to be selected. The steady-
state error specification can be written as

 lim lim   lim
( )

1
,ss

0 0

2

2
e e t sE s

s R s

G st s s
( ) ( )

( )
= = =

/
+→∞ → →

 (7.65)

where G s G s G s H s( ) ( ) ( ) ( )= +/ (1 ).2  Therefore, the steady-state error require-
ment is

 =
+

≤
e
R

K K
K

2
  0.35.ss 1 2

1
 (7.66)

Thus, we will select a small value of K2 to achieve a low value of steady-state 
error. The damping ratio specification requires that the roots of the closed-loop sys-
tem be below the line at 45° in the left-hand s-plane, as illustrated in Figure 7.17. The 
settling time specification can be rewritten in terms of the real part of the  dominant 
roots as

 Ts σ
= ≤

4
  3 s. (7.67)

Therefore, it is necessary that σ ≥ ;4
3  this area in the left-hand s-plane is indicated 

along with the ζ − requirement in Figure 7.17. Note that σ ≥  4
3  implies that we 

want the dominant roots to lie to the left of the line defined by σ = − .4
3  To satisfy 

the specifications, all the roots must lie within the shaded area of the left-hand plane.
The parameters to be selected are Kα = 1 and K Kβ =   .2 1  The characteristic 

equation is

 s s sβ α+ + + =2 0.2  (7.68)

-

+

-

+ K1

s(s + 2)
R(s) Y(s)

H(s)

G(s)

K2s
FIGURE 7.16
Block diagram 
of welding head 
 control system.
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470 Chapter 7  The Root Locus Method

The locus of roots as Kα =  1 varies (set β = 0) is determined from the equation

 
s s

α
( )

+
+

=1
2

0,  (7.69)

as shown in Figure 7.18(a). For a gain of K α= = 20,1  the roots are s j= − ±1 4.36  
as indicated on the locus. Then the effect of varying Kβ = 20  2 is determined from 
the locus equation

 
s

s s
β

+
+ +

=1
2 20

0.
2

 (7.70)

The root locus for Equation (7.70) is shown in Figure 7.18(b), and roots with 
ζ = 0.707  are obtained when Kβ = =4.3 20  2 or when K = 0.215.2  The real part 

1 = 0.707

458

- 1- 2 0

Ts line
defined by
s = - 4/3

FIGURE 7.17
A region in the  
s-plane for desired 
root location.

0

j4

j2

j4.36

- j4

- j2

a

- 2- 4- 6

(a) (b)

0

j4

j2

j4.36

- j4

- j2

- 2

- 3.15

- 6

b = 4.3

b

- 4

FIGURE 7.18
Root loci as a func-
tion of (a) α  and 
(b) β.
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Section 7.4 Parameter Design by the Root Locus Method 471

of these roots is σ = −3.15;  therefore, the time to settle (to within 2% of the final 
value) is Ts = 1.27 s, which is considerably less than the specification of Ts ≤ 3 s. ■

We can extend the root locus method to more than two parameters by extend-
ing the number of steps in the method outlined in this section. Furthermore, a fam-
ily of root loci can be generated for two parameters in order to determine the total 
effect of varying two parameters. For example, let us determine the effect of vary-
ing α and β  of the following characteristic equation:

 s s s sβ α+ + + + =3 2 0.3 2  (7.71)

The root locus equation as a function of α is (set β = 0)

 
s s s

α
( )( )

+
+ +

=1
1 2

0. (7.72)

The root locus as a function of β  is

 
s

s s s
β

α
+

+ + +
=1

3 2
0.

3 2
 (7.73)

The root locus for Equation (7.72) as a function of α is shown in Figure 7.19 (unbro-
ken lines). The roots of this locus, indicated by slashes, become the poles for the locus 
of Equation (7.73). Then the locus of Equation (7.73) is continued on Figure 7.19 
(dotted lines), where the locus for β  is shown for several selected values of α. This 
family of loci, often called root contours, illustrates the effect of α and β  on the roots 
of the characteristic equation of a system [3].

0

a = 20

14
3

a = 6

Roots for a varying

Roots for b varying

b = 20

b = 5

b = 3

b = 0

b

b

b = 

j1

a = 6

a = 20

a = 20

- 4 - 3 - 2 - 1

j  2, a = 6

FIGURE 7.19
Two-parameter root 
locus. The loci for 
α  varying are solid; 
the loci for β  vary-
ing are dashed.
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472 Chapter 7  The Root Locus Method

7.5 SENSITIVITY AND THE ROOT LOCUS

One of the prime reasons for the use of negative feedback in control systems is the 
reduction of the effect of parameter variations. The effect of parameter variations 
can be described by a measure of the sensitivity of the system performance to spe-
cific parameter changes. We define the logarithmic sensitivity originally suggested 
by Bode as

 S
T T
K K

K
T  ln T

 ln K
,=

∂
∂

=
∂ /
∂ /  (7.74)

where the system transfer function is T(s) and the parameter of interest is K.
It is useful to define a sensitivity measure in terms of the positions of the roots 

of the characteristic equation [7–9]. Because these roots represent the dominant 
modes of transient response, the effect of parameter variations on the position of 
the roots is an important and useful measure of the sensitivity. The root sensitivity 
of a system T(s) can be defined as

  ln K
,S

r r
K KK

r i ii =
∂

∂
=

∂
∂ /  (7.75)

where ri  equals the ith root of the system, so that

 T s

K s z

s r

j

M

j

i

n

i

∏

∏

( )
( )

( )
=

+

+

=

=

 1
1

1

 (7.76)

and K is a parameter affecting the roots. The root sensitivity relates the changes in 
the location of the root in the s-plane to the change in the parameter. The root sen-
sitivity is related to the logarithmic sensitivity by the relation

 S
r

s rK
T

i

n
i

i
∑=

∂
∂

−
∂

∂
⋅

+=

 ln K
 ln K

   
 ln K

1
 1

1

 (7.77)

when the zeros of T s( ) are independent of the parameter K, so that

zj∂

∂
=

 ln K
0.

This logarithmic sensitivity can be readily obtained by determining the derivative of 
T s( ) in Equation (7.76) with respect to K. For this particular case, when the gain of 
the system is independent of the parameter K, we have

 S S
s rK

T

i

n

K
r

i

i  
1

,
1

∑= − ⋅
+=

 (7.78)

and the two sensitivity measures are directly related.
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Section 7.5 Sensitivity and the Root Locus 473

The evaluation of the root sensitivity for a control system can be readily ac-
complished by utilizing the root locus methods of the preceding section. The root 
 sensitivity SK

ri  may be evaluated at root ri−  by examining the root contours for the 
parameter K. We can change K by a small finite amount K∆  and determine the 
modified root r ri i( )− + ∆  at K K+ ∆ .  Then, using Equation (7.75), we have

 .S
r

K KK
r ii ≈

∆
∆ /  (7.79)

Equation (7.79) is an approximation that approaches the actual value of the sen-
sitivity as K∆ → 0. An example will illustrate the process of evaluating the root 
sensitivity.

EXAMPLE 7.6 Root sensitivity of a control system

The characteristic equation of the feedback control system shown in Figure 7.20 is

K
s s β( )

+
+

=1 0,

or, alternatively,

 s s Kβ+ + = 0.2  (7.80)

The gain K will be considered to be the parameter α. Then the effect of a change in 
each parameter can be determined by utilizing the relations

α α α β β β= ± ∆ = ± ∆and ,0 0

where α0  and β0  are the nominal or desired values for the parameters α and β, 
respectively. We shall consider the case when the nominal value is β = 10  and the 
desired gain is Kα = = 0.5.0  Then the root locus can be obtained as a function of 

Kα =  by utilizing the root locus equation

 
K

s s
K

s sβ( ) ( )
+

+
= +

+
=1 1

1
0,

0
 (7.81)

as shown in Figure 7.21. The nominal value of gain K α= = 0.50  results in two 
complex roots, r j− = − +0.5 0.51  and r r− = − ˆ ,2 1  as shown in Figure 7.21. To eval-
uate the effect of changes in the gain, the characteristic equation with α α α= ± ∆0  
becomes

 s s s sα α α+ + ± ∆ = + + ± ∆0.5 .2
0

2  (7.82)

Therefore, the effect of changes in the gain can be evaluated from the root locus 
of Figure 7.21. For a 20% change in α, we have α∆ = ±0.1. The root locations for 

-
Y(s)R(s)

+ K
s(s + b)

G(s)

FIGURE 7.20
A feedback control 
system.
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474 Chapter 7  The Root Locus Method

a gain α = 0.4 and α = 0.6 are readily determined by root locus methods, and the 
root locations for α∆ = ±0.1 are shown in Figure 7.21. When Kα = = 0.6, the 
root in the second quadrant of the s-plane is

( )− + ∆ = − +0.5 0.59,1 1r r j

and the change in the root is ∆ = + 0.09.1r j  When Kα = = 0.4, the root in the 
second quadrant is

( )− + ∆ = − +0.5 0.387,1 1r r j

and the change in the root is r j−∆ = − 0.11.1  Thus, the root sensitivity for r1 is

 S
r

K K
j

jK
r 0.09

0.2
0.45 0.45 90° 11 =

∆
∆ /

=
+
+

= = ++  (7.83)

for positive changes of gain. For negative increments of gain, the sensitivity is

S
r

K K
j

jK
r 0.11

0.2
0.55 0.55 90°.11 =

∆
∆ /

=
−
+

= − = −−

For infinitesimally small changes in the parameter K, the sensitivity will be equal 
for negative or positive increments in K. The angle of the root sensitivity indicates 
the direction the root moves as the parameter varies. The angle of movement for 

α+∆  is always 180° from the angle of movement for α−∆  at the point α α= .0
The pole β  variation is represented by β β β= + ∆ ,0  where β = 1.0  Then the 

effect of variation of the poles is represented by the characteristic equation

s s s Kβ+ + ∆ + = 0,2

or, in root locus form,

 
s

s s K
β

+
∆

+ +
=1 0.

2
 (7.84)

2r1

K 5 0.6
K 5 0.5
K 5 0.4

K 5 0.5

j1

j0.5

0

2j0.5

2j1

21

2r2

FIGURE 7.21
The root locus for K.
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Section 7.5 Sensitivity and the Root Locus 475

The denominator of the second term is the unchanged characteristic equation when 
β∆ = 0. The root locus for the unchanged system β( )∆ = 0  is shown in Figure 7.21 

as a function of K. For a design specification requiring ζ = 0.707,  the complex roots 
lie at

r j r r j− = − + − = − = − −0.5 0.5 and ˆ 0.5 0.5.1 2 1

Then, because the roots are complex conjugates, the root sensitivity for r1 is the 
conjugate of the root sensitivity for r r=ˆ .1 2  Using the parameter root locus tech-
niques discussed in the preceding section, we obtain the root locus for β∆  as 
shown in Figure 7.22. We are normally interested in the effect of a variation for 
the parameter so that β β β= ± ∆ ,0  for which the locus as β  decreases is obtained 
from the root locus equation

s
s s K

β( )
+

− ∆
+ +

=1 0.
2

We note that the equation is of the form

P sβ ( )− ∆ =1 0.

Comparing this equation with Equation (7.23) in Section 7.3, we find that the sign 
preceding the gain β∆  is negative in this case. In a manner similar to the develop-
ment of the root locus method in Section 7.3, we require that the root locus satisfy 
the equations

P s P s k1 and 0° 360°,β ( ) ( )∆ = = ±

Db 5 0.1
(approximately) 2Db

Db 5 20.2

Db 5 0

Db 5 10.2

1Db

20.75 20.50 20.25

j0.75

j0.50

j0.25

2j0.25 

2j0.50

2j0.75

0

ud

FIGURE 7.22
The root locus for 
the parameter β.
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476 Chapter 7  The Root Locus Method

where k is an integer. The locus of roots follows a zero-degree locus in contrast with 
the 180° locus considered previously. However, the root locus rules of Section 7.3  
may be altered to account for the zero-degree phase angle requirement, and then 
the root locus may be obtained as in the preceding sections. Therefore, to obtain 
the effect of reducing β, we determine the zero-degree locus in contrast to the 
180° locus, as shown by a dotted locus in Figure 7.22. To find the effect of a 20% 
change of the parameter β, we evaluate the new roots for β∆ = ±0.20, as shown in 
Figure 7.22. The root sensitivity is readily evaluated graphically and, for a positive 
change in β, is

0.16 128°
0.20

0.80 128°.11S
rr

β β
=

∆
∆ /

=
−

= −β+

The root sensitivity for a negative change in β  is

0.125 39°
0.20

0.625 39°.11S
rr

β β
=

∆
∆ /

= = +β−

As the percentage change β β∆ /  decreases, the sensitivity measures β+Sr1  and β−S r1  
will approach equality in magnitude and a difference in angle of 180°. Thus, for 
small changes when 0.10,β β∆ / ≤  the sensitivity measures are related as

1 1S S
r r=β β+ −

and

180° .1 1S Sr r= +β β+ −

Often, the desired root sensitivity measure is desired for small changes in the 
parameter. When the relative change in the parameter is of the order β β∆ / = 0.10,  
we can estimate the increment in the root change by approximating the root locus 
with the line at the angle of departure dθ . This approximation is shown in Figure 7.22  
and is accurate for only relatively small changes in β∆ . However, the use of this ap-
proximation allows the analyst to avoid sketching the complete root locus diagram. 
Therefore, for Figure 7.22, the root sensitivity may be evaluated for β β∆ / = 0.10  
along the departure line, and we obtain

 =
−

= −β+S
r 0.075 132°

0.10
0.75 132°.1  (7.85)

The root sensitivity measure for a parameter variation is useful for  comparing the 
sensitivity for various design parameters and at different root locations. Comparing 
Equation (7.85) for β  with Equation (7.83) for α, we find (a) that the sensitivity for 
β  is greater in magnitude by approximately 50% and (b) that the angle for β−Sr1  
indicates that the approach of the root toward the j -axisω  is more  sensitive for 
changes in β. Therefore, the tolerance requirements for β  would be more stringent 
than for α. This information provides the designer with a  comparative measure of 
the required tolerances for each parameter. ■
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To utilize the root sensitivity measure for the analysis and design of control sys-
tems, a series of calculations must be performed; they will determine the various se-
lections of possible root configurations and the zeros and poles of the loop transfer 
function. Therefore, the root sensitivity measure as a design technique is somewhat 
limited by the relatively large number of calculations required and the lack of an obvi-
ous direction for adjusting the parameters in order to provide a minimized or reduced 
sensitivity. However, the root sensitivity measure can be utilized as an analysis mea-
sure, which permits the designer to compare the sensitivity for several system designs 
based on a suitable method of design. The root sensitivity measure is a useful index of 
the system sensitivity to parameter variations expressed in the s-plane. The weakness 
of the sensitivity measure is that it relies on the ability of the root locations to rep-
resent the performance of the system. The root locations represent the performance 
quite adequately for many systems, but due consideration must be given to the loca-
tion of the zeros of the closed-loop transfer function and the dominant roots. The root 
sensitivity measure is a suitable measure of system performance sensitivity and can be 
used reliably for system analysis and design.

7.6 PID CONTROLLERS

One form of controller widely used in industrial process control is the three-term, 
PID controller [4, 10]. This controller has a transfer function

.G s K
K
s

K sc p
I

D( ) = + +

The equation for the output in the time domain is

u t K e t K e t dt K
de t

dt
p I D .∫( ) ( ) ( ) ( )

= + +

The three-term controller is called a PID controller because it contains a proportional, 
an integral, and a derivative term represented by Kp, KI, and KD, respectively. The 
transfer function of the derivative term is actually

1
,G s

K s
s

d
D

dτ
( ) =

+

but dτ    is usually much smaller than the time constants of the process itself, so it is 
neglected.

If we set KD 0,=  then we have the proportional plus integral (PI) controller

.G s K
K
s

c p
I( ) = +

When KI = 0, we have

,G s K K sc p D( ) = +

which is called a proportional plus derivative (PD) controller.
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478 Chapter 7  The Root Locus Method

The PID controller can also be viewed as a cascade of the PI and the PD con-
trollers. Consider the PI controller

ˆ
ˆ

G s K
K
s

PI P
I( ) = +

and the PD controller

,G s K K sPD P D( ) = +

where KP
ˆ and KI

ˆ  are the PI controller gains and KP and KD are the PD controller 
gains. Cascading the two controllers (that is, placing them in series) yields

G s G s G sc PI PD( ) ( ) ( )=

( )= +










+K
K
s

K K sP
I

P D
ˆ

ˆ

( )= + + +K K K K K K s
K K

s
P P I D P D

I Dˆ ˆ ˆ
ˆ

= + +K K s
K
s

P D
I ,

where we have the following relationships between the PI and PD controller gains 
and the PID controller gains

= +K K K K KP P P I D
ˆ ˆ

=K K KD P D
ˆ

=K K KI I D
ˆ .

Consider the PID controller

G s K
K
s

K s
K s K s K

s
c P

I
D

D P I
2

( ) = + + =
+ +

( ) ( )( )
=

+ +
=

+ +K s as b

s
K s z s z

s
D D ,

2
1 2

where = /a K KP D   and = /b K KI D. A PID controller introduces a transfer func-
tion with one pole at the origin and two zeros that can be located anywhere in  
the s-plane.

Consider the system shown in Figure 7.23 where we use a PID controller with 
complex zeros z−  1  and z− ,2  where z j− = − +3 11  and z z− = − ˆ .2 1  We plot the root 

2

1
R(s) Y(s)

G(s)
1

(s 1 2)(s 1 3)

Gc(s)

s2 1 6s 1 10

s
KD

FIGURE 7.23
Closed-loop system 
with a controller.
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Section 7.6 PID Controllers 479

locus as shown in Figure 7.24. As the gain, KD,  of the controller is increased, the com-
plex roots approach the zeros. The closed-loop transfer function is

T s
G s G s

G s G s

K s z s z

s r s r s r
c

c

D

1

ˆ
ˆ

.1 1

2 1 1( )
( )

( ) ( ) ( )
( ) ( )

( )
( )( )

=
+

=
+ +

+ + +

The percent overshoot to a step will be P O ≤. . 2%, and the steady-state error for 
a step input will be ess = 0. The settling time will be approximately Ts = 1 s. If a 
shorter settling time is desired, then we select z1 and z2 to lie further left in the 
 left-hand s-plane and set KD  to drive the roots near the complex zeros.

The popularity of PID controllers can be attributed partly to their good per-
formance over a wide range of operating conditions and partly to their functional 
 simplicity that allows engineers to operate them in a simple, straightforward 
 manner. To implement the PID controller, three parameters must be determined, 
the proportional gain, denoted by KP,  integral gain, denoted by KI, and derivative 
gain denoted by KD [10].

There are many methods available to determine acceptable values of the 
PID gains. The process of determining the gains is often called PID tuning. A 
common approach to tuning is to use manual PID tuning methods, whereby the 
PID control gains are obtained by trial-and-error with minimal analytic analy-
sis using step responses obtained via simulation, or in some cases, actual testing 
on the system and deciding on the gains based on observations and experience. 
A more analytic method is known as the Ziegler–Nichols tuning method. The 
Ziegler–Nichols tuning method actually has several variations. We discuss in this 
section a Ziegler–Nichols tuning method based on open-loop responses to a step 
input and a related a Ziegler–Nichols tuning method based on closed-loop re-
sponse to a step input.

j1

j2

j3

r2 -4 -3 -2 -1

-z1

-r1 KD

-z1ˆ

-r1̂

FIGURE 7.24
Root locus for plant 
with a PID  
controller with  
complex zeros.
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480 Chapter 7  The Root Locus Method

One approach to manual tuning is to first set = 0KI  and = 0KD . This is 
followed by slowly increasing the gain KP  until the output of the closed-loop 
system oscillates just on the edge of instability. This can be done either in sim-
ulation or on the actual system if it cannot be taken off-line. Once the value of 
KP  (with = 0KI  and = 0KD ) is found that brings the closed-loop system to the 
edge of stability, you reduce the value of gain KP  to achieve what is known as 
the quarter amplitude decay. That is, the amplitude of the closed-loop response 
is reduced approximately to one-fourth of the maximum value in one oscillatory 
period. A rule-of-thumb is to start by reducing the proportional gain KP  by one-
half. The next step of the design process is to increase KI  and KD  manually to 
achieve a desired step response. Table 7.4 describes in  general terms the effect of 
increasing KI  and KD.

EXAMPLE 7.7 Manual PID tuning

Consider the closed-loop system in Figure 7.25, where b = 10, ζ = 0.707, and nω = 4.  
To begin the manual tuning process, set = 0KI  and = 0KD  and increase KP  
until the closed-loop system has sustained oscillations. As can be seen in Figure 
7.26(a), when = 885.5KP , we have a sustained oscillation of magnitude A = 1.9 
and period P = 0.83 s. The root locus shown in Figure 7.26(b) corresponds to 
the characteristic equation

( )( )
+

+ +











 =1

1
10 5.66

0.K
s s s

P

The root locus shown in Figure 7.26(b) illustrates that when = 885.5KP , we have 
closed-loop poles at s j= ±7.5  leading to the oscillatory behavior in the step response 
in Figure 7.26(a).

Table 7.4 Effect of Increasing the PID Gains Kp, KD, and KI on the Step Response
 
PID Gain

Percent  
Overshoot

 
Settling Time

Steady-State  
Error

Increasing KP
Increases Minimal impact Decreases

Increasing KI
Increases Increases Zero steady-state error

Increasing KD
Decreases Decreases No impact

1
s(s 1 b)(s 1 2zvn)

Y(s)

2

1 1

1

Controller

R(s)

Td(s)

Process

KI
s 1 KD sKP 1FIGURE 7.25

Unity feedback 
control system with 
PID controller.

M07_DORF2374_14_GE_C07.indd   480M07_DORF2374_14_GE_C07.indd   480 26/08/21   12:50 PM26/08/21   12:50 PM



Section 7.6 PID Controllers 481

Reduce = 885.5KP  by half as a first step to achieving a step response with 
approximately a quarter amplitude decay. You may have to iterate on the value 

= 442.75.KP  The step response is shown in Figure 7.27 where we note that the 
peak amplitude is reduced to one-fourth of the maximum value in one period, as 
desired. To accomplish this reduction, we refined the value of KP  by slowly reduc-
ing the value from = 442.75KP  to = 370KP .

The root locus for = 370KP , = 0KI , and ≤ < ∞0 KD  is shown in Figure 7.28. 
In this case, the characteristic equation is

( )( )
+

+ + +











 =1

10 5.66
0.K

s
s s K

D
P
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FIGURE 7.26
(a) Step response 
with =KP 885.5,  

=KD 0, and 
=KI 0. (b) Root 

locus showing 
=KP 885.5 results 

in marginal stability 
with = ±s j7.5 .
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FIGURE 7.27
Step response with 

=KP 370  showing 
the quarter ampli-
tude decay.
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482 Chapter 7  The Root Locus Method

We see in Figure 7.28 that as KD  increases, the root locus shows that the 
closed-loop complex poles move left, and in doing so, increases the associated 
damping ratio and thereby decreases the percent overshoot. The movement of the 
complex poles to the left also increases the associated nζω , thereby reducing the  
settling time. These effects of varying KD  are consistent with information provided 
in Table 7.4. As KD  increases (when > 75KD ), the real root begins to dominant the 
response and the trends described in Table 7.4 become less accurate. The percent 
overshoot and settling time as a function of KD  are shown in Figure 7.29.
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Section 7.6 PID Controllers 483

The root locus for = 370KP , = 0KD , and ≤ < ∞0 KI  is shown in Figure 7.30. 
The characteristic equation is

( )( )( )
+

+ + +













=1
1

10 5.66
0.K

s s s s K
I

P

We see in Figure 7.30 that as KI  increases, the root locus shows that the closed-
loop complex pair poles move right. This decreases the associated damping ratio 
and thereby increasing the percent overshoot. In fact, when = 778.2KI , the sys-
tem is marginally stable with closed-loop poles at s j= ±4.86 . The movement of the 
complex poles to the right also decreases the associated nζω , thereby increasing the 
settling time. The percent overshoot and settling time as a function of KI  are shown 
in Figure 7.31. The trends in Figure 7.31 are consistent with Table 7.4.

To meet the percent overshoot and settling time specifications, we can select 
= 370KP , = 60KD , and = 100KI . The step response shown in Figure 7.32 indi-

cates a Ts = 2.4 s and P O =. . 12.8% meeting the specifications. ■

Two important PID controller gain tuning methods were published in 1942 by 
John G. Ziegler and Nathaniel B. Nichols intended to achieve a fast closed-loop 
step response without excessive oscillations and excellent disturbance rejection. The 
two approaches are classified under the general heading of Ziegler–Nichols tuning 
methods. The first approach is based on closed-loop concepts requiring the compu-
tation of the ultimate gain and ultimate period. The second approach is based on 
open-loop concepts relying on reaction curves. The Ziegler–Nichols tuning meth-
ods are based on assumed forms of the models of the process, but the models do 
not have to be precisely known. This makes the tuning approach very practical in 
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484 Chapter 7  The Root Locus Method

process control applications. Our suggestion is to consider the Ziegler–Nichols rules 
to obtain initial controller designs followed by design iteration and refinement. 
Remember that the Ziegler–Nichols rules will not work with all plants or processes.

The closed-loop Ziegler–Nichols tuning method considers the closed-loop sys-
tem response to a step input (or step disturbance) with the PID controller in the 
loop. Initially the derivative and integral gains, KD  and KI, respectively, are set to 
zero. The proportional gain KP  is increased (in simulation or on the actual system) 
until the closed-loop system reaches the boundary of instability. The gain on the 
border of instability, denoted by KU, is called the ultimate gain. The period of the 
sustained oscillations, denoted by PU, is called the ultimate period. Once KU  and 
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Percent overshoot 
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Section 7.6 PID Controllers 485

PU  are determined, the PID gains are computed using the relationships in Table 7.5 
according to the Ziegler–Nichols tuning method.

EXAMPLE 7.8 Closed-loop Ziegler–Nichols PID tuning

Re-consider the system in Example 7.7. The gains ,  K KP D, and KI  are computed using 
the formulas in Table 7.5. We found in Example 7.7 that KU = 885.5  and TU = 0.83 s.  
By using the Ziegler–Nichols formulas we obtain

= = = = = =0.6 531.3,
1.2

1280.2, and
0.6

8
55.1.K K K

K
T

K
K T

P U I
U

U
D

U U

Comparing the step response in Figures 7.33 and 7.34 we note that the settling time 
is approximately the same for the manually tuned and the Ziegler–Nichols tuned 
PID controllers. However, the percent overshoot of the manually tuned  controller is 
less than that of the Ziegler–Nichols tuning. This is due to the fact that the Ziegler–
Nichols tuning is designed to provide the best disturbance rejection  performance 
rather than the best input response performance.

Table 7.5 Ziegler–Nichols PID Tuning Using Ultimate Gain, KU, and Oscillation Period, PU

Ziegler–Nichols PID Controller Gain Tuning Using Closed-Loop Concepts

Controller Type KP KI KD

Proportional (P)
G s Kc P( ) =

 
KU0.5

 
–

 
–

Proportional-plus-integral (PI)

G s K
K
sc P
I( ) = +

 
KU0.45

K
T

U

U

0.54

 
–

Proportional-plus-integral-plus-derivative (PID)

G s K
K
s

K sc P
I

D( ) = + +

 

KU0.6
K

T
U

U

1.2 K TU U0.6
8
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FIGURE 7.33
Time response for 
the Ziegler–Nichols 
PID tuning with 

=KP 531.3,  
=KI 1280.2, and 
=KD 55.1 .
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486 Chapter 7  The Root Locus Method

In Figure 7.34, we see that the step disturbance performance of the Ziegler–
Nichols PID controller is indeed better than the manually tuned controller. While 
Ziegler–Nichols approach provides a structured procedure for obtaining the PID 
controller gains, the appropriateness of the Ziegler–Nichols tuning depends on the 
requirements of the problem under investigation. ■

The open-loop Ziegler–Nichols tuning method utilizes a reaction curve ob-
tained by taking the controller off-line (that is, out of the loop) and introducing a 
step input (or step disturbance). This approach is very commonly used in process 
control applications. The measured output is the reaction curve and is assumed to 
have the general shape shown in Figure 7.35. The response in Figure 7.35 implies 
that the process is a first-order system with a transport delay. If the actual system 
does not match the assumed form, then another approach to PID tuning should be 
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FIGURE 7.35
Reaction curve 
illustrating param-
eters R and ∆T  
required for the 
Ziegler–Nichols 
open-loop tuning 
method.
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Section 7.6 PID Controllers 487

considered. However, if the underlying system is linear and lethargic (or sluggish 
and characterized by delay), the assumed model may suffice to obtain a reasonable 
PID gain selection using the open-loop Ziegler–Nichols tuning method.

The reaction curve is characterized by the transport delay, T∆ , and the reac-
tion rate, R. Generally, the reaction curve is recorded and numerical analysis is per-
formed to obtain estimates of the parameters T∆  and R. A system possessing the 
reaction curve shown in Figure 7.35 can be approximated by a first-order system 
with a transport delay as

G s M
p

s p
e Ts( ) =

+













−∆ ,

where M is the magnitude of the response at steady-state, T∆  is the transport delay, 
and p is related to the slope of the reaction curve. The parameters M, τ , and T∆  
can be estimated from the open-loop step response and then utilized to compute 

.R M τ= /  Once that is accomplished, the PID gains are computed as shown in 
Table 7.6. You can also use the Ziegler–Nichols open-loop tuning method to design 
a proportional controller or a proportional-plus-integral controller.

EXAMPLE 7.9 Open-loop Ziegler–Nichols PI controller tuning

Consider the reaction curve shown in Figure 7.36. We estimate the transport lag to 
be T∆ = 0.1 s and the reaction rate R = 0.8.

Using the Ziegler–Nichols tuning for the PI controller gains we have

=
∆

= =
∆

=
0.9

11.25 and
0.27

33.75.
2

K
R T

K
R T

P I

The closed-loop system step response (assuming unity feedback) is shown in 
Figure 7.37. The settling time is Ts = 1.28 s and the percent overshoot is P O =. . 78%.  
Since we are using a PI controller, the steady-state error is zero, as expected. ■

The manual tuning method and the two Ziegler–Nichols tuning approaches pre-
sented here will not always lead to the desired closed-loop performance. The three 

Table 7.6  Ziegler–Nichols PID Tuning Using Reaction Curve Characterized by Time Delay, 
∆T, and Reaction Rate, R

Ziegler–Nichols PID Controller Gain Tuning Using Open-Loop Concepts

Controller Type KP KI KD

Proportional (P)

G s Kc P( ) = R T
1
∆ – –

Proportional-plus-integral (PI)

G s K
K
sc P
I( ) = + R T

0.9
∆ R T

0.27
2∆

–

Proportional-plus-integral-plus-derivative (PID)

G s K
K
s

K sc P
I

D( ) = + +
R T
1.2
∆ R T

0.6
2∆ R

0.6

M07_DORF2374_14_GE_C07.indd   487M07_DORF2374_14_GE_C07.indd   487 26/08/21   12:50 PM26/08/21   12:50 PM



488 Chapter 7  The Root Locus Method

methods do provide structured design steps leading to candidate PID gains and should 
be viewed as first steps in the design iteration. Since the PID (and the related PD and 
PI) controllers are in wide use today in a variety of applications, it is important to be-
come familiar with various design approaches. We will use the PD controller later in 
this chapter to control the hard disk drive sequential design problem (see Section 7.10).

7.7 NEGATIVE GAIN ROOT LOCUS

As discussed in Section 7.2, the dynamic performance of a closed-loop control sys-
tem is described by the closed-loop transfer function, that is, by the poles and zeros 
of the closed-loop system. The root locus is a graphical illustration of the variation 
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Section 7.7 Negative Gain Root Locus 489

of the roots of the characteristic equation as a single parameter of interest varies. 
We know that the roots of the characteristic equation and the closed-loop poles 
are one in the same. In the case of the single-loop negative unity feedback system 
shown in Figure 7.1, the characteristic equation is

 KG s( )+ =1 0,  (7.86)

where K is the parameter of interest. The orderly seven-step procedure for sketch-
ing the root locus described in Section 7.3 and summarized in Table 7.2 is valid 
for the case where K≤ < ∞0 . Sometimes the situation arises where we are in-
terested in the root locus for negative values of the parameter of interest where 

K−∞ < ≤ 0 . We refer to this as the negative gain root locus. Our objective here 
is to develop an orderly procedure for sketching the negative gain root locus using 
familiar concepts from root locus sketching as described in Section 7.2.

Rearranging Equation (7.86) yields

( ) = −G s
K
1

.

Since K is negative, it follows that

 KG s KG s k1 and 0° 360°( ) ( )= = +  (7.87)

where k = ± ± ± …0,   1,   2,   3, . The magnitude and phase conditions in Equation 
(7.87) must both be satisfied for all points on the negative gain root locus. Note 
that the phase condition in Equation (7.87) is different from the phase condition 
in Equation (7.4). As we will show, the new phase condition leads to several key 
modifications in the root locus sketching steps from those summarized in Table 7.2.

EXAMPLE 7.10 Negative gain root locus

Consider the system shown in Figure 7.38. The loop transfer function is

L s KG s K
s

s s
( ) ( )= =

−
+ −

20
5 50

 
2

and the characteristic equation is

K
s

s s
+

−
+ −

=1
20

5 50
0.

2

Sketching the root locus yields the plot shown in Figure 7.39(a) where it can be seen 
that the closed-loop system is not stable for any K≤ < ∞0 . The negative gain root 
locus is shown in Figure 7.39(b). Using the negative gain root locus in Figure 7.39(b) 
we find that the stability is K− < < −5.0 2.5. The system in Figure 7.38 can thus be 
stabilized with only negative gain, K. ■

To locate the roots of the characteristic equation in a graphical manner on the 
s-plane for negative values of the parameter of interest, we will re-visit the seven 
steps summarized in Table 7.2 to obtain a similar orderly procedure to facilitate the 
rapid sketching of the locus.
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(a) Signal flow 
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Section 7.7 Negative Gain Root Locus 491

Step 1: Prepare the root locus sketch. As before, you begin by writing the char-
acteristic equation and rearranging, if necessary, so that the parameter of interest, 
K, appears as the multiplying factor in the form,

 KP s( )+ =1 0. (7.88)

For the negative gain root locus, we are interested in determining the locus of roots of 
the characteristic equation in Equation (7.88) for K−∞ < ≤ 0. As in Equation (7.24), 
factor P s( ) in Equation (7.88) in the form of poles and zeros and locate the poles 
and zeros on the s-plane with “x” to denote poles and “o” to denote zeros.

When K = 0, the roots of the characteristic equation are the poles of P s( ), 
and when K → −∞ the roots of the characteristic equation are the zeros of P s( ). 
Therefore, the locus of the roots of the characteristic equation begins at the poles 
of P s( ) when K = 0 and ends at the zeros of P s( ) as K → −∞. If P s( ) has n poles 
and M zeros and n M> , we have n M−  branches of the root locus approaching 
the zeros at infinity and the number of separate loci is equal to the number of 
poles. The root loci are symmetrical with respect to the horizontal real axis be-
cause the complex roots must appear as pairs of complex conjugate roots.

Step 2: Locate the segments of the real axis that are root loci. The root locus on 
the real axis always lies in a section of the real axis to the left of an even number of 
poles and zeros. This follows from the angle criterion of Equation (7.87).

Step 3: When n M> , we have n M−  branches heading to the zeros at infinity 
as K → −∞ along asymptotes centered at Aσ  and with angles Aφ . The linear as-
ymptotes are centered at a point on the real axis given by

 
 poles of   zeros of 

   

.
1 1P s P s

n M

p z

n M
A

j

n

j
i

M

i
∑ ∑ ∑ ∑

σ

( )
( ) ( )

( )

=
−

−
=

− − −

−
= =

 (7.89)

The angle of the asymptotes with respect to the real axis is

 
k

n M
k n MAφ ( )=

+
−

= … − −
2 1

 360° 0,  1,  2, ,   1 , (7.90)

where k is an integer index.

Step 4: Determine where the locus crosses the imaginary axis (if it does so), 
using the Routh–Hurwitz criterion.

Step 5: Determine the breakaway point on the real axis (if any). In general, due 
to the phase criterion, the tangents to the loci at the breakaway point are equally 
spaced over 360°. The breakaway point on the real axis can be evaluated graphically 
or analytically. The breakaway point can be computed by rearranging the charac-
teristic equation

K
n s
d s

( )
( )

+ =1 0
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492 Chapter 7  The Root Locus Method

as

p s K( ) = ,

where ( ) ( ) ( )= − /p s d s n s  and finding the values of s that maximize p s( ). This is 
accomplished by solving the equation

 ( ) ( )− =n s
d s

s
d s

n s
s

d[ ( )]
d

d[ ( )]
d

0.  (7.91)

Equation (7.91) yields a polynomial equation in s of degree n M+ − 1, where n is 
the number of poles and M is the number of zeros. Hence the number of solutions 
is n M+ − 1. The solutions that exist on the root locus are the breakaway points.

Step 6: Determine the angle of departure of the locus from a pole and the angle 
of arrival of the locus at a zero using the phase angle criterion. The angle of locus 
departure from a pole or angle of arrival at a zero is the difference between the net 
angle due to all other poles and zeros and the criterion angle of 360°k± .

Step 7: The final step is to complete the sketch by drawing in all sections of the 
locus not covered in the previous six steps.

The seven steps for sketching a negative gain root locus are summarized in 
Table 7.7.

Table 7.7  Seven Steps for Sketching a Negative Gain Root Locus (color text denotes 
changes from root locus steps in Table 7.2)

Step Related Equation or Rule

1. Prepare the root locus sketch.
(a) Write the characteristic equation so that 

the  parameter of interest, K, appears as a 
multiplier.

(b) Factor P s( )  in terms of n poles and M zeros 
 
 

(c) Locate the open-loop poles and zeros of P s( )  
in the s-plane with selected symbols.

(d) Determine the number of separate loci, SL. 
 

(e) The root loci are symmetrical with respect to 
the horizontal real axis.

(a) KP s1 0( )+ =

(b) K

s z

s p

i

M

i

j

n

j

1 01

1

∏

∏( )

( )
+

+

+
==

=

(c) ○poles,  zeros× = =  

(d) Locus begins at a pole and ends at a zero.  
SL n=  when n M≥ ; =n number of finite,  
M number of finite zeros= .

2.  Locate the segments of the real axis that are  
root loci.

Locus lies to the left of an even number of poles  
and zeros.

 
 
3.  The loci proceed to the zeros at infinity along 

 asymptotes centered at Aσ  and with angles A.φ

p z

n M
A

j

n

j
i

M

i

.1 1
∑ ∑

σ

( ) ( )

=

− − −

−
= =

k
n M

k n MA  
2 1

 360°,   0,  1,  2, 1φ ( )=
+

−
= … − −
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Section 7.8 Design Examples 493

7.8 DESIGN EXAMPLES

In this section we present two illustrative examples. The first example is a wind tur-
bine control system. The feedback control system uses a PI controller to achieve a 
fast settling time and rise time while limiting the percent overshoot to a step input. 
In the second example, the automatic control of the velocity of an automobile is 
considered. The root locus method is extended from one parameter to three param-
eters as the three gains of a PID controller are determined. The design process is 
emphasized, including considering the control goals and associated  variables to be 
controlled, the design specifications, and the PID controller design using root locus 
methods.

EXAMPLE 7.11 Wind turbine speed control

Wind energy conversion to electric power is achieved by wind energy turbines con-
nected to electric generators. Of particular interest are wind turbines, as shown in 
Figure 7.40, that are located offshore [33]. The new concept is to allow the wind 
turbine to float rather than positioning the structure on a tower tied deep into the 

Step Related Equation or Rule

4.  Determine the points at which the locus crosses 
the imaginary axis (if it does so).

Use Routh–Hurwitz criterion.

5.  Determine the breakaway point on the real axis (if 
any).

a) Set K p s( )=
b) Determine roots of dp s ds 0( )/ =  or use  

graphical method to find maximum of p s( ) .
6.  Determine the angle of locus departure from com-

plex at or poles and the angle of locus arrival at 
complex zeros using the phase criterion.

360°P s k( ) = ±  at s pj= −  or zi−

7.  Complete the negative gain root locus sketch.

Table 7.7 (continued)

FIGURE 7.40
Wind turbine placed 
offshore can help 
alleviate energy 
needs. (IS-200501/
Cultura RM/Alamy 
Stock Photo)
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494 Chapter 7  The Root Locus Method

ocean floor. This allows the wind turbine structure to be placed in deeper waters up 
to 100 miles offshore far enough not to burden the landscape with unsightly struc-
tures [34]. Moreover, the wind is generally stronger on the open ocean, potentially 
leading to the production of 5 MW versus the more typical 1.5 MW for wind tur-
bines onshore. However, the irregular character of wind direction and power results 
in the need for reliable, steady electric energy by using control systems for the wind 
turbines. The goal of these control devices is to reduce the effects of wind intermit-
tency and of wind direction change. The rotor and generator speed control can be 
achieved by adjusting the pitch angle of the blades.

A basic model of the generator speed control system is shown in Figure 7.41 
[35]. A linearized model from the collective pitch to the generator speed is given by1

 G s
s s s

s s s

( )
( )

( )
( )

( )
=

− − +

+ + +

4.2158 827.1 5.489 194.4

0.195 0.101 482.6
.

2

2
 (7.92)

The model corresponds to a 600 KW turbine with hub =height 36.6 m, rotor 
=diameter 40 m, rated rotor =speed 41.7 rpm, rated generator =speed 1800 rpm,  

and maximum pitch =rate 18.7 deg/s. Note that the linearized model in Equation 
(7.92) has zeros in the right half-plane at s = 827.11  and s j= ±0.0274 0.13672,3  
making this a nonminimum phase system.

A simplified version of the model in Equation (7.92) is given by the transfer 
function

 G s
K

sτ
( ) =

+ 1
, (7.93)

where τ = 5 s and K = −7200. We will design a PI controller to control the speed 
of the turbine generator using the simplified first-order model in Equation (7.93) 
and confirm that the design specifications are satisfied for both the first-order 
model and the third-order model in Equation (7.92). The PI controller, denoted by 
G sc ( ), is given by

τ
( ) = + =

+











    ,G s K
K
s

K
s

s
c P

I
P

c

where τ = /K Kc I P  and the gains KP and KI are to be determined. A stability 
analysis indicates that negative gains < 0KI  and < 0KP  will stabilize the system. 

1 Provided by Dr. Lucy Pao and Jason Laks in private correspondence.

-

+

+

+ K

ts + 1

Td(s)

Generator
speed
Y(s)

Controller Turbine & Generator
Desired

generator
speed
R(s)

Ea(s) KI

sKP +FIGURE 7.41
Wind turbine  
generator speed 
control system.
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Section 7.8 Design Examples 495

The main design specification is to have a settling time Ts < 4  s to a unit step input. 
We also desire a limited percent overshoot P O <( . . 25%) and a short rise time 
Tr <( 1 s) while meeting the settling time specification. To this end, we will target 

the damping ratio of the dominant roots to be ζ > 0.4 and the natural  frequency 
nω > 2.5 rad/s.

The root locus is shown in Figure 7.42 for the characteristic equation

τ
+

+
+













=1 ˆ 7200
5 1

0,K
s

s s
P

c

where cτ = 2  and = − >ˆ 0K KP p . The placement of the controller zero at 
s cτ= − = −2  is a design parameter. We select the value of ˆ  KP  such that the 
damping ratio of the closed-loop complex poles is ζ = 0.707 . Selecting =ˆ 0.0025KP  
yields = −0.0025KP  and = −0.005KI . The PI controller is

( ) = + = −
+











0.0025
2

  .G s K
K
s

s
s

c P
I

The step response is shown in Figure 7.43 using the simplified first-order model in 
Equation (7.93). The step response has Ts = 1.8 s, Tr = 0.34 s, and ζ = 0.707  which 
translates to P O =. . 19%. The PI controller is able to meet all the control specifi-
cations. The step response using the third-order model in Equation (7.92) is shown 
in Figure 7.44 where we see the effect of the neglected components in the design 
as small oscillations in the speed response. The closed-loop impulse disturbance 
response in Figure 7.45 shows fast and accurate rejection of the disturbance in less 
than 3 seconds due to a 1° pitch angle change. ■
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FIGURE 7.42
Wind turbine gener-
ator speed control 
root locus with a PI 
controller.
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FIGURE 7.43
Step response of 
the wind turbine 
generator speed 
control system 
using the first-order 
model in Equation 
(7.93) with the de-
signed PI controller 
showing all specifi-
cations are satisfied 
with . . 19%,=P O   

=Ts 1.8 s, and 
=Tr 0.34 s.
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FIGURE 7.44
Step response 
of the third-order 
model in Equation 
(7.92) with the PI 
controller showing 
that all specifica-
tions are satisfied 
with . . 25%,=P O   

=Ts 1.7 s, and 
=Tr 0.3 s.

EXAMPLE 7.12 Automobile velocity control

The automotive electronics market is expected to surpass $300 billion. It is pre-
dicted that there will be an annual growth rate of over 7% in electronic braking, 
steering, and driver information. Much of the additional computing power will 
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Section 7.8 Design Examples 497

be used for new technology for smart cars and smart roads, such as IVHS (intelli-
gent vehicle/highway systems) [14, 30, 31]. New systems on-board the automobile 
will support semi-autonomous automobiles, safety enhancements, emission re-
duction, and other features including intelligent cruise control, and brake by wire 
systems eliminating the hydraulics [32].

The term IVHS refers to a varied assortment of electronics that provides real-time 
information on accidents, congestion, and roadside services to drivers and traffic con-
trollers. IVHS also encompasses devices that make vehicles more autonomous: colli-
sion-avoidance systems and lane-tracking technology that alert drivers to impending 
disasters and allow a car to drive itself.

An example of an automated highway system is shown in Figure 7.46. A velocity 
control system for maintaining the velocity between vehicles is shown in Figure 7.47. 
The output Y s( ) is the relative velocity of the two automobiles; the input R s( ) is the 
desired relative velocity between the two vehicles. Our design goal is to develop a 
controller that can maintain the prescribed velocity between the vehicles and maneu-
ver the active vehicle (in this case the rearward automobile) as commanded. The el-
ements of the design process emphasized in this example are depicted in Figure 7.48.

The control goal is

Control Goal
Maintain the prescribed velocity between the two vehicles, and maneuver the 
active vehicle as commanded.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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First-order model 
in Equation (7.92)

Third-order model
in Equation (7.93)

FIGURE 7.45
Disturbance  
response of the 
wind turbine  
generator speed 
control system 
with a PI controller 
shows excellent 
disturbance  
rejection 
characteristics.
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498 Chapter 7  The Root Locus Method

The variable to be controlled is the relative velocity between the two vehicles:

Variable to Be Controlled
The relative velocity between vehicles, denoted by y t( ).

The design specifications are

Design Specifications
DS1 Zero steady-state error to a step input.

DS2 Steady-state error due to a ramp input of ess ≤ 25% of the input magnitude.
DS3 Percent overshoot of P.O. ≤ 5% to a step input.
DS4 Settling time of Ts ≤ 1.5 s to a step input (using a 2% criterion to  

establish settling time).

From the design specifications and knowledge of the open-loop system, we find that 
we need a type 1 system to guarantee a zero steady-state error to a step input. The 
open-loop system transfer function is a type 0 system; therefore, the controller needs 
to increase the system type by at least 1. A type 1 controller (that is, a controller 

Passive benchmarks
for longitudinal control

Vehicle with
built-in equipment

Intervehicle communications

Cooperative
guideway
structure

Lateral system information

CommunicationsCommunications

Sector
controller

Network
controller

FIGURE 7.46
Automated highway 
system.

+

-

+

+

Controller Automobile system

Td(s)

R(s) Y(s)(s + 2)(s + 8)
1Gc(s)

FIGURE 7.47
Vehicle velocity 
control system.
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Section 7.8 Design Examples 499

with one integrator) satisfies DS1. To meet DS2 we need to have the velocity error 
constant

 K sG s G sv
s

clim
1

0.25
4,

0
( ) ( )= ≥ =

→
 (7.94)

where

 ( )
( )( )

=
+ +

1
2 8

,G s
s s  (7.95)

and G sc( ) is the controller (yet to be specified).
The percent overshoot specification DS3 allows us to define a target damping 

ratio

P O ζ≤ ≥. . 5% implies 0.69.

Similarly from the settling time specification DS4 we have

Ts
nζω

≈ ≤
4

1.5.

Maintain a prescribed relative
velocity between two automobiles.

Relative velocity y(t).

Design specifications:
    DS1: Zero steady-state error
             (for a step input).
    DS2: Steady-state error ess … 25%
             (for a ramp input). 
    DS3: P.O. … 5%.
    DS4: Ts … 1.5 s.
See Figures 7.46 and 7.47.

See Equation (7.95).

See Equation (7.96), KP and KI.

Establish the system configuration

Obtain a model of the process, the
actuator, and the sensor

If the performance meets the specifications,
then finalize the design.

If the performance does not meet the
specifications, then iterate the configuration. 

Identify the variables to be controlled

Establish the control goals

Topics emphasized in this example

Write the specifications

Optimize the parameters and
analyze the performance

Describe a controller and select key
parameters to be adjusted

FIGURE 7.48 Elements of the control system design process emphasized in the automobile velocity 
control example.
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500 Chapter 7  The Root Locus Method

Solving for nζω    yields nζω ≥ 2.6.
The desired region for the poles of the closed-loop transfer function is shown in 

Figure 7.49. Using a proportional controller =( ) ,G s Kc P  is not reasonable, because 
DS2 cannot be satisfied. We need at least one pole at the origin to track a ramp input. 
Consider the PI controller

 G s
K s K

s
K

s
K
K

s
c

P I
P

I

P  .( ) =
+

=
+

 (7.96)

The question is where to place the zero at = − / .s K KI P

We ask for what values of KP  and KI  is the system stable. The closed-loop trans-
fer function is

( )
( )

=
+

+ + + +10 16
.

3 2
T s

K s K
s s K s K

P I

P I

The corresponding Routh array is

( )

+

+ −

1

1 16
10

10 16
10

  0

 

 

3

2

s

s

s

K

K

K K

K

P

I

P I

I

The first requirement for stability (from column one, row four) is

 >  0.KI  (7.97)

From the first column, third row, we have the inequality

 > −
10

16.K
K

P
I  (7.98)

Desired region for
placement of

dominant poles.

s = -2.6

u = sin-1  0.69

FIGURE 7.49
Desired region in 
the complex plane 
for locating the 
dominant system 
poles.

M07_DORF2374_14_GE_C07.indd   500M07_DORF2374_14_GE_C07.indd   500 26/08/21   12:50 PM26/08/21   12:50 PM



Section 7.8 Design Examples 501

It follows from DS2 that

K sG s G s s
K s

K
K

s s s
K

v
s

c
s

P
I

P Ilim   lim  
   

 
1

2 8 16
  4.

0 0
( ) ( )

( )( )
= =

+










+ +
= >

→ →

Therefore, the integral gain must satisfy

 >  64.KI  (7.99)

If we select >  64,KI  then the inequality in Equation (7.97) is satisfied. The valid 
region for KP  is then given by Equation (7.98), where >  64.KI

We need to consider DS4. Here we want to have the dominant poles to the left 
of the s = −2.6 line. We know from our experience sketching the root locus that 
since we have three poles (at s = − −0,   2,  and  8) and one zero (at = − /s K KI P),  
we expect two branches of the loci to go to infinity along two asymptotes at 
φ = − +90° and  90°  centered at

,
p z

n n
A

i i

p z

∑ ∑σ
( ) ( )

=
− − −

−

where np z= =3 and n 1. In our case

σ =
− − − −











= − +
2 8  

2
5

1
2

  .

K
K K

K
A

I

P I

P

We want to have α < −2.6 so that the two branches will bend into the desired regions. 
Therefore,

− + < −5
1
2

  2.6,
K
K

I

P

or

 <  4.7.
K
K

I

P
 (7.100)

So as a first design, we can select KP  and KI  such that

> > − <64,    
10

16, and   4.7.K K
K K

K
I P

I I

P

Suppose we choose / = 2.5.K KI P  Then the closed-loop characteristic equation is

( )( )
+

+
+ +

=1
2.5

2 8
0.K

s
s s s

P

The root locus is shown in Figure 7.50. To meet the ζ = 0.69  (which evolved 
from DS3), we need to select < 30.KP  We selected the value at the boundary of the 
performance region (see Figure 7.50) as carefully as possible.
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502 Chapter 7  The Root Locus Method

Selecting = 26,KP  we have / = 2.5K KI P  which implies = 65.KI  This satisfies 
the steady-state tracking error specification (DS2) since = >65 64.KI

The resulting PI controller is

 G s
s

c 26
65

.( ) = +  (7.101)

The step response is shown in Figure 7.51.
The percent overshoot is P O =. . 8%, and the settling time is T ss = 1.45  . The per-

cent overshoot specification is not precisely satisfied, but the controller in Equation 
(7.101) represents a very good first design. We can iteratively refine it. Even though 
the closed-loop poles lie in the desired region, the response does not exactly meet the 
specifications because the controller zero influences the response. The closed-loop 
system is a third-order system and does not have the performance of a second-order 
system. We might consider moving the zero to s = −2 (by choosing / = 2K KI P ) so 
that the pole at s = −2 is cancelled and the resulting system is a second-order system.

7.9 THE ROOT LOCUS USING CONTROL DESIGN SOFTWARE

An approximate root locus sketch can be obtained by applying the orderly procedure 
summarized in Table 7.2. Alternatively, we can use control design software to obtain 
an accurate root locus plot. However, we should not be tempted to rely solely on the 
computer for obtaining root locus plots while neglecting the manual steps in devel-
oping an approximate root locus. The fundamental concepts behind the root locus 
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FIGURE 7.50
Root locus for 

/ =K KI P 2.5.
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Section 7.9 The Root Locus Using Control Design Software 503

method are embedded in the manual steps, and it is essential to understand their 
application fully.

The section begins with a discussion on obtaining a computer-generated root 
locus plot. This is followed by a discussion of the connections between the partial 
fraction expansion, dominant poles, and the closed-loop system response. Root sensi-
tivity is covered in the final paragraphs.

The functions covered in this section are rlocus, rlocfind, and residue. The func-
tions rlocus and rlocfind are used to obtain root locus plots, and the residue function 
is utilized for partial fraction expansions of rational functions.

Obtaining a Root Locus Plot. Consider the closed-loop control system in 
Figure 7.10. The closed-loop transfer function is

T s
Y s
R s

K s s
s s s K s

( ) ( )
( )

( )( )
( )( ) ( )

= =
+ +

+ + + +
1 3

2 3 1
.

The characteristic equation can be written as

 K
s

s s s( )( )
+

+
+ +

=1
1

2 3
0. (7.102)

The form of the characteristic equation in Equation (7.102) is necessary to use the 
rlocus function for generating root locus plots. The general form of the characteristic 
equation necessary for application of the rlocus function is

 KG s K
p s
q s

( ) ( )
( )

+ = + =1 1   0,  (7.103)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

y(t)

Maximum value
is y(t) = 1.08.

Ts = 1.56 s

FIGURE 7.51
Automobile velocity  
control using the 
PI controller in 
Equation (7.101).
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504 Chapter 7  The Root Locus Method

where K is the parameter of interest to be varied from 0 K≤ < ∞ . The  rlocus func-
tion is shown in Figure 7.52, where we define the transfer function object G s( )=sys . 
The steps to obtaining the root locus plot associated with Equation (7.102), along 
with the associated root locus plot, are shown in Figure 7.53. Invoking the rlocus 
function without left-hand arguments results in an automatic generation of the root 
locus plot. When invoked with left-hand arguments, the rlocus function returns a ma-
trix of root locations and the associated gain vector.

The steps to obtain a computer-generated root locus plot are as follows:

1. Obtain the characteristic equation in the form given in Equation (7.103), where K is the 
parameter of interest.

2. Use the rlocus function to generate the plots.

Referring to Figure 7.53, we can see that as K increases, two branches of the root 
locus break away from the real axis. This means that, for some values of K, the closed-
loop system characteristic equation will have two complex roots. Suppose we want to 
find the value of K corresponding to a pair of complex roots. We can use the rlocfind 

 r = complex root locations
K = gain vector 1 + KG(s) = 0

=
FIGURE 7.52
The rlocus  
function.

Im
ag

in
ar

y 
A

xi
s

- 6 - 4 - 2 0 2 4 6

Real Axis

= = = =
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FIGURE 7.53
The root locus for 
the characteristic 
equation,  
Equation (7.102).

M07_DORF2374_14_GE_C07.indd   504M07_DORF2374_14_GE_C07.indd   504 26/08/21   12:50 PM26/08/21   12:50 PM



Section 7.9 The Root Locus Using Control Design Software 505

function to do this, but only after a root locus has been obtained with the rlocus 
 function. Executing the rlocfind function will result in a cross-hair marker appearing on 
the root locus plot. We move the cross-hair marker to the location on the locus of in-
terest and hit the enter key. The value of the parameter K and the value of the selected 
point will then be displayed in the command display. The use of the rlocfind function is 
illustrated in Figure 7.54.

Control design software packages may respond differently when interacting with 
plots, such as with the rlocfind function on the root locus. The response of rlocfind 
in Figure 7.54 corresponds to MATLAB. Refer to the companion website for more 
information on other control design software applications.

Continuing our third-order root locus example, we find that when K = 20.5775, 
the closed-loop transfer function has three poles and two zeros, at

s

j

j s=

− +

− −

−













= −
−









poles :  

2.0505 4.3227

2.0505 4.3227

0.8989

  ; zeros :   1
3

  .

Considering the closed-loop pole locations only, we would expect that the real pole at 
s = −0.8989 would be the dominant pole. To verify this, we can study the closed-loop 
system response to a step input, 1 .R s s( ) = /  For a step input, we have

 Y s
s s

s s s s s
( ) ( )( )

( )( ) ( )
=

+ +
+ + + +

⋅
20.5775 1 3
2 3 20.5775 1

1
. (7.104)

rlocfind follows the rlocus function.

= = =

=
- +

= Value of K at selected point
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Other two-pole locations
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FIGURE 7.54
Using the rlocfind 
function.
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506 Chapter 7  The Root Locus Method

Generally, the first step in computing y t( ) is to expand Equation (7.104) in a partial 
fraction expansion. The residue function can be used to expand Equation (7.104), as 
shown in Figure 7.55. The residue function is described in Figure 7.56.

The partial fraction expansion of Equation (7.104) is

Y s
j

s j
j

s j s s
( ) =

− +
+ +

+
− −
+ −

+
−
+

+
1.3786 1.7010
2.0505 4.3228

1.3786 1.7010
2.0505 4.3228

0.2429
0.8989

3
.

Comparing the residues, we see that the coefficient of the term corresponding to 
the pole at s = −0.8989 is considerably smaller than the coefficient of the terms 
corresponding to the complex-conjugate poles at s j= − ±2.0505 4.3227.  From this, 
we expect that the influence of the pole at s = −0.8989 on the output response y t( ) 
is not dominant. The settling time (to within 2% of the final value) is then predicted 
by considering the complex-conjugate poles. The poles at s j= − ±2.0505 4.3227 
correspond to a damping of ζ = 0.4286  and a natural frequency of nω = 4.7844. 
Thus, the settling time is predicted to be

�
ζω

=Ts
n

4
1.95 s.

= = = +

=

=

- +
- -
-

=

- -
- +
-

=

num
denY(s) =

r(1)
s - p(1)

r(2)
s - p(2)

r(3)
s - p(3)

r(4)
s - p(4)Y(s) = k(s)+ + + +

 r = residues
p = poles
 k = direct term

FIGURE 7.55
Partial fraction 
 expansion of 
Equation (7.104).
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Section 7.9 The Root Locus Using Control Design Software 507

Using the step function, as shown in Figure 7.57, we find that Ts = 1.6 s. Hence, our 
approximation of settling time Ts � 1.95 s  is a fairly good approximation. The percent 
overshoot is predicted (considering the zero of T s( ) at s = −3) to be P O =. . 60%. As 
can be seen in Figure 7.57, the actual overshoot is P O =. . 50%.

When using the step function, we can right-click on the figure to access the pull-
down menu, which allows us to determine the step response settling time and peak re-
sponse, as illustrated in Figure 7.57. On the pull-down menu select “Characteristics” 
and select “Settling Time.” A dot will appear on the figure at the settling point. Place 
the cursor over the dot to determine the settling time.

In this example, the role of the system zeros on the transient response is illus-
trated. The proximity of the zero at s = −1 to the pole at s = −0.8989 reduces the 
impact of that pole on the transient response. The main contributors to the transient 

 r = residues
p = pole locations
 k = direct term

num
den

Y(s) = T(s)U(s) =

r(1)
s - p(1)

r(2)
s - p(2)

r(n)
s - p(n)

Y(s) = + + + + k (s). . .

=

FIGURE 7.56
The residue 
function.

= = = + =

Right-click on figure to
open pull-down menu

Select peak response
and settling time.

FIGURE 7.57
Step response 
for the closed-
loop system in 
Figure 7.10 with 

=K 20.5775.
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508 Chapter 7  The Root Locus Method

response are the complex-conjugate poles at s j= − ±2.0505 4.3228  and the zero at 
s = −3.

There is one final point regarding the residue function: We can convert the partial 
fraction expansion back to the polynomials num/den, given the residues r, the pole loca-
tions p, and the direct terms k, with the command shown in Figure 7.58.

Sensitivity and the Root Locus. The roots of the characteristic equation play an 
important role in defining the closed-loop system transient response. The effect of 
parameter variations on the roots of the characteristic equation is a useful measure 
of sensitivity. The root sensitivity is defined in Equation (7.75). We can use Equation 
(7.75) to investigate the sensitivity of the roots of the characteristic equation to varia-
tions in the parameter K. If we change K by a small finite amount K∆ ,  and evaluate 
the modified root r ri i+ ∆ , it follows that SK

ri  is given in Equation (7.79).
The quantity SK

ri  is a complex number. Referring back to the third-order exam-
ple of Figure 7.10 (Equation 7.102), if we change K by a factor of 5%, we find that the 
dominant complex-conjugate pole at s j= − +2.0505 4.3228  changes by

r ji∆ = − −0.0025 0.1168

when K changes from K = 20.5775 to K = 21.6064.  From Equation (7.79), it fol-
lows that

S
j

jK
ri 0.0025 0.1168

1.0289 20.5775
0.0494  2.3355.=

− −
/

= − −

The sensitivity SK
ri  can also be written in the form

SK
ri 2.34 268.79°.=

The magnitude and direction of SK
ri  provides a measure of the root sensitivity. The 

script used to perform these sensitivity calculations is shown in Figure 7.59.
The root sensitivity measure may be useful for comparing the sensitivity for vari-

ous system parameters at different root locations.

7.10 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

In this chapter, we will use the PID controller to obtain a desirable response using ve-
locity feedback. We will proceed with our model and then select a controller. Finally, we 
will optimize the parameters and analyze the performance. In this chapter, we will use 
the root locus method in the selection of the controller parameters.

 r = residues
p = pole locations
 k = direct term

num
denY(s) = T(s)U(s) =

=

FIGURE 7.58
Converting a partial 
fraction expansion 
back to a rational 
function.
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Section 7.10 Sequential Design Example: Disk Drive Read System 509

FIGURE 7.59
Sensitivity calculations 
for the root locus 
for a 5% change in 

=K 20.5775.

= = =

=

= + = + =
= -

=

Dr

Sensitivity formula

5% change in K

-

+
R(s)

Y(s)
Head

position

Disturbance
Td(s)

-

+
Gc(s) = KP + KDs

PD controller Motor coil

G1(s) = 
5000

s + 1000

Load

G2(s) = 
s(s + 20)

1

We use the root locus to select the controller gains. The PID controller intro-
duced in this chapter is

G s K
K
s

K sc P
I

D .( ) = + +

Since the process model ( )1G s  already possesses an integration, we set KI = 0. Then 
we have the PD controller

G s K K sc P D ,( ) = +

and our goal is to select KP  and KD  in order to meet the specifications. The system 
is shown in Figure 7.60. The closed-loop transfer function of the system is

Y s
R s

T s
G s G s G s

G s G s G s
c

c1
.1 2

1 2

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( )

= =
+

In order to obtain the root locus as a function of a parameter, we write G s G s G sc 1 2( ) ( ) ( ) 
as

G s G s G s
K K s

s s s
K s z

s s s
c

P D D5000
20 1000

5000
20 1000

,1 2( ) ( ) ( )
( )

( )( )
( )

( )( )
=

+
+ +

=
+

+ +

where = / .z K KP D  We use  KP  to select the location of the zero z and then sketch 
the locus as a function of .KD  We select z = 1 so that

G s G s G s
K s

s s s
c

D5000 1
20 1000

.1 2( ) ( ) ( ) ( )
( )( )

=
+

+ +

FIGURE 7.60
Disk drive control 
system with a PD 
controller.
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510 Chapter 7  The Root Locus Method

The number of poles minus the number of zeros is 2, and we expect asymptotes at 
Aφ = ±90° with a centroid

Aσ =
− +

= −
1020 1

2
509.5,

as shown in Figure 7.61. We can quickly sketch the root locus, as shown in Figure 7.61.  
We use the computer-generated root locus to determine the root values for var-
ious values of .KD  When = 91.3,KD  we obtain the roots shown in Figure 7.61. 
Then, obtaining the system response, we achieve the actual response measures as 
listed in Table 7.8. As designed, the system meets all the specifications. It takes 
the system a settling time of 20 ms to “practically” reach the final value. In reality, 
the   system drifts very slowly toward the final value after quickly achieving 97% 
of the final value.

7.11 SUMMARY

The relative stability and the transient response performance of a closed-loop control 
system are directly related to the location of the closed-loop roots of the characteristic 
equation. We investigated the movement of the characteristic roots on the s-plane as 
key system parameters (such as controller gains) are varied. The root locus and the neg-
ative gain root locus are graphical representations of the variation of the system closed-
loop poles as one parameter varies. The plots can be sketched using a given set of rules 
in order to analyze the initial design of a system and determine suitable alterations of 
the system structure and the parameter values. A computer is then commonly used to 
obtain the accurate root locus for use in the final design and analysis. A summary of 
fifteen typical root locus diagrams is shown in Table 7.9.

s = -0.96

     = roots when
         KD = 91.3

aA = -509.5

s = -509.52 + 464.68j

Asymptote

-1-20-1000

FIGURE 7.61
Sketch of the root 
locus.

Table 7.8  Disk Drive Control System Specifications and Actual  
Design Performance

Performance Measure Desired Value Actual Response

Percent overshoot Less than 5% 0%
Settling time Less than 250 ms 20 ms
Maximum response to a unit disturbance Less than × −5 10  3 × −2 10  3
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512 Chapter 7  The Root Locus Method
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514 Chapter 7  The Root Locus Method

Furthermore, we extended the root locus method for the design of several pa-
rameters for a closed-loop control system. Then the sensitivity of the characteristic 
roots was investigated for undesired parameter variations by defining a root sensitiv-
ity measure. It is clear that the root locus method is a powerful and useful approach 
for the analysis and design of modern control systems and will continue to be one of 
the most important procedures of control engineering.

SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or False, 
Multiple Choice, and Word Match. To obtain direct feedback, check your answers with the 
answer key provided at the conclusion of the end-of-chapter problems. Use the block diagram 
in Figure 7.62 as specified in the various problem statements.

In the following True or False and Multiple Choice problems, circle the correct answer.

1. The root locus is the path the roots of the characteristic equation (given  
by 1 + KG(s) = 0) trace out on the s-plane as the system parameter  

K≤ < ∞0  varies. True or False

2. On the root locus plot, the number of separate loci is equal to the number  
of poles of G s( ). True or False

3. The root locus always starts at the zeros and ends at the poles of G s( ) . True or False

4. The root locus provides the control system designer with a measure of  
the sensitivity of the poles of the system to variations of a parameter of  
interest. True or False

5. The root locus provides valuable insight into the response of a system to  
various test inputs. True or False

6. Consider the control system in Figure 7.62, where the loop transfer function is

L s G s G s
K s s

s sc
5 9

3
.

2

2

( )
( ) ( ) ( )

( )
= =

+ +

+

Using the root locus method, determine the value of K such that the dominant roots have 
a damping ratioζ = 0.5.

a. K = 1.2

b. K = 4.5

c. K = 9.7

d. K = 37.4

Gc(s) G(s)

-

+
R(s)

Controller Process

Y(s)

FIGURE 7.62 Block diagram for the Skills Check.
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In Problems 7 and 8, consider the unity feedback system in Figure 7.62 with

L s G s G s
K s

s sc
1

5 17.33
.

2( ) ( ) ( )
( )

= =
+

+ +

7.  The approximate angles of departure of the root locus from the complex poles are

a. dφ = ±180°

b. dφ = ±115°

c. dφ = ±205°

d. None of the above

8.  The root locus of this system is given by which of the following:

9.  A unity feedback system has the closed-loop transfer function given by

T s
K

s K
( )

( )
=

+ +45
.2

Using the root locus method, determine the value of the gain K  so that the closed-loop 
system has a damping ratio ζ = /2 2.

a. K = 25

b. K = 1250

c. K = 2025

d. K = 10500
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516 Chapter 7  The Root Locus Method

10.  Consider the unity feedback control system in Figure 7.62 where

L s G s G s
s z

s s s
c

10
4 8

.
2( )

( ) ( ) ( )
( )

= =
+

+ +

Using the root locus method, determine that maximum value of z for closed-loop stability.

a. z = 7.2

b. z = 12.8

c. Unstable for all z > 0

d. Stable for all z > 0

In Problems 11 and 12, consider the control system in Figure 7.62 where the model of the 
process is

G s
s s s

( )
( )( )( )

=
+ + +

7500
1 10 50

.

11.  Suppose that the controller is

G s
K s

sc
1 0.2

1 0.025
.( )

( )
=

+
+

Using the root locus method, determine the maximum value of the gain K  for closed-
loop stability.

a. K = 2.13

b. K = 3.88

c. K = 14.49

d. Stable for all K > 0

12.  Suppose that a simple proportional controller is utilized, that is, .G s Kc( ) =  Using the 
root locus method, determine the maximum controller gain K  for closed-loop stability.

a. K = 0.50

b. K = 1.49

c. =K 4.48

d. Unstable for K > 0

13.  Consider the unity feedback system in Figure 7.62 where

L s G s G s
K

s s s s
c 5 6 17.76

.
2( )

( ) ( ) ( )
( )

= =
+ + +

Determine the breakaway point on the real axis and the respective gain, K.

a. s K= − =1.8,   58.75

b. s K= − =2.5,   4.59

c. s K= =1.4,   58.75

d. None of the above

In Problems 14 and 15, consider the feedback system in Figure 7.62, where

L s G s G s
K s j s j

s s j s jc
1 1

2 2
.

( )( )
( )( )

( ) ( ) ( )= =
+ + + −

+ −
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Skills Check 517

14.  Which of the following is the associated root locus?

15.  The departure angles from the complex poles and the arrival angles at the complex 
zeros are:

a. D Aφ φ= ± =180°,   0°

b. D Aφ φ= ± = ±116.6°,   198.4°

c. D Aφ φ= ± = ±45.8°,   116.6°

d. None of the above

In the following Word Match problems, match the term with the definition by writing 
the correct letter in the space provided.

a. Parameter design The amplitude of the closed-loop response is  
reduced approximately to one-fourth of the 
 maximum value in one oscillatory period. ________

b. Root sensitivity The path the root locus follows as the parameter 
becomes very large and approaches ∞. ________

c. Root locus The center of the linear asymptotes, σA. ________

d.  Root locus segments 
on the real axis

The process of determining the PID controller gains 
using one of several analytic methods based on open-
loop and closed-loop responses to step inputs. ________
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518 Chapter 7  The Root Locus Method

E7.1 Consider a device that consists of a ball rolling on 
the inside rim of a hoop [11]. This model is similar to 
the problem of liquid fuel sloshing in a rocket. The 
hoop is free to rotate about its horizontal principal 
axis as shown in Figure E7.1. The angular position of 
the hoop may be controlled via the torque T t( ) ap-
plied to the hoop from a torque motor attached to the 
hoop drive shaft. If negative feedback is used, the sys-
tem characteristic equation is

Ks s
s s

( )
+

+
+ +

=1
4

2 2
0.

2

(a) Sketch the root locus. (b) Find the gain when the 
roots are both equal. (c) Find these two equal roots. 

(d) Find the settling time of the system when the roots 
are equal.

E7.2  A tape recorder with a unity feedback speed control 
system has the loop transfer function

1 10 24
.

2( )
( ) ( ) ( )

( )
= =

+ + +
L s G s G s

K

s s s s
c

a. Sketch a root locus for K, and show that the domi-
nant roots are 0.41    0.384,= − ±s j  when 8.=K

b. For the dominant roots of part (a), calculate the 
settling time and overshoot for a step input.

E7.3  A unity feedback control system for an automobile 
suspension tester has the loop transfer function [12]

3
10

.
2

2
( ) ( ) ( )

( )
( )

= =
+
+

L s G s G s
K s

s sc

We desire the dominant roots to have the maximum 
imaginary part value. Using the root locus, show that 
K 8.67=  is required, and the dominant roots are  
s j= − ±1.5 1.65.

E7.4  Consider a unity feedback system with the loop 
transfer function

5

2 8
.

2

( )
( ) ( ) ( )= =

+
+ +

L s G s G s
K s

s sc

EXERCISES

Torque

T(t)

Ball

Hoop

FIGURE E7.1 Hoop rotated by motor.

e. Root locus method A method of selecting one or two parameters using 
the root locus method. ________

f. Asymptote centroid The root locus lying in a section of the real axis to 
the left of an odd number of poles and zeros. ________

g. Breakaway point The root locus for negative values of the parameter 
of interest where −∞ < K ≤ 0. ________

h. Locus The angle at which a locus leaves a complex pole in 
the s-plane. ________

i. Angle of departure A path or trajectory that is traced out as a parameter 
is changed. ________

j.  Number of separate 
loci

The locus or path of the roots traced out on the 
s-plane as a parameter is changed. ________

k. Asymptote The sensitivity of the roots as a parameter changes 
from its normal value. ________

l.  Negative gain root 
locus

The method for determining the locus of roots of the 
characteristic equation 1 + KG(s) = 0 as 0 ≤ K < ∞. ________

m. PID tuning The process of determining the PID controller gains. ________

n.  Quarter amplitude 
decay

The point on the real axis where the locus departs 
from the real axis of the s-plane. ________

o.  Ziegler–Nichols PID 
tuning method

Equal to the number of poles of the transfer function, 
assuming that the number of poles is greater than or 
equal to the number of zeros of the transfer function. ________
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Exercises 519

(a) Find the angle of departure of the root locus from 
the complex poles. (b) Find the entry point for the 
root locus as it enters the real axis.

Answers: 123.5°,  9.8−

E7.5  Consider a unity feedback system with a loop 
transfer function

L s G s G s
s

s s sc
4

10 25 85
.

3 2
( ) ( ) ( )= =

+
+ + +

(a) Find the breakaway point on the real axis. (b) 
Find the asymptote centroid. (c) Find the value of K 
at the breakaway point.

E7.6 One version of a space station is shown in Figure 
E7.6 [28]. It is critical to keep this station in the proper 
orientation toward the Sun and the Earth for gener-
ating power and communications. The orientation 
controller may be represented by a unity feedback 
system with an actuator and controller, such as

L s G s G s
K

s s s
c

20
10 80

.
2( )

( ) ( ) ( )= =
+ +

Sketch the root locus of the system as K increases. 
Find the value of K that results in an unstable system.

Answers: = 40K

E7.8 Sketch the root locus for a unity feedback system 
with

L s G s G s
K s

s s
c

3

1 19
.2( ) ( ) ( )

( )

( ) ( )
= =

+

+ +

(a) Find the gain when all three roots are real and 
equal. (b) Find the roots when all the roots are equal 
as in part (a).

Answers: K s108;   7= = −

E7.9 The primary mirror of a large telescope can have a 
diameter of 10 m and a mosaic of 36 hexagonal seg-
ments with the orientation of each segment actively 
controlled. Suppose this unity feedback system for the 
mirror segments has the loop transfer function

L s G s G s
K

s s s
c ( )

( ) ( ) ( )= =
+ +2 5

.
2

a. Find the asymptotes and sketch them in the 
s-plane.

b. Find the angle of departure from the complex poles.
c. Determine the gain when two roots lie on the 

imaginary axis.
d. Sketch the root locus.

E7.10 A unity feedback system has the loop transfer 
function

6
4

.( ) ( )
( )
( )

= =
+
+

L s KG s
K s

s s

a. Find the breakaway and entry points on the real axis.
b. Find the gain and the roots when the real part of 

the complex roots is located at 3.−
c. Sketch the root locus.

Answers: (a) − −0.59, 3.41;  (b) K s j= = − ±3,   2 2  

E7.11 A robot force control system with unity feedback 
has a loop transfer function [6]

1

6 18
.

2( )
( ) ( )

( )
= =

+
+ +

L s KG s
K s

s s s

a. Find the gain K that results in dominant roots 
with a damping ratio of 0.707. Sketch the root 
locus.

b. Find the actual percent overshoot and peak time 
for the gain K of part (a).

E7.12 A unity feedback system has a loop transfer function

1

6 18
.

2( )
( ) ( )

( )
= =

+
+ +

L s KG s
K s

s s s

(a) Sketch the root locus for K > 0. (b) Find the roots 
when 10=K  and 20. (c) Compute the rise time, per-
cent overshoot, and settling time (with a 2% criterion) 
of the system for a unit step input when 10=K  and 20.

Solar power panels Rockets

Radar antenna

Adjuster
rockets

Space shuttle

FIGURE E7.6 Space station.

E7.7 The elevator in a modern office building can travel 
at a speed of 25 feet per second and still stop within 
one-eighth of an inch of the floor outside. The loop 
transfer function of the unity feedback elevator po-
sition control is

3
1 5 10

.
( )

( ) ( ) ( )
( )

( ) ( )
= =

+
+ + +

L s G s G s
K s

s s s sc

Determine the gain K when the complex roots have 
an ζ  equal to 0.7.

M07_DORF2374_14_GE_C07.indd   519M07_DORF2374_14_GE_C07.indd   519 14/09/21   9:07 PM14/09/21   9:07 PM



520 Chapter 7  The Root Locus Method

E7.13 A unity feedback system has a loop transfer 
function

L s G s G s
s

s s s zc
4

2
.( ) ( ) ( )

( )
( )( )

= =
+

+ +

(a) Draw the root locus as z varies from 0 to 100.  
(b) Using the root locus, estimate the percent over-
shoot and settling time (with a 2% criterion) of the sys-
tem at z 1,=  2, and 3 for a step input. (c) Determine 
the actual overshoot and settling time at z 1,=  2, and 3.

E7.14 A unity feedback system has the loop transfer 
function

15

3
.

( )
( ) ( ) ( )

( )
= =

+
+

L s G s G s
K s

s sc

(a) Determine the breakaway and entry points of 
the root locus, and sketch the root locus for K > 0.  
(b) Determine the gain K when the two characteristic 
roots have a  ζ  of /1 2. (c) Calculate the roots.

E7.15 (a) Plot the root locus for a unity feedback system 
with loop transfer function

L s G s G s
K s s

sc
10 2

.
3( ) ( ) ( )

( )( )
= =

+ +

(b) Calculate the range of K for which the system is 
stable. (c) Predict the steady-state error of the system 
for a ramp input.

Answers: (a) K > 1.67; (b) ess = 0

E7.16 A negative unity feedback system has a loop trans-
fer function

L s G s G s
Ke
sc

sT

1
,( ) ( ) ( )= =

+

−

where T = 0.1 s. Show that an approximation for the 
time delay is

e T
s

T
s

sT ≈
−

+

−

2

2 .

Using

e
s
s

s =
−
+

− 20
20

,0.1

obtain the root locus for the system for K > 0. 
Determine the range of K for which the system is 
stable.

E7.17 A control system, as shown in Figure E7.17, has a 
process

1
1

.( )
( )

=
−

G s
s s

(a) When G s Kc ,( ) =  show that the system is always 
unstable by sketching the root locus. (b) When

2
20

,( )
( )

=
+

+
G s

K s

sc

sketch the root locus, and determine the range of K 
for which the system is stable. Determine the value of 
K and the complex roots when two roots lie on the  
j -axis.ω

E7.18 A closed-loop negative unity feedback system is 
used to control the yaw of an aircraft. When the loop 
transfer function is

L s G s G s
K

s s s s
c 3 2 2

,
2( )

( ) ( ) ( )
( )

= =
+ + +

determine (a) the root locus breakaway point and 
(b) the value of the roots on the j -axisω  and the gain 
required for those roots. Sketch the root locus.

Answers: (a) Breakaway: s = −2.29; (b) j -axisω : 
s j K= ± =1.09,   8

E7.19 A unity feedback system has a loop transfer function

L s G s G s
K

s s s s
c 3 6 64

.
2( )

( ) ( ) ( )
( )

= =
+ + +

(a) Determine the angle of departure of the root 
locus at the complex poles. (b) Sketch the root locus. 
(c) Determine the gain K when the roots are on the 
j -axisω  and determine the location of these roots.

E7.20 A unity feedback system has a loop transfer function

L s G s G s
K s

s s sc
1

2 6
.( ) ( ) ( )

( )
( )( )

= =
+

− +

(a) Determine the range of K for stability. (b) Sketch 
the root locus. (c) Determine the maximum ζ  of the 
stable complex roots.

Answers: (a) K > 16; (b) ζ = 0.25

E7.21 A unity feedback system has a loop transfer function

5 10
.

3 2
( ) ( ) ( )= =

+ +
L s G s G s

Ks
s sc

Sketch the root locus. Determine the gain K when the 
complex roots of the characteristic equation have a 
damping ratio ζ  approximately equal to 0.66.

-
Y(s)R(s)

+
G(s)Gc(s)

FIGURE E7.17 Feedback system.
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Exercises 521

E7.22 A high-performance missile for launching a satel-
lite has a unity feedback system with a loop transfer 
function

L s G s G s
K s s

s s
c

18 2

2 12
.

2

2

( )
( )

( ) ( ) ( )
( )

( )
= =

+ +

− +

Sketch the root locus as K varies from K< < ∞0 .

E7.23 A unity feedback system has a loop transfer function

10 5
.

2

( )
( ) ( ) ( )

( )
= =

+
+

L s G s G s
s

s s ac

Sketch the root locus for a≤ < ∞0 .

E7.24 Consider the system represented in state variable 
form

( ) ( ) ( )= +� t t u tx Ax B
( ) ( ) ( )= + ,Cx Dy t t u t

where

k
A B0 1

1
,   0

1
,  =

− −











 =













C D[ 1 0 ], [0].= =

Determine the characteristic equation and then sketch 
the root locus as k< < ∞0 .

E7.25 A closed-loop feedback system is shown in Figure 
E7.25. For what range of K is the system stable? Sketch 
the root locus as K< < ∞0 .

E7.26 Consider the single-input, single-output system is 
described by

( ) ( ) ( )= +� t t u tx Ax B

( ) ( )= Cxy t t

where

=
− − −











 =











 = −0 1

3 2
,   0

1
,   [ 1 1 ].A B C

K K

Compute the characteristic polynomial and plot the 
root locus as K≤ < ∞0 .  For what values of K is the 
system stable?

E7.27 Consider the unity feedback system in Figure E7.27. 
Sketch the root locus as p≤ < ∞0 . For what values 
of p is the closed loop system stable?

E7.28 Consider the feedback system in Figure E7.28. 
Obtain the negative gain root locus as K−∞ < ≤ 0. 
For what values of K is the system stable?

Gc(s) G(s)
Ea(s)

Controller

+

-
R(s) Y(s)

Process

FIGURE E7.28
Feedback system for 
negative gain root 
locus.

Ea(s)

Controller

+

-
R(s) Y(s)

Process

s + 1
s

2
s + p

FIGURE E7.27
Unity feedback system 
with parameter p.

K
Ea(s)

Controller

+

-
R(s)

Sensor

Y(s)

Process

1
s + 50

1
s

FIGURE E7.25
Nonunity feedback 
system with   
parameter K.
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522 Chapter 7  The Root Locus Method

P7.1 Sketch the root locus for the following loop trans-
fer functions of the system shown in Figure P7.1 when 

K≤ < ∞0 :

a. L s G s G s
K

s s sc 5 20
( ) ( ) ( )

( )( )
= =

+ +

b. 
( )

( ) ( ) ( )
( )

= =
+ + +

L s G s G s
K

s s s
c 2 2 22

c. ( ) ( ) ( )
( )

( )( )
= =

+
+ +

L s G s G s
K s

s s sc
10

1 20

d. L s G s G s
K s s

s sc
4 8

1

2

2

( )
( ) ( ) ( )

( )
= =

+ +

+

P7.2 Consider the loop transfer function of a phase-lock 
loop system

( ) ( ) ( )
( )

( )( )
= =

+
+ +

L s G s G s K K
s

s s sc a
10 10

1 100
.

Sketch the root locus as a function of the gain 
.K K Kv a=  Determine the value of Kv  attained 

if the complex roots have a damping ratio equal to  
0.60 [13].

P7.3 A unity feedback system has the loop transfer function

2 4 6
.( ) ( ) ( )

( )( )( )
= =

+ + +
L s G s G s

K
s s sc

Find (a) the breakaway point on the real axis and the 
gain K for this point, (b) the gain and the roots when 
two roots lie on the imaginary axis, and (c) the roots 
when 10.=K  (d) Sketch the root locus.

P7.4 Suppose that the loop transfer function of a large 
antenna is given by

τ
ω
ζω ω( )

( ) ( ) ( )= =
+ + +

L s G s G s
k
s s s s

c
a n

n n1
 

2  
,

2

2 2

where τ = 0.2, ζ = 0.707, and ωn = 1 rad/s. Sketch the 
root locus of the system as ka≤ < ∞0 . Determine the 
maximum allowable gain of ka for a stable system.

P7.5 Automatic control of helicopters is necessary be-
cause, unlike fixed-wing aircraft which possess a fair 
degree of inherent stability, the helicopter is quite 
unstable. A helicopter control system that utilizes an 
automatic control loop plus a pilot stick control is 
shown in Figure P7.5. When the pilot is not using the 
control stick, the switch may be considered to be open. 
The dynamics of the helicopter are represented by the 
transfer function

G s
s

s s s( )
( )

( )
( )

=
+

+ − +
25 0.03

0.4 0.36 0.16
.

2

(a) With the pilot control loop open (hands-off con-
trol), sketch the root locus for the automatic stabili-
zation loop. Determine the gain K  2 that results in a 
damping for the complex roots equal to ζ = 0.707.  
(b) For the gain K  2 obtained in part (a), determine 
the steady-state error due to a wind gust = /T s sd  ( ) 1 .  
(c) With the pilot loop added, draw the root locus as 
K  1 varies from zero to ∞  when K  2 is set at the value 
calculated in part (a). (d) Recalculate the steady-state 

PROBLEMS

Gc(s) G(s)
Ea(s)

Controller

+

-
R(s) Y(s)

Process

FIGURE P7.1 

-

+

-

+ +

+
R(s)

Td(s)
Disturbance

 K1

s2 + 12s + 1

K2(s + 1)

s + 9

G (s)

Pilot
Control

stick

Switch

Automatic stabilization

Y(s)
Pitch

attitude

Helicopter dynamics

FIGURE P7.5
Helicopter 
control.
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Problems 523

error of part (b) when K  1  is equal to a suitable value 
based on the root locus.

P7.6 An attitude control system for a satellite vehicle 
within the earth’s atmosphere is shown in Figure P7.6.
(a) Draw the root locus of the system as K varies from 

K≤ < ∞0 .  (b) Determine the range of K for closed-
loop stability. (c) Determine the gain K that results in 
a system with a settling time (with a 2% criterion) of 
Ts ≤ 12 s and a percent overshoot P.O. ≤ 25%.

P7.7 The speed control system for an isolated power 
system is shown in Figure P7.7. The valve controls the 
steam flow input to the turbine in order to account 
for load changes L s∆ ( )  within the power distribu-
tion network. The equilibrium speed desired results 
in a generator frequency equal to 60 cps. The effec-
tive rotary inertia J is equal to 4000 and the friction 
constant b is equal to 0.75. The steady-state speed 
regulation factor R is represented by the equation 

ω ω( )≈ − /∆  ,0R Lr  where rω    equals the speed at 
rated load and ω  0  equals the speed at no load. We 
want to obtain a very small R, usually less than 0.10. 
(a) Using root locus techniques, determine the regula-
tion R attainable when the damping ratio of the roots 

of the system must be greater than 0.60. (b) Verify 
that the steady-state speed deviation for a load torque 
change ∆ = ∆ /( )L s L s  is, in fact, approximately equal 
to R L∆  when R ≤ 0.1.

P7.8 Consider again the power control system of Problem 
P7.7 when the steam turbine is replaced by a hydrotur-
bine. For hydroturbines, the large inertia of the water 
used as a source of energy causes a considerably larger 
time constant. The transfer function of a hydroturbine 
may be approximated by

G s
s

st
τ

τ
( )

( )
=

− +
+
1

/ 2 1
,

where τ = 1 s. With the rest of the system remaining 
as given in Problem P7.7, repeat parts (a) and (b) of 
Problem P7.7.

P7.9 The achievement of safe, efficient control of the 
spacing of automatically controlled guided vehicles is 
an important part of the future use of the vehicles in 
a manufacturing plant [14, 15]. It is important that the 
system eliminates the effects of disturbances (such as 
oil on the floor) as well as maintains accurate spacing 
between vehicles on a guide way. The system can be 

-
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f(s)
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dynamics

Controller

s + 4.5
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FIGURE P7.6
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control.
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Power system 
control.
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524 Chapter 7  The Root Locus Method

represented by the block diagram of Figure P7.9. The 
vehicle dynamics can be represented by

G s
s s s

s s s s s

( )
( )

( )
( )

( )( )
=

+ + +

− + + +

0.3 5 162

2 1.2 4 230
.

2

2

(a) Sketch the root locus of the system. (b) Determine 
all the roots when the loop gain K K K= 1 2  is equal 
to 2500.

P7.10 New concepts in passenger airliner design will have 
the range to cross the Pacific in a single flight and the 
efficiency to make it economical [16, 29]. These new 
designs will require the use of temperature-resistant, 
lightweight materials and advanced control systems. 
Noise control is an important issue in modern aircraft 
designs since most airports have strict noise level re-
quirements. An advanced airliner is depicted in Figure 
P7.10(a). It would seat 200 passengers and cruise at 
just below the speed of sound. The flight control sys-
tem must provide good handling characteristics and 
comfortable flying conditions. An automatic control 
system can be designed for the next generation pas-
senger aircraft.

The desired characteristics of the dominant roots 
of the control system shown in Figure P7.10(b) have 
a ζ = 0.707. The characteristics of the aircraft are 

nω ζ= =2.5,   0.30, and τ = 0.1. The gain factor 
K ,1  however, will vary over the range 0.02 at medi-
um-weight cruise conditions to 0.20 at lightweight de-
scent conditions. (a) Sketch the root locus as a function 
of the loop gain K K .1 2  (b) Determine the gain K  2  nec-
essary to yield roots with ζ = 0.707 when the aircraft is 
in the medium-cruise condition. (c) With the gain K2 
as found in part (b), determine the ζ  of the roots when 
the gain K1  results from the condition of light descent.

P7.11 A computer system requires a high-performance 
magnetic tape transport system [17]. The environmen-
tal conditions imposed on the system result in a se-
vere test of control engineering design. A direct-drive 
DC motor system for the magnetic tape reel system is 
shown in Figure P7.11, where r equals the reel radius, 
and J equals the reel and rotor inertia. A complete re-
versal of the tape reel direction is required in 6 ms, and 
the tape reel must follow a step command in 3 ms or less. 
The tape is normally operating at a speed of 100 in/s.  

(b)

10
s + 10

(s + 2)2K2

(s + 10)(s + 100)

Y(s)
Pitch
rate-

+

Controller

R(s)

Aircraft dynamicsActuator

K1(ts + 1)

s2 + 2zvns + vn
2

Rate gyro

1

(a)

FIGURE P7.10
(a) A passenger  
jet aircraft of the 
future. (Muratart/
Shutterstock.)  
(b) Control system.
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Problems 525

The motor and components selected for this system 
possess the following characteristics:

= 0.40Kb  r = 0.2

= 1Kp  K1 = 2.0

τ τ= = 1 ms1 a  K2 is adjustable.

( )/ = 2.0K LJT

The inertia of the reel and motor rotor is × −2.5 10 3  
when the reel is empty, and × −5.0 10 3 when the 
reel is full. A series of photocells is used as an er-
ror-sensing device. The time constant of the motor is 
L R =/ 0.5 ms.  (a) Sketch the root locus for the sys-
tem when K = 102  and J = × −5.0 10 ,3  Ka< < ∞0 . 
(b) Determine the gain Ka  that results in a well-
damped system so that the ζ  of all the roots is greater 
than or equal to 0.60. (c) With the Ka  determined 
from part (b), sketch a root locus for K< < ∞0 .2

P7.12 A precision speed control system (Figure P7.12) is 
required for a platform used in gyroscope and inertial 
system testing where a variety of closely controlled 

speeds is necessary. A direct-drive DC torque motor 
system was utilized to provide (1)  a speed range of 
0.01°/s to 600°/s, and (2) 0.1% steady-state error max-
imum for a step input. The direct-drive DC torque 
motor avoids the use of a gear train with its attendant 
backlash and friction. Also, the direct-drive motor 
has a high-torque capability, high efficiency, and low 
motor time constants. The motor gain constant is 
nominally Km = 1.8,  but is subject to  variations up to 
50%. The amplifier gain Ka  is normally greater than 
10 and subject to a variation of 10%. (a) Determine 
the minimum loop gain necessary to satisfy the 
steady-state error requirement. (b) Determine the 
limiting value of gain for stability. (c) Sketch the root 
locus as Ka  varies from 0 to ∞.  (d)  Determine the 
roots when Ka = 40,  and estimate the response to a 
step input.

P7.13 A unity feedback system has the loop transfer function

1 3 12
.

2( )
( ) ( ) ( )

( )
= =

+ + +
L s G s G s

K

s s s s
c

(a)

(b)

Reel

Motor
back emf

R(s)
Desired
position

Y(s)
Tape

position

1
Js

r
s

0.5K1

t1s + 1

Photocell
transducer

Ka

tas + 1

Amplifier

KT>L
s + R>L

Motor

-

+

-

+

-

+

Kb

K2

Tachometer

Kp

Tape reels
and motors

Capstans

Photocells

Vacuum

FIGURE P7.11
(a) Tape control 
system. (b) Block 
diagram.
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526 Chapter 7  The Root Locus Method

(a) Find the breakaway point on the real axis and the 
gain for this point. (b) Find the gain to provide two 
complex roots nearest the j -axisω  with a damping ratio  

0.6.ζ =  (c) Are the two roots of part (b) dominant? 
(d) Determine the settling time (with a 2% criterion) 
of the system when the gain of part (b) is used.

P7.14 The loop transfer function of a unity feedback 
 system is

2 4

4 6
.

2( )
( ) ( ) ( )

( )( )
= =

− +

+ +
L s G s G s

K s s

s s sc

This system is called conditionally stable because 
it is stable only for a range of the gain K such that 
k K k< < .1 2  Using the Routh–Hurwitz criteria and 
the root locus method, determine the range of the 
gain for which the system is stable. Sketch the root 
locus for K< < ∞0 .

P7.15 Suppose that the dynamics of a transport vehicle 
can be represented by the loop transfer function

40 800 40

100 1000 250 4500
.

2

2 2

( )
( )( )

( ) ( )
( )

=
+ + +

+ + + +
G s G s

K s s s

s s s s s
c

Sketch the root locus for the system. Determine the 
damping ratio of the dominant roots when K 1000.=

P7.16 Control systems for maintaining constant tension 
on strip steel in a hot strip finishing mill are called 
“loopers.” A typical system is shown in Figure P7.16. 
The looper is an arm 2 to 3 feet long with a roller on 
the end; it is raised and pressed against the strip by a 
motor [18]. The typical speed of the strip passing the 
looper is 2000 ft/min. A voltage proportional to the 
looper position is compared with a reference voltage 
and integrated where it is assumed that a change in 
looper position is proportional to a change in the steel 

-

+

-

+ -

+

Controller

Ka(s + 25)(s + 15)

s(s + 2)
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R(s)
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Speed
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1
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FIGURE P7.12
Speed control.
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Problems 527

strip tension. The time constant τ  of the filter is neg-
ligible relative to the other time constants in the sys-
tem. (a) Sketch the root locus of the control system 
for Ka< < ∞0 . (b) Determine the gain Ka  that re-
sults in a system whose roots have a damping ratio of 
ζ = 0.707 or greater. (c) Determine the effect of τ  as 
τ  increases from a negligible quantity.

P7.17 Consider the vibration absorber in Figure P7.17. 
Using the root locus method, determine the effect of 
the parameters M2  and k .12  Determine the specific 
values of the parameters M2  and k12  so that the mass 
M1 does not vibrate when F t a tω( )( ) =  sin .0  Assume 
that M k= =1,   1,1 1  and b = 1. Also assume that 
k < 112  and that the term k  12

1  may be neglected.

P7.18 A feedback control system is shown in Figure P7.18. 
The filter ( )G sc  is often called a compensator, and the 
design problem involves selecting the parameters α 
and β.  Using the root locus method, determine the ef-
fect of varying the parameters. Select a suitable filter 
so that the time to settle (to within 2% of the final 
value) is 4≤Ts  s, and the damping ratio of the domi-
nant roots is 0.6ζ > .

P7.19 In recent years, many automatic control systems 
for guided vehicles in factories have been installed. 
One system uses a magnetic tape applied to the floor 
to guide the vehicle along the desired lane [10, 15]. 
Using transponder tags on the floor, the automatically 

Force
F(t)

b

M1

M2

y1(t)

y2(t)

k1

k12

FIGURE P7.17
Vibration absorber.

-

+
R(s) Y(s)

as + 1
bs + 1

20
s(s + 5)

Filter Process

FIGURE P7.18 Filter design.

guided vehicles can be tasked (for example, to speed 
up or slow down) at key locations. An example of a 
guided vehicle in a factory is shown in Figure P7.19(a).

(a)

(b)

-

+R(s)
Direction
reference

Y(s)
Direction
of travel

Actuator and
vehicle

Controller

Ea(s)
Ka

s2 + 4s + 100

s(s + 2)(s + 6)
FIGURE P7.19
(a) An automatically 
guided vehicle. 
(Photo courtesy of 
the Vanit Janthra/
Shutterstock.)  
(b) Block diagram.
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528 Chapter 7  The Root Locus Method

Sketch a root locus and determine a suitable gain 
Ka  so that the damping ratio of the complex roots is 
ζ > 0.707 .

P7.20 Determine the root sensitivity for the dominant 
roots of the design for Problem P7.18 for the gain 
K α β= 4 /  and the pole s = −2.

P7.21 Determine the root sensitivity of the dominant 
roots of the power system of Problem P7.7. Evaluate 
the sensitivity for variations of (a) the poles at s = −4,  
and (b) the feedback gain, 1/R.

P7.22 Determine the root sensitivity of the dominant 
roots of Problem P7.1(a) when K is set so that the 
damping ratio of the unperturbed roots is ζ = 0.707.  
Evaluate and compare the sensitivity as a function 
of the poles and zeros of the loop transfer function 

( ) ( ) ( )=L s G s G sc .

P7.23 Repeat Problem P7.22 for the loop transfer func-
tion ( ) ( ) ( )=L s G s G sc  of Problem P7.1(c).

P7.24 For systems of relatively high degree, the form of 
the root locus can often assume an unexpected pat-
tern. The root loci of four different feedback systems 
of third order or higher are shown in Figure P7.24. The 
open-loop poles and zeros of KG s( ) are shown, and 
the form of the root loci as K varies from zero to infin-
ity is presented. Verify the diagrams of Figure P7.24 by 
constructing the root loci.

P7.25 Solid-state integrated electronic circuits are com-
posed of distributed R and C elements. Therefore, 
feedback electronic circuits in integrated circuit form 
must be investigated by obtaining the transfer func-
tion of the distributed RC networks. It has been shown 
that the slope of the attenuation curve of a distributed 
RC network is 10n dB/decade, where n is the order of 
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FIGURE P7.24
Root loci of four 
systems.
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Problems 529

the RC filter [13]. This attenuation is in contrast with 
the normal 20n dB/decade for the lumped parameter 
circuits. An interesting case arises when the distrib-
uted RC network occurs in a series-to-shunt feedback 
path of a transistor amplifier. Then the loop transfer 
function may be written as

( ) ( ) ( )
( )( )

( )( )
= =

− +

+ +

/

/
L s G s G s

K s s

s s
c

1 3

1 2
.

1 2

1 2

(a) Using the root locus method, determine the locus 
of roots as K varies from zero to infinity. (b) Calculate 
the gain at borderline stability and the frequency of 
oscillation for this gain.

P7.26 A unity feedback system has a loop transfer function

L s G s G s
K s

s s s
c

2

4 5
.

2

2( )( )
( ) ( ) ( )

( )
= =

+
+ +

(a) Sketch the root locus for K≤ < ∞0 . (b) 
Determine the range of the gain K for which the sys-
tem is stable. (c) For what value of K in the range 
K ≥ 0 do purely imaginary roots exist? What are the 
values of these roots? (d) Would the use of the dom-
inant roots approximation for an estimate of settling 
time be justified in this case for a large magnitude of 
gain =K( 100)?

P7.27 A unity feedback system has a loop transfer function

( )
( )

( ) ( ) ( )= =
+

+
L s G s G s

K s

s s
c

0.05

2
.

2

2

Sketch the root locus as a function of K. Determine 
the values of K where the root locus enters and leaves 
the real axis.

P7.28 To meet current U.S. emissions standards for 
 automobiles, hydrocarbon (HC) and carbon monox-
ide (CO) emissions are usually controlled by a cata-
lytic converter in the automobile exhaust. Federal 
standards for nitrogen oxides x(NO )  emissions are 
met mainly by exhaust-gas recirculation (EGR) 
techniques.

Although many schemes are under investiga-
tion for meeting the emissions standards for all three 
emissions, one of the most promising employs a three- 

way catalyst—for HC, CO, and xNO  emissions—
in conjunction with a closed-loop engine-control 
system. The approach is to use a closed-loop en-
gine control, as shown in Figure P7.28 [19, 23]. The 
exhaust-gas sensor gives an indication of a rich or 
lean exhaust and compares it to a reference. The 
difference signal is processed by the controller, 
and the output of the controller modulates the 
vacuum level in the carburetor to achieve the best 
air–fuel ratio for proper operation of the catalytic 
converter. The loop transfer function is repre-
sented by

L s
Ks s
s s s

( ) =
+ +

+ +
12 20

10 25
.

2

3 2

Calculate the root locus as a function of K. Calculate 
where the segments of the locus enter and leave the 
real axis. Determine the roots when K = 2.  Predict 
the step response of the system when K = 2.

P7.29 A unity feedback control system has the loop 
transfer function

L s G s G s
K s s

s s s
c

6 10

2 10
.

2

2

( )
( )

( ) ( ) ( )= =
+ +

+ +

We desire the dominant roots to have a damping 
ratio ζ = 0.707. Find the gain K when this condi-
tion is satisfied. Show that the complex roots area 

11.1 11.1= − ±s j  at this gain.

P7.30 An RLC network is shown in Figure P7.30. The 
nominal values (normalized) of the network el-
ements are L C− = 1 and R = 2.5. Show that 
the root sensitivity of the two roots of the input 
impedance Z s( ) to a change in R is different by a  
factor of 4.

+

-

L C

R

Z(s)

FIGURE P7.30 RLC network.

-

+R(s)
Reference

Controller Carburetor Engine
Three-way
catalytic
converter

Exhaust

Sensor
Oxygen

FIGURE P7.28
Auto engine control.
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530 Chapter 7  The Root Locus Method

P7.31 The development of high-speed aircraft and mis-
siles requires information about aerodynamic param-
eters prevailing at very high speeds. Wind tunnels are 
used to test these parameters. These wind tunnels are 
constructed by compressing air to very high pressures 
and releasing it through a valve to create a wind. Since 
the air pressure drops as the air escapes, it is neces-
sary to open the valve wider to maintain a constant 
wind speed. Thus, a control system is needed to adjust 
the valve to maintain a constant wind speed. The loop 
transfer function for a unity feedback system is

( )
( ) ( ) ( )

( )
( )

= =
+

+ + +
L s G s G s

K s
s s s s

c
4

0.2 15 150
.

2

Sketch the root locus and show the location of the 
roots for K = 1391.

P7.32 A mobile robot suitable for nighttime guard duty 
is available. This guard never sleeps and can tirelessly 
patrol large warehouses and outdoor yards. The steer-
ing control system for the mobile robot has a unity 
feedback with the loop transfer function

( ) ( ) ( )
( )( )

( )( )
= =

+ +
+ +

L s G s G s
K s s
s s sc

1 5
1.5 2

.

(a) Find K for all breakaway and entry points on the 
real axis. (b) Find K when the damping ratio of the 
complex roots is 0.707. (c) Find the minimum value of 
the damping ratio for the complex roots and the asso-
ciated gain K. (d) Find the overshoot and the time to 
settle (to within 2% of the final value) for a unit step 
input for the gain, K, determined in parts (b) and (c).

P7.33 The Bell-Boeing V-22 Osprey Tiltrotor is both an 
airplane and a helicopter. Its advantage is the ability 

(a)

(b)

K(s2 1 1.5s 1 0.5)
s

1
(20s 1 1)(10s 1 1)(0.5s 1 1)

Y(s)
Altitude

2

1 1
1

Controller

R(s)

Td(s)

Dynamics

FIGURE P7.33
(a) Osprey Tiltrotor 
aircraft. (b) Its 
 control system.

to rotate its engines to 90° from a vertical position 
for takeoffs and landings as shown in Figure P7.33(a), 
and then to switch the engines to a horizontal posi-
tion for cruising as an airplane [20]. The altitude con-
trol system in the helicopter mode is shown in Figure 
P7.33(b). (a) Determine the root locus as K varies and 
determine the range of K for a stable system. (b) For 
K = 280, find the actual y t( ) for a unit step input r t( ) 
and the percentage overshoot and settling time (with 
a 2% criterion). (c) When K = 280 and r t( ) = 0, find 
y t( ) for a unit step disturbance, ( ) = /1 .T s sd

P7.34 The fuel control for an automobile uses a diesel 
pump that is subject to parameter variations. A unity 
negative feedback has a loop transfer function

( ) ( ) ( )
( )

( )( )( )( )
= =

+
+ + + +

L s G s G s
K s

s s s sc       
   2

1 2.5 4 10
.

(a) Sketch the root locus as K varies from 0 to 2000. 
(b) Find the roots for K equal to 400, 500, and 600. 
(c) Predict how the percent overshoot to a step 
will vary for the gain K, assuming dominant roots. 
(d) Find the actual time response for a step input for 
all three gains and compare the actual overshoot with 
the predicted overshoot.

P7.35 A powerful electrohydraulic forklift can be used 
to lift pallets weighing several tons on top of 35-foot 
scaffolds at a construction site. The unity feedback 
system has a loop transfer function

5

4 13
.

2

2( )
( )

( ) ( ) ( )= =
+

+ +
L s G s G s

K s

s s s
c
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Advanced Problems 531

(a) Sketch the root locus for K > 0. (b) Find the gain 
K when two complex roots have a ζ = 0.707, and cal-
culate all three roots. (c) Find the entry point of the 
root locus at the real axis. (d) Estimate the expected 
percent overshoot to a step input, and compare it with 
the actual percent overshoot.

P7.36 A microrobot with a high-performance manipula-
tor has been designed for testing very small particles, 
such as simple living cells [6]. The unity feedback sys-
tem has a loop transfer function

5 10

2 8
.

2

( )
( ) ( ) ( )

( )
( )( )

= =
+ +
+ −

L s G s G s
K s s

s s sc

(a) Sketch the root locus for K > 0. (b) Find the gain 
and roots when the characteristic equation has two 
imaginary roots. (c) Determine the characteristic roots 
when K = 50 and K = 100.  (d) For 50,=K  esti-
mate the percent overshoot to a step input, and com-
pare the estimate to the actual percent overshoot.

P7.37 Identify the parameters K, a, and b of the system 
shown in Figure P7.37. The system is subject to a unit 
step input, and the output response has a percent 
overshoot but ultimately attains the final value of 1. 
When the closed-loop system is subjected to a ramp 
input, the output response follows the ramp input with 
a finite steady-state error. When the gain is doubled to 
2K, the output response to an impulse input is a pure 
sinusoid with a period of 0.314 second. Determine K, 
a, and b.

P7.38 A unity feedback system has the loop transfer 
function

2 8
.( ) ( ) ( )

( ) ( )
= =

+ +
L s G s G s

K
s sc

(a) Determine the range of K so that the closed-
loop system is stable. (b) Sketch the root locus.  
(c) Determine the roots for 100.=K  (d) For 100,=K  
predict the percent overshoot for a step input.  
(e) Determine the actual percent overshoot.

P7.39 High-speed trains for U.S. railroad tracks must tra-
verse twists and turns. In conventional trains, the axles 
are fixed in steel frames called trucks. The trucks pivot 
as the train goes into a curve, but the fixed axles stay 
parallel to each other, even though the front axle tends 
to go in a different direction from the rear axle [24]. 
If the train is going fast, it may jump the tracks. One 
solution uses axles that pivot independently. To coun-
terbalance the strong centrifugal forces in a curve, the 
train also has a computerized hydraulic system that 
tilts each car as it rounds a turn. On-board sensors cal-
culate the train’s speed and the sharpness of the curve 
and feed this information to hydraulic pumps under 
the floor of each car. The pumps tilt the car up to eight 
degrees, causing it to lean into the curve like a race car 
on a banked track.

   The tilt control system is shown in Figure P7.39. 
Sketch the root locus, and determine the value of K 
when the complex roots have maximum damping. 
Predict the response of this system to a step input R s( ).

Y(s)R(s)
-

+ K
(s + 40)(s + a)(s + b)

FIGURE P7.37 Feedback system.

AP7.1 The top view of a high-performance jet aircraft 
is shown in Figure AP7.1(a) [20]. Using the block di-
agram in Figure AP7.1(b), sketch the root locus and 
determine the gain K so that the damping ratio of 
the complex poles near the j -axisω  is the maximum 
achievable. Evaluate the roots at this K, and predict 
the response to a step input. Determine the actual 
response, and compare it to the predicted response.

AP7.2 A magnetically levitated high-speed train “flies” 
on an air gap above its rail system, as shown in Figure 
AP7.2(a) [24]. The air gap control system has a unity 
feedback system with a loop transfer function

ADVANCED PROBLEMS

( ) ( ) ( )
( )( )

( )( )( )
= =

+ +
− + +

1 2
0.5 5 10

.L s G s G s
K s s

s s s sc

-

+ K
s + 1

20

s2 + 8s + 20

R(s)
Command

tilt

Y(s)
Actual

tilt

Controller Dynamics

FIGURE P7.39
Tilt control for a 
high-speed train.

M07_DORF2374_14_GE_C07.indd   531M07_DORF2374_14_GE_C07.indd   531 26/08/21   12:55 PM26/08/21   12:55 PM



532 Chapter 7  The Root Locus Method

(a)

11

T-shaped guideway

Area of
attraction

Guidance
magnets

Electromagnets

Train

Air gap22

(b)

+

-

+

+

Controller Plant

Td(s)

Ea(s) Y(s)
Air gap(s - 0.5)(s + 5)(s + 10)

s + 1
s

K(s + 2)
R(s)

Desired
gap

FIGURE AP7.2
(a) Magnetically 
 levitated high-
speed train.  
(b) Feedback 
 control system.

The feedback control system is illustrated in Figure 
AP7.2(b). The goal is to select K so that the response 
for a unit step input is reasonably damped. Sketch 
the root locus, and select K so that the Ts ≤ 3 s and 
P.O. ≤ 20%. Determine the actual response for the  
selected K and the percent overshoot.

AP7.3 A compact disc player for portable use requires a 
good rejection of disturbances and an accurate position 
of the optical reader sensor. The position control system 
uses unity feedback and a loop transfer function

( ) ( ) ( )=L s G s G sc

( )
( )

= +
+ + +

+ + + +
p

s s s

s s s s
1

20 150 100

20 150 10 5

3 2

4 3 2

= 0.

(b)

(a)

-

+
R(s)

Y(s)
Pitch

Desired
Pitch

Aileron

Rudder

Elevator

Controller Plant

K (s + 10)
s + 5

1
s(s2 + 6s + 24)FIGURE AP7.1

(a) High-
performance 
aircraft. (b) Pitch 
control system.
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The parameter p can be chosen by selecting the appro-
priate DC motor. Sketch the root locus as a function 
of p. Select p so that the damping ratio of the complex 
roots of the characteristic equation is approximately 
ζ = /1 2.

AP7.4 A remote manipulator control system has unity 
feedback and a loop transfer function

L s G s G s
s

s s sc  
1

3 2
.

3 2
α

α
( ) ( ) ( )= =

+ +
+ +

We want the percent overshoot for a step input to be 
less than or equal to 30%. Sketch the root locus as a 
function of the parameter α. Determine the range of 
α required for the desired percent overshoot. Locate 
the roots for the allowable value of α to achieve the 
required maximum overshoot. Check the actual step 
responses of the system for various α values.

AP7.5 A unity feedback system has a loop transfer function

= =
+ + −

L s G s G s
K

s s sc( ) ( ) ( )
10 8 15

.
3 2

a. Sketch the root locus and determine K for a sta-
ble system with complex roots with ζ = 1 / 2.

b. Determine the root sensitivity of the complex 
roots of part (a).

c. Determine the percent change in K (increase or 
decrease) so that the roots lie on the j -axis.ω

AP7.6 A unity feedback system has a loop transfer function

L s G s G s
K s s

s s sc
5 10

6 12
.

2

3 2

( )
( ) ( ) ( )= =

+ +

+ +

Sketch the root locus for K > 0, and select a value 
for K that will maximize the damping ratio of the 
complex roots.

AP7.7 A feedback system with positive feedback is 
shown in Figure AP7.7. The root locus for K > 0 
must meet the condition

1 360° KG s k( ) = ±

= …for k 0,  1,  2, .

Sketch the root locus for K< < ∞0 .

+

+
R(s) Y(s)K

1
(s + 4)(s + 8)

G(s)

FIGURE AP7.7 A closed-loop system with positive 
feedback.

-

+

-
R(s)

Y(s)
Position

120
(s + 2)(s + 17)

1
s

K

-

+
R(s) Y(s)

1
s(s + 2)(s + 5)

Controller Process

Gc(s)

FIGURE AP7.8
A position control 
system with velocity 
feedback.

FIGURE AP7.9
A unity feedback 
control system.

AP7.8 A position control system for a DC motor is 
shown in Figure AP7.8. Obtain the root locus for the 
velocity feedback constant K, and select K so that all 
the roots of the characteristic equation are real (two 
are equal and real). Estimate the step response of 
the system for the K selected. Compare the estimate 
with the actual response.

AP7.9 A control system is shown in Figure AP7.9. 
Sketch the root loci for the following transfer func-
tions ( )G sc :
a. ( ) =G s Kc
b. ( ) ( )= +G s K sc 3
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c. ( )
( )

=
+

+
G s

K s
sc

1
20

d. ( )
( )( )

=
+ +

+
G s

K s s
sc

1 4
10

 

AP7.10 A feedback system is shown in Figure AP7.10. 
Sketch the root locus as K varies when K ≥ 0. 
Determine a value for K that will provide a step 
 response with a percent overshoot of P O ≤. . 5% and a 
settling time (with a 2% criterion) of Ts ≤ 2.5 s.

-
Y(s)R(s)

+ 10
(s + 2)(s + 5)

K
s + K

FIGURE AP7.10
A nonunity feedback control system.

AP7.11 A control system is shown in Figure AP7.11. 
Sketch the root locus, and select a gain K so that the 
step response of the system has a percent overshoot of 
P O. . 5%,≤  and the settling time (with a 2%  crite rion) 
is 10≤Ts  s.

AP7.12 A control system with PI control is shown in 
Figure AP7.12. (a) Let 0.2K KI P/ =  and determine 
KP    so that the complex roots have maximum damp-
ing ratio. (b) Predict the step response of the system 
with KP    set to the value determined in part (a).

AP7.13 The feedback system shown in Figure AP7.13 has 
two unknown parameters K  1 and K .2  The process 
transfer function is unstable. Sketch the root locus 
for K K≤ < ∞0 ,   .1 2  What is the fastest settling time 
that you would expect of the closed-loop system in 
 response to a unit step input 1 ?R s s( ) = /  Explain.

-

+
R(s) Y(s)

Controller Process

K
(s + 5)(s + 15)

1

s(s2 + 4s + 5)
FIGURE AP7.11
A control system 
with parameter K.

-

+
R(s) Y(s)

Controller Process

1

s(s2 + 7s + 10)
KP + 

KI
s

FIGURE AP7.12
A control system 
with a PI controller.

(a)

(b)

3
R(s) Y(s)

K1

-K2

(s + 5)(s - 1)
1

(s + 5)(s - 1)
1

Y(s)
-

+
R(s) K1 3

K2FIGURE AP7.13
An unstable plant 
with two parame-
ters K1 and K .2
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AP7.14 Consider the unity feedback control system shown 
in Figure AP7.14. Design a PID controller using 
Ziegler–Nichols methods. Determine the unit step 

10
s(s + 10)(s + 7.5)

Y(s)

-

+ +

+

Controller

R(s)

Td(s)

Process

KI
s + KDsKP +

FIGURE AP7.14
Unity feedback loop 
with PID controller.

response and the unit disturbance response. What is 
the maximum percent overshoot and settling time 
for the unit step input?

DESIGN PROBLEMS

CDP7.1 The drive motor and slide system uses the output 
of a tachometer mounted on the shaft of the motor as 
shown in Figure CDP4.1 (switch-closed option). The 
output voltage of the tachometer is v KT θ= .1  Use the 
velocity feedback with the adjustable gain K .1  Select 
the best values for the gain K1  and the amplifier gain 
Ka  so that the transient response to a step input has a 
percent overshoot of P O ≤. . 5% and a settling time 
(to within 2% of the final value) of Ts ≤ 300 ms.

DP7.1 A high-performance aircraft, shown in Figure 
DP7.1(a), uses the ailerons, rudder, and elevator to 
steer through a three-dimensional flight path [20]. The 
pitch rate control system for a fighter aircraft at 10,000 
m and Mach 0.9 can be represented by the  system in 
Figure DP7.1(b).

(a) Sketch the root locus when the controller is a gain, 
so that G s Kc ( ) = ,  and determine K when ζ  for the 
roots with ω >n 2  is ζ ≥ 0.15  (seek a maximum ζ ).  
(b) Plot the response q t( ) for a step input r(t) with K 
as in (a). (c) A designer suggests an anticipatory con-
troller with G s K K s K sc ( ) ( )= + = +    2 .1 2  Sketch 
the root locus for this system as K varies and deter-
mine a K so that the damping ratio of all the closed-
loop roots is ζ >   0.8.  (d) Plot the response q(t) for a 
step input r(t) with K as in (c).

DP7.2 A large helicopter uses two tandem rotors rotat-
ing in opposite directions, as shown in Figure P7.33(a). 
The controller adjusts the tilt angle of the main rotor 
and thus the forward motion as shown in Figure DP7.2.  

(a)

Ailerons Rudder

Elevator

(b)

+

-

Controller
R(s)

Pitch rate
command

Q(s)
Pitch rate

Gc(s)

Aircraft

-18(s + 0.015)(s + 0.45)
(s2 + 1.2s + 12)(s2 + 0.01s + 0.0025)

FIGURE DP7.1
(a) High-
performance 
 aircraft. (b) Pitch 
rate control system.
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-

+

Controller

R(s)

Tilt
angle

Y(s)
K(s + 15)

s + 4

Helicopter
dynamics

1

(s2 + 10s + 4)
FIGURE DP7.2
Two-rotor helicopter 
velocity control.

(a) Sketch the root locus of the system, and determine 
K when ζ  of the complex roots is equal to 0.707. (b) 
Plot the response of the system to a step input r(t), 
and find the settling time (with a 2% criterion) and 
percent overshoot for the system of part (a). (c) 
Repeat parts (a) and (b) when the damping ratio of 
the complex roots is ζ  = 0.3. Compare the results with 
those obtained in parts (a) and (b).

DP7.3 A rover vehicle has been designed for maneuver-
ing at 0.25 mph over Martian terrain. Because Mars 
is 189 million miles from Earth, and it would take up 
to 40 minutes each way to communicate with Earth 
[22, 27], the rover must act independently and reli-
ably. Resembling a cross between a small flatbed truck 
and an elevated jeep, the rover is constructed of three 
articulated sections, each with its own two indepen-
dent, axle-bearing, one-meter conical wheels. A pair 
of sampling arms—one for chipping and drilling, the 
other for manipulating fine objects—extend from its 
front end like pincers. The control of the arms can 
be represented by the system shown in Figure DP7.3.  
(a) Sketch the root locus for K, and identify the roots 

for K = 2 and 25. (b) Determine the gain K that re-
sults in a percent overshoot to a step of P.O. = 1%. (c) 
Determine the gain that minimizes the settling time 
(with a 2% criterion) while maintaining a percent 
overshoot of P.O. ≤ 1%.

DP7.4 A welding torch is remotely controlled to achieve 
high accuracy while operating in changing and hazard-
ous environments [21]. A model of the welding arm 
position control is shown in Figure DP7.4, with the 
disturbance representing the environmental changes. 
(a) With T sd ( ) = 0, select K  1 and K to provide high- 
quality performance of the position control system. 
Select a set of performance criteria, and examine the 
results of your design. (b) For the system in part (a), 
let R s( ) = 0  and determine the  effect of a unit step 

( ) = /1T s sd  by obtaining y t( ).

DP7.5 A high-performance jet aircraft with an autopilot 
control system has a unity feedback and control sys-
tem, as shown in Figure DP7.5. Sketch the root locus 
and select a gain K that leads to dominant poles. With 
this gain K, predict the step response of the system. 
Determine the actual response of the system, and 
compare it to the predicted response.

-

+
R(s) Y(s)

Manipulator

1
(s + 3)(s + 10)

K(s2 + 4s + 32)
s

Controller

U(s)

FIGURE DP7.3
Mars vehicle robot 
control system.

-

+

+-

+
R(s) Y(s)

K1s

10

s2(s + 10)

Td(s)

Controller Process

K(1 + 0.01s)

FIGURE DP7.4
Remotely controlled 
welder.
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-

+
R(s) Y(s)

1

(s - 0.2)(s2 + 12s + 45)
K(s + 1)

s

Autopilot Aircraft dynamics

FIGURE DP7.5
High-performance 
jet aircraft.

-

+
R(s)
Leg

position
input

Y(s)
Actual

leg
position

K(s + 2)
(s + 10)

1
s(s - 5)

Controller Dynamics

FIGURE DP7.6
Automatic control 
of walking motion.

DP7.6 A system to aid and control the walk of a partially 
disabled person could use automatic control of the 
walking motion [25]. One model of a system is shown 
in Figure DP7.6. Using the root locus, select K for the 
maximum achievable damping ratio of the complex 
roots. Predict the step response of the system, and 
compare it with the actual step response.

DP7.7 A mobile robot using a vision system as the mea-
surement device is shown in Figure DP7.7(a) [36]. The 
control system is shown in Figure DP7.7(b). Design 

the controller so that (a) the percent overshoot for a 
step input is P O ≤. . 5% ; (b) the settling time (with a 
2% criterion) is Ts ≤ 6  s; (c) the system velocity error 
constant Kv > 0.9; and (d) the peak time, TP, for a 
step input is minimized.

DP7.8 Most commercial op-amps are designed to be uni-
ty-gain stable [26]. That is, they are stable when used in a 
unity-gain configuration. To achieve higher bandwidth, 
some op-amps relax the requirement to be unity-gain 
stable. One such amplifier has a DC gain of 105  and a 

Motion subsystem

Recognition
subsystem

Computer

Object
environment

(a)

(b)

-

+
s

KPs + KI 1
(s + 1)(0.5s + 1)

R(s) Y(s)

Controller Plant

Ea(s)

FIGURE DP7.7
(a) A robot and 
vision system. 
(b) Feedback 
 control system.
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538 Chapter 7  The Root Locus Method

FIGURE DP7.8
(a) Op-amp circuit. 
(b) Control system.

FIGURE DP7.9
(a) A robotic arm 
actuated at the joint 
elbow. (b) Its con-
trol system.

bandwidth of 10 kHz. The amplifier, G(s), is connected 
in the feedback circuit shown in Figure DP7.8(a). The 
amplifier is represented by the model shown in Figure 
DP7.8(b), where Ka = 10 .5  Sketch the root locus of the 
system for K. Determine the minimum value of the DC 
gain of the closed-loop amplifier for stability. Select a 
DC gain and the resistors R  1 and R .2

DP7.9 A robotic arm actuated at the elbow joint is shown 
in Figure DP7.9(a), and the control system for the 
 actuator is shown in Figure DP7.9(b). Plot the root 
locus for K ≥ 0. Select ( )G sp  so that the steady-state 

error for a step input is equal to zero. Using the ( )G sp  
selected, plot y(t) for K equal to 1, 1.75, and 3.0. Record 
the rise time, settling time (with a 2% criterion), and 
percent overshoot for the three gains. We wish to 
limit the overshoot to P O ≤. . 6% while achieving the 
shortest rise time possible. Select the best system for 

K≤ ≤1 3.0.

DP7.10 The four-wheel-steering automobile has several 
benefits. The system gives the driver a greater degree 
of control over the automobile. The driver gets a more 
forgiving vehicle over a wide variety of conditions. 
The system enables the driver to make sharp, smooth 

3.142Ka : 1017

(s + 3142)(s + 107)2

R1

R1 + R2
K =

V(s)
Vo(s)

R2

R1

G(s)
+

-
+

-

+

-

-

+
V(s) Vo(s)

(a) (b)

(b)

(a)

-

+

Controller

2
s(s + 4)

3

s2 + 2s + 5

R(s)
Position

Gp(s)
Y(s)

Actual
position

Elbow actuator

K(s + 1)

Wrist

Light weight
flexible arm

Elbow
joint
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lane transitions. It also prevents yaw, which is the 
swaying of the rear end during sudden movements. 
Furthermore, the four-wheel-steering system gives 
a car increased maneuverability. This enables the 
driver to park the car in extremely tight quarters. With 
 additional closed-loop computer operating systems, a 
car could be prevented from sliding out of control in 
 abnormal icy or wet road conditions.

The system works by moving the rear wheels rela-
tive to the front-wheel-steering angle. The control sys-
tem takes information about the front wheels’ steer-
ing angle and passes it to the actuator in the back. This 
actuator then moves the rear wheels appropriately.

When the rear wheels are given a steering angle 
relative to the front ones, the vehicle can vary its lat-
eral acceleration response according to the loop trans-
fer function

λ λ
ζ ω ω( )( )

( ) ( ) ( )
( ) ( )

= =
+ + + +

+ / + /
L s G s G s K

T s T s
s s s

c
n n

1    1        1   
[1    2     1 ]

,1 2
2

1 2

where 2 1 ,q qλ ( )= / −  and q is the ratio of rear wheel 
angle to front wheel steering angle [14]. We will as-
sume that T T= = 11 2  second and nω = 4. Design 
a unity feedback system, selecting an appropriate set 
of parameters Kλ ζ( ),   ,    so that the steering control 
response is rapid and yet will yield modest overshoot 
characteristics. In addition, q must be between 0 and 1.

DP7.11 A pilot crane control is shown in Figure 
DP7.11(a). The trolley is moved by an input F t( )  
in order to control x t( ) and tφ( ) [13]. The model of 

the pilot crane control is shown in Figure DP7.11(b). 
Design a controller that will achieve zero steady-state 
error for ramp inputs, and maximize the closed-loop 

system damping when G s K
sc 1

0.25
.( ) = +









DP7.12 A rover vehicle designed for use on other plan-
ets and moons is shown in Figure DP7.12(a) [21]. The 
block diagram of the steering control is shown in 
Figure DP7.12(b). (a) Sketch the root locus as K varies 
from 0 to 10000. Find the roots for K equal to 1000, 
1500, and 2500. Predict the overshoot, settling time 
(with a 2% criterion), and steady-state error for a step 
input, assuming dominant roots. (c) Determine the ac-
tual time response for a step input for the three values 
of the gain K, and compare the actual results with the 
predicted results.

DP7.13 The automatic control of an airplane is one example 
that requires multiple-variable feedback methods. In this 
system, the attitude of an aircraft is controlled by three 
sets of surfaces: elevators, a rudder, and ailerons, as shown 
in Figure DP7.13(a). By manipulating these surfaces, a 
pilot can set the aircraft on a desired flight path [20].

An autopilot, which will be considered here, 
is an automatic control system that controls the roll 
angle tφ( ) by adjusting aileron surfaces. The deflec-
tion of the aileron surfaces by an angle tθ( ) generates 
a torque due to air pressure on these surfaces. This 
causes a rolling motion of the aircraft. The aileron 
surfaces are controlled by a hydraulic actuator with a 
transfer  function 1/s.

(a)

(b)

-

+ -

+

s

s2 + 10

1
s

Xd(s)
Desired
trolley 
position

Gc(s)

f(s)

10
Speed X(s)

Trolley
position

F(t)

m

x(t)

mT

f(t)

FIGURE DP7.11
(a) Pilot crane 
 control system.  
(b) Block diagram.
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(b)

(a)

-

+
R(s) K

Y(s)
Steering

angle

s + 1

(s + 2)(s + 3)(s + 6)(s + 10)
FIGURE DP7.12
(a) Planetary rover 
vehicle. (b) Steering 
control system.

The actual roll angle tφ( ) is measured and com-
pared with the input. The difference between the de-
sired roll angle tdφ ( ) and the actual angle tφ( ) will 
drive the hydraulic actuator, which in turn adjusts the 
deflection of the aileron surface.

A simplified model where the rolling motion 
can be considered independent of other motions is 
assumed, and its block diagram is shown in Figure 
DP7.13(b). Assume that the roll rate φ( )� t  is fed 
back using a rate gyro. We desire a zero steady-state 

(b)

(a)

-

+

K1

Attitude gyro

K2

Rate gyro

Actuator

1
s

1
s

1
s + 10

fd (s)
f (s)

.
f (s)

Aileron

Aileron

Roll angle
f(t)

u(t)

u(t)Rudder

Elevator

FIGURE DP7.13
(a) An airplane with 
a set of ailerons. 
(b) The block dia-
gram for controlling 
the roll rate of the 
airplane.
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tracking error to a unit step. The step response de-
sired has a percent overshoot P O ≤. .  15% and a set-
tling time (with a 2% criterion) of Ts ≤ 25 s. Select the 
parameters 1K and K .2

DP7.14 Consider the feedback system shown in Figure 
DP7.14. The process transfer function is marginally sta-
ble. The controller is the proportional-derivative (PD) 
controller.
a. Determine the characteristic equation of the 

closed-loop system.
b. Let .K KP Dτ = /  Write the characteristic equa-

tion in the form

1 .s K
n s
d s

D( )
( )
( )

∆ = +

c. Plot the root locus for 0 KD≤ < ∞ when τ = 6.
d. What is the effect on the root locus when 

τ< <0 10  ?
e. Design the PD controller to meet the following 

specifications:
(i) P O ≤. . 5%
(ii) ≤T   1 ss

COMPUTER PROBLEMS

 CP7.1 Using the rlocus function, obtain the root 
locus for the following transfer functions of the system 
shown in Figure CP7.1 when K≤ < ∞0 :

a. G s
s s s

( ) =
+ + +

25
10 40 253 2

b. G s
s

s s
( ) =

+
+ +

10
2 10

 
2

c. G s
s s

s s s( )
( ) =

+ +
+ +

2 4
5 10

 
2

2

c. G s
s s s s s

s s s s s s
( ) =

+ + + + +
+ + + + + +

6 6 12 6 4
4 5 12 1

 
5 4 3 2

6 5 4 3 2

-

+
Y(s)R(s) KG(s)

FIGURE CP7.1
A single-loop feedback system with parameter K.

CP7.2 A unity negative feedback system has the loop 
transfer function

4
2 6 27

.
2( )

( )
( )

=
+

+ + +
KG s K

s

s s s s

Develop an m-file to plot the root locus, and show 
with the rlocfind function that the maximum value of 
K for a stable system is K 92.7.=

CP7.3 Compute the partial fraction expansion of

Y s
s

s s s( )
( ) =

+
+ +

6
6 5

 
2

and verify the result using the residue function.

CP7.4 A unity negative feedback system has the loop 
transfer function

L s G s G s
p s

s s sc  
1

4 5 4
.

3 2
( ) ( ) ( )

( )
= =

−
+ + +

Develop an m-file to obtain the root locus as p varies; 
p< < ∞0 . For what values of p is the closed-loop 

stable?

CP7.5 Consider the unity feedback system with the loop 
transfer function

=
+

( )
( 10)

.L s
K

s s

For what value of K is the step response to a unit step 
such that the percent overshoot, P.O. < 5%? Show 
the step response and confirm the perfomance spec-
ification is satisfied.

CP7.6 A large antenna, as shown in Figure CP7.6(a), is 
used to receive satellite signals and must accurately 
track the satellite as it moves across the sky. The 
control system uses an armature-controlled motor 
and a controller to be selected, as shown in Figure 
CP7.6(b). The system specifications require a zero 
steady-state error for a ramp input. We also seek a  

KP + KDs
Ea(s)

Controller

+

-
R(s) Y(s)

Process

10

s2 + 10FIGURE DP7.14
A marginally stable 
plant with a PD 
controller in the 
loop.
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542 Chapter 7  The Root Locus Method

Gc(s)
-

+ -+

(b)

Td(s)
Controller

Motor and
antenna

Y(s)
Position

R(s)

(a)

10
s(s + 5)(s + 10)

FIGURE CP7.6
Antenna position 
control.

-

+
R(s) Gc(s)

Controller

1

s2 + 5s + 6
Y(s)

Process

FIGURE CP7.7
A single-loop 
 feedback control 
system with con-
troller G sc ( ).

percent overshoot to a step input of P O. . 3%≤  
with a settling time (with a 2% criterion) of 1 s.≤Ts  
Using root locus methods, create an m-file to assist 
in designing the controller. Plot the resulting unit 
step response and compute the percent overshoot 
and the settling time and label the plot accordingly. 
Determine the effect of the disturbance = /( )T s Q sd  
(where Q is a constant) on the output .( )Y s  Draw the 
system output y t( )  when Q 1.=

CP7.7 Consider the feedback control system in Figure 
CP7.7. We have three potential controllers for our 
system:
1. ( ) =G s Kc  (proportional controller)
2. ( ) =G s K sc  (integral controller)
3. ( )( ) = + /G s K sc 1 1  (proportional, integral (PI) 

controller).
The design specifications are Ts ≤  10 s and 
P O ≤. .  10% for a unit step input.

a. For the proportional controller, develop an 
m-file to sketch the root locus for K< < ∞0 ,  
and  determine the value of K so that the design 
specifications are satisfied.

b. Repeat part (a) for the integral controller.
c. Repeat part (a) for the PI controller.
d. Co-plot the unit step responses for the closed-

loop systems with each controller designed in 
parts (a)–(c).

e. Compare and contrast the three controllers 
 obtained in parts (a)–(c), concentrating on the 
steady-state errors and transient performance.

CP7.8 Consider the spacecraft single-axis attitude con-
trol system shown in Figure CP7.8. The controller is 
known as a proportional-derivative (PD) controller. 
Suppose that we require the ratio of K Kp D 12./ =  
Then, develop an m-file using root locus methods 
find the values of K JD/  and K Jp/  so that the set-
tling time Ts  is Ts ≤ 2 s, and the peak overshoot is  
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TERMS AND CONCEPTS

Angle of departure The angle at which a locus leaves a 
complex pole in the s-plane.

Angle of the asymptotes The angle Aφ   that the asymp-
tote makes with respect to the real axis.

Asymptote The path the root locus follows as the param-
eter becomes very large and approaches infinity. The 
number of asymptotes is equal to the number of poles 
minus the number of zeros.

Asymptote centroid The center Aσ  of the linear 
asymptotes.

Breakaway point The point on the real axis where the 
locus departs from the real axis of the s-plane.

Dominant roots The roots of the characteristic equation 
that represent or dominate the closed-loop transient 
response.

Locus A path or trajectory that is traced out as a param-
eter is changed.

Logarithmic sensitivity A measure of the sensitivity of the  

-

+ 1

Js2

PD controller
Spacecraft

model
ud(s)

Desired
attitude

u(s)
Actual
attitude

KP + KDsFIGURE CP7.8
A spacecraft atti-
tude control system 
with a proportional- 
derivative controller.

-

+
R(s) Y(s)

K (s + 2)

s3 + 6s2 + 14s + 8FIGURE CP7.9
Unity feedback 
 system with 
 parameter K.

≤ 5% for a unit step input. Use a 2% criterion to 
 determine the settling time.

CP7.9 Consider the feedback control system in Figure 
CP7.9. Develop an m-file to plot the root locus for  

K< < ∞0 .  Find the value of K resulting in a damp-
ing ratio of the closed-loop poles equal to 0.707ζ = .

CP7.10 Consider the system represented in state variable 
form

t t u tx Ax B( ) ( ) ( )= +

( ) ( ) ( )= + ,Cx Dy t t u t

where

k
A B

0 1 0
0 0 1
1 8 3

,  
1
5
0

,=
− − − −



















=



















C D[ 3 1 15 ], and [0].= − =

(a) Determine the characteristic equation. (b) Using 
the Routh–Hurwitz criterion, determine the values of 
k for which the system is stable. (c) Develop an m-file 
to plot the root locus, and compare the results to those 
obtained in (b).

ANSWERS TO SKILLS CHECK

True or False: (1) True; (2) True; (3) False; (4) True;  
(5) True

Multiple Choice: (6) b; (7) c; (8) a; (9) c; (10) a; (11) b; 
(12) c; (13) a; (14) c; (15) b

Word Match (in order, top to bottom): n, k, f, o, a, d, l, 
i, h, c, b, e, m, g, j
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544 Chapter 7  The Root Locus Method

system performance to specific parameter  changes, 

 given by ( )
( ) ( )

=
∂ /

∂ /
,S s

T s T s

K KK
T

 where T s( ) is the 

system  transfer function and K is the parameter of 

 interest.

Manual PID tuning methods The process of determin-
ing the PID controller gains by trial-and-error with 
minimal analytic analysis.

Negative gain root locus The root locus for nega-
tive values of the parameter of interest, where 

K−∞ < ≤ 0.

Number of separate loci Equal to the number of poles 
of the transfer function, assuming that the number 
of poles is greater than or equal to the number of 
zeros of the transfer function.

Parameter design A method of selecting one or two 
 parameters using the root locus method.

PID controller A widely used controller used in indus-

try of the form ( ) = + +G s K
K
s

K sc p
I

D , where Kp  

is the proportional gain,  KI  is the integral gain, and 

 KD is the derivative gain.

PID tuning The process of determining the PID con-
troller gains.

Proportional plus derivative (PD) controller A two-
term controller of the form G s K K sc p D= +( ) , 
where  Kp is the proportional gain and  KD is the 
derivative gain.

Proportional plus integral (PI) controller A two-term 

controller of the form ,G s K
K
sc p
I( ) = +  where Kp  

is the proportional gain and KI  is the integral gain.

Quarter amplitude decay The amplitude of the closed-
loop response is reduced approximately to one-
fourth of the maximum value in one oscillatory 
period.

Reaction curve The response obtained by taking the 
controller off-line and introducing a step input. The 
underlying process is assumed to be a first-order sys-
tem with a transport delay.

Root contours The family of loci that depict the effect 
of varying two parameters on the roots of the charac-
teristic equation.

Root locus The locus or path of the roots traced out on 
the s-plane as a parameter is changed.

Root locus method The method for determining 
the locus of roots of the characteristic equation 

KP s( )+ =1 0  as K varies from 0 to infinity.

Root locus segments on the real axis The root locus 
lying in a section of the real axis to the left of an odd 
number of poles and zeros.

Root sensitivity The sensitivity of the roots as a parame-
ter changes from its normal value. The root sensitiv-

ity is given by =
∂

∂ /
,S

r
K KK

r  the incremental change 

in the root divided by the proportional change of the 
parameter.

Ultimate gain The PD controller proportional gain, 
Kp, on the border of instability when 0KD =  and 

0KI = .

Ultimate period The period of the sustained oscilla-
tions when  Kp  is the ultimate gain and 0KD =  and 

0KI = .

Ziegler–Nichols PID tuning method The process of de-
termining the PID controller gains using one of sev-
eral analytic methods based on open-loop and closed-
loop responses to step inputs.
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C H A P T E R

8 Frequency Response 
Methods
8.1 Introduction 546

8.2 Frequency Response Plots 548

8.3 Frequency Response Measurements 569

8.4 Performance Specifications in the Frequency Domain 571

8.5 Log-Magnitude and Phase Diagrams 574

8.6 Design Examples 575

8.7 Frequency Response Methods Using Control Design Software 584

8.8 Sequential Design Example: Disk Drive Read System 589

8.9 Summary 591

PREVIEW

In this chapter, we consider the steady-state response of a system to a sinusoidal 
input test signal. We will see that the response of a linear constant coefficient sys-
tem to a sinusoidal input signal is an output sinusoidal signal at the same frequency 
as the input. However, the magnitude and phase of the output signal differ from 
those of the input sinusoidal signal, and the amount of difference is a function of 
the input frequency. Thus, we will be investigating the steady-state response of the 
system to a sinusoidal input as the frequency varies.

We will examine the transfer function ( )G s  when ω=s j  and develop meth-
ods for graphically displaying the complex number ω( )G j  as ω  varies. The Bode 
plot is one of the most powerful graphical tools for analyzing and designing control 
systems, and we will cover that subject in this chapter. We will also consider polar 
plots and log-magnitude and phase diagrams. We will develop several time-domain 
performance measures in terms of the frequency response of the system, as well as 
introduce the concept of system bandwidth. The chapter concludes with a frequency 
response analysis of the Sequential Design Example: Disk Drive Read System.

DESIRED OUTCOMES

Upon completion of Chapter 8, students should be able to:

	❏ Explain the concept of frequency response and its role in control system design.

	❏ Sketch a Bode plot and also how to obtain a computer-generated Bode plot.

	❏ Describe log-magnitude and phase diagrams.

	❏ Identify performance specifications in the frequency domain and relative stability 
based on gain and phase margins.

	❏ Design a controller to meet desired specifications using frequency  response methods.
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546 Chapter 8  Frequency Response Methods

8.1 INTRODUCTION

A very practical and important approach to the analysis and design of a system is 
the frequency response method.

The frequency response of a system is defined as the steady-state response of 
the system to a sinusoidal input signal. The sinusoid is a unique input signal, 
and the resulting output signal for a linear system is sinusoidal in the steady 

state; it differs from the input only in amplitude and phase angle.

For example, consider the system ( ) ( ) ( )=Y s T s R s  with  sin  .ω( ) =r t A t  We 
have

2 2
ω
ω

( ) =
+

R s
A

s

and

,

1
∏( )

( )
( )
( )

( )
= =

+
=

T s
m s
q s

m s

s p
i

n

i

where pi−  are assumed to be distinct poles. Then, in partial fraction form, we have

  .1

1
2 2
α β

ω
( ) =

+
+ +

+
+

+
+

�Y s
k

s p
k

s p
s

s
n

n

Taking the inverse Laplace transform yields

  ,1
1

2 2
1 +�y t k e k e

s
s

p t
n

p tn
α β

ω{ }( ) = + + +
+

+
− − −

where α and β  are constants which are problem dependent. If the system is stable, 
then all pi have positive real parts and

lim   lim ,1
2 2

+y t
s

st t

α β
ω{ }( ) =

+
+→∞ →∞

−

since each exponential term k ei
p ti  −  decays to zero as .→ ∞t

In the limit for ( )y t , it can be shown, for → ∞t  (the steady state),

 
α β

ω ω
ω ω ω φ( ) ( ) ( )=

+
+













= +−+y t s
s

A T j t� 1 � sin1
2 2

 ω ω φ( ) ( )= +sin ,A T j t  (8.1)

where jT .φ ω( )=

Thus, the steady-state output signal depends only on the magnitude and phase 
of ω( )T j  at a specific frequency .ω  The steady-state response, as described in 
Equation (8.1), is true only for stable systems, ( )T s .
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Section 8.1 Introduction 547

One advantage of the frequency response method is the ready availability of 
sinusoid test signals for various ranges of frequencies and amplitudes. Thus, the 
 experimental determination of the system frequency response is easily accom-
plished. The unknown transfer function of a system can often be deduced from the 
experimentally determined frequency response of a system [1, 2]. Furthermore, the 
design of a system in the frequency domain provides the designer with control of 
the bandwidth of a system, as well as some measure of the response of the system to 
undesired noise and disturbances.

A second advantage of the frequency response method is that the transfer func-
tion describing the sinusoidal steady-state behavior of a system can be obtained 
by replacing s with ωj  in the system transfer function ( )T s . The transfer function 
representing the sinusoidal steady-state behavior of a system is then a function of 
the complex variable ωj  and is itself a complex function ω( )T j  that possesses a 
magnitude and phase angle. The magnitude and phase angle of ω( )T j  are readily 
represented by graphical plots that provide significant insight into the analysis and 
design of control systems.

The basic disadvantage of the frequency response method for analysis and de-
sign is the indirect link between the frequency and the time domain. Direct cor-
relations between the frequency response and the corresponding transient response 
characteristics are somewhat tenuous, and in practice the frequency response char-
acteristic is adjusted by using various design criteria that will normally result in a 
satisfactory transient response.

The Laplace transform pair is

 F s f t f t e dtst+  
0∫{ }( ) ( ) ( )= = −
∞

 (8.2)

and

 f t F s
j

F s e dsst
j

j
+

1
2

  ,1 ∫π
{ }( ) ( ) ( )= =

σ

σ
−

− ∞

+ ∞
 (8.3)

where the complex variable .σ ω= +s j  Similarly, the Fourier transform pair is

  F f t f t e dtj t∫ω { }( ) ( ) ( )= = ω−
−∞

∞
^  (8.4)

and

 f t F F e dj t^ ∫ω
π

ω ω{ }( ) ( ) ( )= = ω−
−∞

∞1
2

    .1  (8.5)
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548 Chapter 8  Frequency Response Methods

The Fourier transform exists for ( )f t  when

.f t dt∫ ( ) < ∞
−∞

∞

The Fourier and Laplace transforms are closely related, as we can see by exam-
ining Equations (8.2) and (8.4). When the function ( )f t  is defined only for 0,≥t  as 
is often the case, the lower limits on the integrals are the same. Then we note that 
the two equations differ only in the complex variable. Thus, if the Laplace trans-
form of a function 1 ( )f t  is known to be ,1 ( )F s  we can obtain the Fourier transform 
of this same time function by setting ω=s j  in F s1( ) [3].

Again we might ask, Since the Fourier and Laplace transforms are so closely 
related, why not use the Laplace transform? Why use the Fourier transform at all? 
The Laplace transform enables us to investigate the s-plane location of the poles 
and zeros of a transfer function ( )T s . However, the frequency response method 
allows us to consider the transfer function ω( )T j  and to concern ourselves with the 
amplitude and phase characteristics of the system. This ability to investigate and 
represent the character of a system by amplitude, phase equations, and curves is an 
advantage for the analysis and design of control systems.

If we consider the frequency response of the closed-loop system, we might have 
an input that ( )r t  has a Fourier transform in the frequency domain as follows:

    .∫ω( ) ( )= ω−
−∞

∞
R j r t e dtj t

Then the output frequency response of a unity feedback control system can 
be obtained by substituting ω=s j  in the closed-loop system relationship, 
Y s T s R s  ,( ) ( ) ( )=  so that we have

 Y j T j R j
G j G j

G j G j
R jc

c
ω ω ω

ω ω
ω ω

ω( ) ( ) ( ) ( ) ( )
( ) ( )

( )= =
+1

   .  (8.6)

Using the inverse Fourier transform, the output transient response would be

 ^y t Y j Y j e dj t1
2

     .1 ∫ω
π

ω ω{ }( ) ( )( ) = = ω−
−∞

∞
 (8.7)

However, it is usually difficult to evaluate this inverse transform integral for all but 
the simplest systems, and a graphical integration may be used. Alternatively, as we 
will note in succeeding sections, several measures of the transient response can be 
related to the frequency characteristics and utilized for design purposes.

8.2 FREQUENCY RESPONSE PLOTS

The transfer function of a system ( )G s  can be described in the frequency domain 
by the relation

 | ,G j G s R jXs jω ω ω( ) ( ) ( ) ( )= = +ω=  (8.8)
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Section 8.2 Frequency Response Plots 549

where

Re[ ] and Im[ ].ω ω ω ω( ) ( )( ) ( )= =R G j X G j

See the MCS website for a review of complex numbers.
Alternatively, the transfer function can be represented by a magnitude ω( )G j  

and a phase φ ω( )j  as

 G j G j e G jj ,ω ω ω φ ω( ) ( ) ( ) ( )= = ∠φ ω( )  (8.9)

where

X
R

G j R Xtan     and [ ] [ ] .1 2 2 2φ ω
ω
ω

ω ω ω( )( ) ( )
( )

( ) ( )= = +−

The graphical representation of the frequency response of the system ω( )G j  can 
utilize either Equation (8.8) or Equation (8.9). The polar plot representation of 
the frequency response is obtained by using Equation (8.8). The coordinates of the 
polar plot are the real and imaginary parts of ,ω( )G j  as shown in Figure 8.1. An 
example of a polar plot will illustrate this approach.

EXAMPLE 8.1 Frequency response of an RC filter

A simple RC filter is shown in Figure 8.2. The transfer function of this filter is

 
1

1
,2

1
( )

( )
( )

= =
+

G s
V s
V s RCs

 (8.10)

and the sinusoidal steady-state transfer function is

 
1

1
1

1
,

1
G j

j RC j
ω

ω ω ω( )
( )

( )
=

+
=

/ +
 (8.11)

where
1

.1ω =
RC

Im(G ) = X(v)

Re(G ) = R(v)
0

FIGURE 8.1
The polar plane.

+

-

R

V1(s)

+

-

V2(s)C
FIGURE 8.2
An RC filter.
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550 Chapter 8  Frequency Response Methods

Then the polar plot is obtained from the relation
1

1

1

1
2

G j R jX
j

ω ω ω
ω ω

ω ω

( )

( )
( ) ( ) ( )= + =

− /

/ +

 
1

1 1
.

1
2

1

1
2

j

ω ω

ω ω

ω ω( )

( )

( )
=

+ /
−

/

+ /
 (8.12)

The first step is to determine ω( )R  and ω( )X  at the two frequencies, 0ω =  and 
.ω = ∞  At 0,ω =  we have 1ω( ) =R  and 0.ω( ) =X  At ,ω = ∞  we have 0ω( ) =R  

and 0.ω( ) =X  These two points are shown in Figure 8.3. The locus of the real and 
imaginary parts is also shown in Figure 8.3 and is easily shown to be a circle with 
the center at ( ).,  01

2  When ,1ω ω=  the real and imaginary parts are equal in mag-
nitude, and the angle 45°.φ ω( ) = −  The polar plot can also be readily obtained from 
Equation (8.9) as

 ω ω φ ω( ) ( ) ( )= ∠ ,G j G j  (8.13)

where
1

[1 ]
and tan .

1
2 1 2

1
1G jω

ω ω
φ ω ω ω

( )
( )( ) ( )=

+ /
= − /

/
−

Hence, when ,1ω ω=  the magnitude is ω( ) = /1 21G j  and the phase   45°.1φ ω( ) = −  
Also, when ω  approaches ,+∞  we have ω( ) → 0G j  and 90°.φ ω( ) = −  Similarly, 
when 0,ω =  we have ω( ) = 1G j  and 0.φ ω( ) =  ■

EXAMPLE 8.2 Polar plot of a transfer function

The polar plot of a transfer function is useful for investigating system stability. 
Consider a transfer function

 ω
ω ωτ ω ω τ

( )
( )

( ) = =
+

=
−

ω=|
1

.
2

G s G j
K

j j
K

j
s j  (8.14)

X(v)

R(v)

Negative v

1v = -q

v = q

Positive v
v = v1

v = 0
455

1G 1

1/2

FIGURE 8.3
Polar plot for 
RC filter.
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Then the magnitude and phase angle are written as

and tan  
1

.
2 4 2 1 2

1G j
K

ω
ω ω τ

φ ω
ωτ( )

( ) ( )=
+

= −
−/

−

The phase angle and the magnitude are readily calculated at the frequencies 
ω ω τ= = /0, 1 ,  and .ω = +∞  The polar plot of ω( )G j  is shown in Figure 8.4.

An alternative solution uses the real and imaginary parts of ω( )G j  as

 ,
2

2

2 4 2
ω

ω ω τ

ω ω τ

ω ω τ
ω ω

( )
( ) ( ) ( )=

−
=

− −

+
= +G j

K
j

K j
R jX  (8.15)

where R K M2ω ω τ ω( ) ( )= − /  and X K M ,ω ω ω( ) ( )= − /  and where   .2 4 2ω ω ω τ( ) = +M  
  .2 4 2ω ω ω τ( ) = +M  Then when ,ω = ∞  we have 0ω( ) =R  and 0.ω( ) =X  When 0,ω =  we have 

ω τ( ) = −R K  and .ω( ) = −∞X  When 1 ,ω τ= /  we have R K 2ω τ( ) = − /  and 
X K 2,ω τ( ) = − /  as shown in Figure 8.4.

Another method of obtaining the polar plot is to evaluate the vector ω( )G j  
graphically at specific frequencies, ,ω  along the ω=s j  axis on the s-plane. We 
consider

G s
K

s s 1
τ

τ( )
( ) =

/
+ /

with the two poles shown on the s-plane in Figure 8.5.
When ,ω=s j  we have

G j
K

j j p
,ω

τ
ω ω

( )
( )

=
/
+

Increasing v

v = q

Im[G]

Re[G]

v S 0

1
t

v = 1355

-kt/2-kt

-kt/2

FIGURE 8.4
Polar plot for G jω( ) =  
K j j( 1 ).ω ωτ( )/ +   

Note that ω = ∞   
is at the origin.
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552 Chapter 8  Frequency Response Methods

where p 1 .τ= /  The magnitude and phase of ω( )G j  can be evaluated at a specific 
frequency, ,1ω  on the j -axis,ω  as shown in Figure 8.5. The magnitude and the phase 
are, respectively,

ω
τ

ω ω
( ) =

/
+

1
1 1

G j
K

j j p

and

j j p p90° tan .1 1
1

1φ ω ω ω ω( )( ) ( )( ) = − − + = − − /−  ■

There are several possibilities for coordinates of a graph portraying the fre-
quency response of a system. As we have seen, we may use a polar plot to repre-
sent the frequency response (Equation 8.8) of a system. However, the limitations of 
polar plots are readily apparent. The addition of poles or zeros to an existing system 
requires the recalculation of the frequency response, as outlined in Examples 8.1 
and 8.2. Furthermore, calculating the frequency response in this manner is tedious 
and does not indicate the effect of the individual poles or zeros.

The introduction of logarithmic plots, often called Bode plots, simplifies the 
determination of the graphical portrayal of the frequency response. The logarith-
mic plots are called Bode plots in honor of H. W. Bode, who used them extensively 
in his studies of feedback amplifiers [4, 5]. The transfer function in the frequency 
domain is

 ω ω( ) ( )= φ ω( ).G j G j e j  (8.16)

The logarithm of the magnitude is normally expressed in terms of the logarithm to 
the base 10, so we use

 ω( )=Logarithmic gain 20  log ,10 G j  (8.17)

where the units are decibels (dB). A decibel conversion table is given on the MCS 
website. The logarithmic gain in dB and the angle φ ω( ) can be plotted versus the 
frequency ω  by utilizing several different arrangements. For a Bode diagram, the 

jv

jv1
jv1 + p

s

v = v1

s = - 1
t

= - p

FIGURE 8.5
Two vectors on the 
s-plane to evaluate 

.1G jω( )
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plot of logarithmic gain in dB versus ω  is normally plotted on one set of axes, and 
the phase φ ω( ) versus ω  on another set of axes, as shown in Figure 8.6. For example, 
the Bode plot of the transfer function of Example 8.1 can be readily obtained, as we 
will find in the following example.

EXAMPLE 8.3 Bode plot of an RC filter

The transfer function of Example 8.1 is

 
1

1
1

1
,ω

ω ωτ
( )

( )
=

+
=

+
G j

j RC j
 (8.18)

where

,τ = RC

the time constant of the network. The logarithmic gain is

 G j20�log 20�log 1
1

10�log(1 ).2

1 2
2ω

ωτ
ωτ( )

( )
( )=

+












= − +

/

 (8.19)

For small frequencies—that is, 1�ω τ/ —the logarithmic gain is

 ω ω τ( ) ( )= − = /�20 log 10 log 1 0 dB, 1 .G j  (8.20)

For large frequencies—that is, 1�ω τ/ —the logarithmic gain is

 G j20 log 20 log 1 ,�ω ωτ ω τ( ) ( )= − /  (8.21)

FIGURE 8.6
Bode plot for 

ω ωτ( ) ( )= / +G j j1 1 :  
(a) magnitude plot and (b) 
phase plot.
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554 Chapter 8  Frequency Response Methods

and at 1 ,ω τ= /  we have

G j20 log 10 log 2 3.01 dB.ω( ) = − = −

The magnitude plot for this network is shown in Figure 8.6(a). The phase angle of 
the network is

 tan .1φ ω ωτ( ) ( )= − −  (8.22)

The phase plot is shown in Figure 8.6(b). The frequency 1ω τ= /  is often called the 
break frequency or corner frequency. ■

A linear scale of frequency is not the most convenient or judicious choice, and 
we consider the use of a logarithmic scale of frequency. The convenience of a log-
arithmic scale of frequency can be seen by considering Equation (8.21) for large 
frequencies 1 ,�ω τ/  as follows:

 ω ωτ τ ω( ) ( )= − = − −20 log 20 log 20 log  20 log  .G j  (8.23)

Then, on a set of axes where the horizontal axis is log  ,ω  the asymptotic curve for 
1�ω τ/  is a straight line, as shown in Figure 8.7. The slope of the straight line can 

be ascertained from Equation (8.21). An interval of two frequencies with a ratio 
equal to 10 is called a decade, so that the range of frequencies from 1ω  to ,2ω  where 

10 ,2 1ω ω=  is called a decade. The difference between the logarithmic gains, for 
1 ,�ω τ/  over a decade of frequency is

 G j G j20 log 20 log 20 log ( 20 log )1 2 1 2ω ω ω τ ω τ( ) ( ) ( ) ( )− = − − −

 20 log  1

2

ω τ
ω τ

= −  (8.24)

 20 log 
1

10
20 dB;= − = +

that is, the slope of the asymptotic line for this first-order transfer function is 
20 dB decade,− /  and the slope is shown for this transfer function in Figure 8.7. 

Instead of using a horizontal axis of log ω  and linear rectangular coordinates, it is 
easier to use semilog axes with a linear rectangular coordinate for dB and a loga-
rithmic coordinate for .ω  Alternatively, we could use a logarithmic coordinate for 
the magnitude as well as for frequency and avoid the necessity of calculating the 
logarithm of the magnitude.
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FIGURE 8.7
Asymptotic curve for 
j 1 .1ωτ( )+ −
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The frequency interval 22 1ω ω=  is often used and is called an octave of frequencies. 
The difference between the logarithmic gains for 1 ,�ω τ/  for an octave, is

G j G j20 log 20 log 20 log 1 2
1

2
ω ω

ω τ
ω τ

( ) ( )− = −

 20 log 
1
2

6.02 dB.= − =  (8.25)

Therefore, the slope of the asymptotic line is 6−  dB/octave.
The primary advantage of the logarithmic plot is the conversion of multiplica-

tive factors, such as 1 ,ωτ( )+j  into additive factors, 20 log 1 ,ωτ( )+j  by virtue of the 
definition of logarithmic gain. This can be readily ascertained by considering the 
transfer function

 
∏ ∏

∏ ∏
ω

ωτ ζ ω ω ω ω

ω ωτ ζ ω ω ω ω

( )

( )

( ) ( )

( ) ( )
( )

( )

( ) ( )
=

+ + / + /







+ + / + /







= =

= =

G j
K j j j

j j j j

1 1 2

1 1 2
.

b i
i
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l n n
l

P

N
m

m

M

k n n
k

R
1

2

1

1

2

1

l l

k k

 (8.26)

This transfer function includes Q zeros, N poles at the origin, M poles on the real 
axis, P pairs of complex conjugate zeros, and R pairs of complex conjugate poles. 
The logarithmic magnitude of ω( )G j  is

G j j20 log 20 log  20  log 1b
i

Q

i
1

K ∑ω ωτ( ) = + +
=

   ∑ω ωτ( )− − +
=

j j20�log 20 �log 1N

m

M

m
1

 ∑ ∑ζ
ω

ω
ω

ω
ζ

ω
ω

ω
ω

+ + +








 − + +











= =

j j j j20 �log 1 2 �� 20 �log 1 2 �� ,
l

P
l

n nl k

R
k

n n1

2

1

2

l k k

 (8.27)

and the Bode plot can be obtained by adding the contribution of each individual 
factor. Furthermore, the separate phase angle plot is obtained as

∑ ∑φ ω ωτ ωτ( ) ( ) ( ) ( )= + − −
=

−

=

−Ntan 90° tan
i

Q

i
m

M

m
1

1

1

1

 tan  
2

   tan  
2  

,
k

R
k n

n l

P
l n

n1

1
2 2

1

1
2 2

k

k

l

l

∑ ∑ζ ω ω
ω ω

ζ ω ω
ω ω

−
−

+
−=

−

=

−  (8.28)

which is the summation of the phase angles due to each individual factor of the 
transfer function.

Therefore, the four different kinds of factors that may occur in a transfer func-
tion are as follows:

1. Constant gain Kb

2. Poles (or zeros) at the origin ω( )j
3. Poles (or zeros) on the real axis 1ωτ( )+j
4. Complex conjugate poles (or zeros) j jn n[1 2 ]2ζ ω ω ω ω( ) ( )+ / + / .
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556 Chapter 8  Frequency Response Methods

We can determine the logarithmic magnitude plot and phase angle for these four 
factors and then use them to obtain a Bode plot for any general form of a trans-
fer function. Typically, the curves for each factor are obtained and then added 
together graphically to obtain the curves for the complete transfer function. 
Furthermore, this procedure can be simplified by using the asymptotic approxi-
mations to these curves and obtaining the actual curves only at specific important 
frequencies.

Constant Gain .Kb The logarithmic gain for the constant Kb is

bK20 log  constant in dB,=

and the phase angle is
0.φ ω( ) =

The gain curve is a horizontal line on the Bode plot.
If the gain is a negative value, ,−Kb  the logarithmic gain remains bK20 log  .  

The negative sign is accounted for by the phase angle, 180°.−

Poles (or Zeros) at the Origin   .ω( )j A pole at the origin has a logarithmic 
magnitude

 
ω

ω= −20 log
1

20 log   dB
j

 (8.29)

and a phase angle

90°.φ ω( ) = −

The slope of the magnitude curve is 20−  dB/decade for a pole. Similarly, for a mul-
tiple pole at the origin, we have

 
ω

ω
( )

= −20 log
1

20  log  ,
j

NN  (8.30)

and the phase is

90° .φ ω( ) = − N

In this case, the slope due to the multiple pole is 20− N  dB/decade. For a zero at the 
origin, we have a logarithmic magnitude

 ω ω= +20 log 20 log  ,j  (8.31)

M08_DORF2374_14_GE_C08.indd   556M08_DORF2374_14_GE_C08.indd   556 26/08/2021   18:5026/08/2021   18:50



Section 8.2 Frequency Response Plots 557

0

Frequency (rad/s) Frequency (rad/s)

40

-40

( jv)2

( jv)-2
( jv)-1

( jv)

( jv)2

( jv)0

( jv)-1

( jv)-2

( jv)

Ph
as

e 
(d

eg
)

180

90

0

-90

-180
0.1 1 10 100 0.1 1 10 100

M
ag

ni
tu

de
 (

dB
)

FIGURE 8.8
Bode plot for 

where the slope is 20+  dB/decade and the phase angle is

90°.φ ω( ) = +

The Bode plot of the magnitude and phase angle of ω( )±j N  is shown in Figure 8.8 for 
1=N  and 2.=N

Poles or Zeros on the Real Axis. For a pole on the real axis,

 
ωτ

ω τ( )
+

= − +20 log
1

1
10 log 1 .2 2

j
 (8.32)

The asymptotic curve for 1�ω τ/  is 20 log  1 0 dB,=  and the asymptotic curve for 
1�ω τ/  is 20 log ,ωτ( )−  which has a slope of 20 dB decade.− / The intersection of 

the two asymptotes occurs when

20 log 1 0 dB 20 log ,ωτ( )= = −

or when 1 ,ω τ= /  the break frequency. The actual logarithmic gain when 1ω τ= /  
is 3 dB− . The phase angle is tan 1φ ω ωτ( ) ( )= − −  for the denominator factor. The 
Bode plot of a pole factor 1 1ωτ( )+ −j  is shown in Figure 8.9.

The Bode plot of a zero factor 1 ωτ+ j  is obtained in the same manner as that 
of the pole. However, the slope is positive at 20 dB decade,+ / and the phase angle is 

tan .1φ ω ωτ( ) ( )= + −

A piecewise linear approximation to the phase angle curve can be obtained 
as shown in Figure 8.9. This linear approximation, which passes through the cor-
rect phase at the break frequency, is within 6° of the actual phase curve for all 
frequencies. This approximation will provide a useful means for readily determining 
the form of the phase angle curves of a transfer function ( )G s . However, often the 
accurate phase angle curves are required, and the actual phase curve for the first-or-
der factor must be obtained via a computer program.

Complex Conjugate Poles or Zeros j jn n[1 2 ].2ζ ω ω ω ω( ) ( )+ / + /  The qua-
dratic factor for a pair of complex conjugate poles can be written in normalized 
form as

 j u u1 2 ,2 1
ζ+ −




−  (8.33)

ω( )± .j N
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558 Chapter 8  Frequency Response Methods

where / .ω ω=u n  Then the logarithmic magnitude for a pair of complex conjugate 
poles is

 G j u u20 log 10 log ((1 ) 4 ),2 2 2 2ω ζ( ) = − − +  (8.34)

and the phase angle is

 tan  
2

1
.1

2
φ ω

ζ( ) = −
−

− u
u

 (8.35)

When 1,�u  the magnitude is

ω( ) = − =20 log 10 log 1 0 dB,G j

and the phase angle approaches 0°. When 1,�u  the logarithmic magnitude 
approaches

20 log 10 log  40 log  ,4G j u uω( ) = − = −

which results in a curve with a slope of 40 dB decade.− /  The phase angle, when 
1,�u  approaches 180°.−  The magnitude asymptotes meet at the 0 dB line when 

/ 1.ω ω= =u n  However, the difference between the actual magnitude curve 
and the asymptotic approximation is a function of the damping ratio and must be 
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Bode diagram for 

accounted for when 0.707.ζ <  The Bode plot of a quadratic factor due to a pair of 
complex conjugate poles is shown in Figure 8.10. The maximum value Mpω  of the 
frequency response occurs at the resonant frequency r.ω  When the damping ratio 
approaches zero, then ωr  approaches ,ωn  the natural frequency. The resonant fre-
quency is determined by taking the derivative of the magnitude of Equation (8.33) 
with respect to the normalized frequency, u, and setting it equal to zero. The reso-
nant frequency is given by the relation

 1 2 ,   0.707,2ω ω ζ ζ= − <r n  (8.36)

G j n[1 2ω ζ ω( )( ) = + /  
jω + (jω/ωn)]−1.
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and the maximum value of the magnitude ω( )G j  is

 2 1 , 0.707,2
1

M G jp rω ζ ζ ζ( )( )= = − <ω
−

 (8.37)

for a pair of complex poles. The maximum value of the frequency response, Mp ,ω  
and the resonant frequency ωr  are shown as a function of the damping ratio ζ  for a 
pair of complex poles in Figure 8.11. Assuming the dominance of a pair of complex 
conjugate closed-loop poles, we find that these curves are useful for estimating the 
damping ratio of a system from an experimentally determined frequency response.

The frequency response curves can be evaluated on the s-plane by determining 
the vector lengths and angles at various frequencies ω  along the s jω= + -axis. For 
example, considering the second-order factor with complex conjugate poles, we have

 G s
s s s sn n

n

n n

1

2 1 2
.2

2

2 2ω ζ ω

ω
ζω ω( )

( ) =
/ + / +

=
+ +  (8.38)
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Section 8.2 Frequency Response Plots 561

The poles for varying ζ  lie on a circle of radius ωn  and are shown for a particular  
ζ  in Figure 8.12(a). The transfer function evaluated for real frequency ω=s j  is 
written as

 ˆ ˆ
,

2

1 1

2

1 1
G j

s s s s j s j s
n

s j

nω
ω ω

ω ω( ) ( )
( )

( )( )
=

− −
=

− −
ω=

 (8.39)

where 1s  and ˆ1s  are the complex conjugate poles. The vectors 1ω −j s  and ˆ1ω −j s  
are the vectors from the poles to the frequency ,ωj  as shown in Figure 8.12(a). Then 
the magnitude and phase may be evaluated for various specific frequencies. The 
magnitude is

 ω
ω

ω ω
( ) =

− − ˆ
,

2

1 1
G j

j s j s
n  (8.40)

and the phase is

j s j ŝ .1 1φ ω ω ω( )( )( ) = − − − −

The magnitude and phase may be evaluated for three specific frequencies, namely,

0, , and ,ω ω ω ω ω= = =r d

as shown in Figure 8.12 in parts (b), (c), and (d), respectively. The magnitude and 
phase corresponding to these frequencies are shown in Figure 8.13.
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562 Chapter 8  Frequency Response Methods

EXAMPLE 8.4 Bode diagram of a twin-T network

As an example of the determination of the frequency response using the pole–zero 
diagram and the vectors to ,ωj  consider the twin-T network shown in Figure 8.14 [6].  
The transfer function of this network is

 
1

4 1
,o

in

2

2
τ

τ τ
( )

( )
( )

( )
( )

= =
+

+ +
G s

V s
V s

s

s s
 (8.41)

where .τ = RC  The zeros are at 1 ,τ= ±s j  and the poles are at 2 3 ,τ( )= − ±s  
in the s-plane, as shown in Figure 8.15(a). At 0,ω =  we have 1ω( ) =G j  and 

0°.φ ω( ) =  At 1 ,   0ω τ ω( )= =G j  and the phase angle of the vector from the zero 
at 1 τ=s j  passes through a transition of 180°. When ω  approaches ω( )∞ =,   1G j  
and 0φ ω( ) =  again. The frequency response is shown in Figure 8.15(b). ■

A summary of the asymptotic curves for basic terms of a transfer function is 
provided in Table 8.1.

In the previous examples, the poles and zeros of ( )G s  have been restricted to 
the left-hand plane. However, a system may have zeros located in the right-hand s-
plane and may still be stable. Transfer functions with zeros in the right-hand s-plane 
are classified as nonminimum phase transfer functions. If the zeros of a transfer 
function are all reflected about the j ¯ axis,ω  there is no change in the magnitude 
of the transfer function, and the only difference is in the phase-shift characteristics. 
If  the phase characteristics of the two system functions are compared, it can be 
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Table 8.1 Asymptotic Curves for Basic Terms of a Transfer Function

Term Magnitude G j ( )ω20 log10 Phase φ ω( )

1.  Gain,  
G j Kω( ) =

Frequency (rad/s)

40

20

0

-20

-40
M

ag
ni

tu
de

 (
dB

)

20 log K

Frequency (rad/s)

905

455

05

-455

-905

Ph
as

e 
(d

eg
)

2.  Zero,  
G j j1 1ω ω ω( ) = +  

G j j1 1ω ω ω( ) = +

Frequency (rad/s)
0.1v1  v1 10v1

40

20

0

-20

-40

M
ag

ni
tu

de
 (

dB
)

Frequency (rad/s)
0.1v1 v1 10v1

905

455

05

-455

-905

Ph
as

e 
(d

eg
)

3.  Pole,  

G j j1 1
1ω ω ω( )( ) = + − 

G j j1 1
1ω ω ω( )( ) = + −

Frequency (rad/s)
0.1v1 v1 10v1

40

20

0

-20

-40

M
ag

ni
tu

de
 (

dB
)

Frequency (rad/s)
0.1v1 v1 10v1

905

455

05

-455

-905
Ph

as
e 

(d
eg

)

4.  Pole at  
the origin,  

G j j1ω ω( ) =

Frequency (rad/s)
0.1 10 10010.01

40

20

0

-20

-40

M
ag

ni
tu

de
 (

dB
)

0.1 10 10010.01
Frequency (rad/s)

905

455

05

-455

-905

Ph
as

e 
(d

eg
)

5.  Two complex poles,  
ζ< <0.1 1,  

ω( ) ( )= +G j 1  
ζ( )−

−
j u u2   2 1

ω ω=u n

Frequency ratio, u
0.1 10 10010.01

40

20

0

-20

-40

M
ag

ni
tu

de
 (

dB
)

0.1 10 10010.01
Frequency ratio, u

1805

905

05

-905

-1805

Ph
as

e 
(d

eg
)

M08_DORF2374_14_GE_C08.indd   563M08_DORF2374_14_GE_C08.indd   563 26/08/2021   18:5026/08/2021   18:50



564 Chapter 8  Frequency Response Methods

readily shown that the net phase shift over the frequency range from zero to infinity 
is less for the system with all its zeros in the left-hand s-plane. Thus, the transfer 
function ,1( )G s  with all its zeros in the left-hand s-plane, is called a minimum phase 
transfer function. The transfer function ,2( )G s  with 2 1ω ω( ) ( )=G j G j  and all the 
zeros of 1( )G s  reflected about the ωj -axis into the right-hand s-plane, is called a 
nonminimum phase transfer function. Reflection of any zero or pair of zeros into 
the right half-plane results in a nonminimum phase transfer function.

A transfer function is called a minimum phase transfer function if all its zeros 
lie in the left-hand s-plane. It is called a nonminimum phase transfer function 

if it has zeros in the right-hand s-plane.

The two pole–zero patterns shown in Figures 8.16(a) and (b) have the same am-
plitude characteristics as can be deduced from the vector lengths. However, the 
phase characteristics are different for Figures 8.16(a) and (b). The minimum phase 
characteristic of Figure 8.16(a) and the nonminimum phase characteristic of Figure 
8.16(b) are shown in Figure 8.17. Clearly, the phase shift of

1( ) =
+
+

G s
s z
s p

ranges over less than 80°, whereas the phase shift of

2( ) =
−
+

G s
s z
s p

ranges over 180°. The meaning of the term minimum phase is illustrated by Figure 8.17.  
The range of phase shift of a minimum phase transfer function is the least possible or 
minimum corresponding to a given amplitude curve, whereas the range of the nonmin-
imum phase curve is the greatest possible for the given amplitude curve.
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Section 8.2 Frequency Response Plots 565

A particularly interesting nonminimum phase network is the all-pass network, 
which can be realized with a symmetrical lattice network [8]. A symmetrical pattern 
of poles and zeros is obtained as shown in Figure 8.18(a). Again, the magnitude 

ω( )G j  remains constant; in this case, it is equal to unity. However, the angle varies 
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566 Chapter 8  Frequency Response Methods

from 0° to 360°.−  Because 180°2 1θ θ= −  and ˆ 180° ˆ ,2 1θ θ= −  the phase is given 
by 2( ˆ }).1 1φ ω θ θ( ) = − +  The magnitude and phase characteristic of the all-pass 
 network is shown in Figure 8.18(b). A nonminimum phase lattice network is shown 
in Figure 8.18(c).

EXAMPLE 8.5 Sketching a Bode plot

The Bode plot of a transfer function ( )G s , which contains several zeros and poles, is 
obtained by adding the plot due to each individual pole and zero. The simplicity of 
this method is illustrated by considering the transfer function

 
5 1 0.1

1 0.5 (1 0.6 50 50 )
.2ω

ω

ω ω ω ω( ) ( )
( ) ( )

( )
=

+

+ + +
G j

j

j j j j
 (8.42)

The factors, in order of their occurrence as frequency increases, are:

1. A constant gain 5=K
2. A pole at the origin

3. A pole at 2ω =
4. A zero at 10ω =
5. A pair of complex poles at ω ω= =n 50.

First, we plot the magnitude characteristic for each individual pole and zero 
factor and the constant gain:

1. The constant gain is 20 log 5 14 dB,=  as shown in Figure 8.19.

2. The magnitude of the pole at the origin extends from zero frequency to infinite fre-
quencies and has a slope of 20 dB/decade− intersecting the 0-dB line at 1,ω =  as 
shown in Figure 8.19.

3. The asymptotic approximation of the magnitude of the pole at 2ω =  has a slope of  
20 dB/decade− beyond the break frequency at 2.ω =  The asymptotic magnitude 

below the break frequency is 0 dB, as shown in Figure 8.19.

4. The asymptotic magnitude for the zero at 10ω = +  has a slope of 
20 dB/decade+ beyond the break frequency at 10,ω =  as shown in Figure 8.19.
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Section 8.2 Frequency Response Plots 567

5. The magnitude for the complex poles is 40  dB decade.−  The break frequency is 
50,ω ω= =n  as shown in Figure 8.19. This approximation must be corrected to the  

actual magnitude because the damping ratio is 0.3,ζ =  and the magnitude differs 
 appreciably from the approximation, as shown in Figure 8.20.

Therefore, the total asymptotic magnitude can be plotted by adding the asymp-
totes due to each factor, as shown by the solid line in Figure 8.20. Examining the  
asymptotic curve of Figure 8.20, we note that the curve can be obtained directly by plot-
ting each asymptote in order as frequency increases. Thus, the slope is 20  dB decade−  
due to 1ω( )−K j  intersecting 14 dB at 1.ω =  Then, at 2,ω =  the slope becomes 

40  dB decade−  due to the pole at 2.ω =  The slope changes to 20  dB decade−  due  
to the zero at 10.ω =  Finally, the slope becomes 60  dB decade−  at 50ω =  due to 
the pair of complex poles at 50.ω =n

The exact magnitude curve is then obtained by using Figure 8.9, which provides  
the difference between the actual and asymptotic curves for a single pole. The single 
zero follows a similar pattern, but with actual curve 3 dB+  at the break frequency. 
The exact magnitude curve for the pair of complex poles is obtained by utilizing 
Figure 8.10(a) for the quadratic factor. The exact magnitude curve for ω( )G j  is 
shown by a dashed line in Figure 8.20.

The phase characteristic can be obtained by adding the phase due to each in-
dividual factor. Usually, the linear approximation of the phase characteristic for a  
single pole or zero is suitable for the initial analysis. Thus, the individual phase char-
acteristics for the poles and zeros are shown in Figure 8.21 and are:

1. The phase of the constant gain is 0°.

2. The phase of the pole at the origin is a constant 90°.−
3. The linear approximation of the phase characteristic for the pole at 2ω =  is shown in  

Figure 8.21, where the phase shift is 45°−  at 2.ω =
4. The linear approximation of the phase characteristic for the zero at 10ω =  is also 

shown in Figure 8.21, where the phase shift is 45°+  at 10.ω =
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568 Chapter 8  Frequency Response Methods

5. The actual phase characteristic for the pair of complex poles is obtained from Figure 
8.10 and is shown in Figure 8.21.

Therefore, the total phase characteristic, ,φ ω( )  is obtained by adding the phase 
due to each factor as shown in Figure 8.21. While this curve is an approximation, its 
usefulness merits consideration as a first attempt to determine the phase characteristic. 
Thus, a frequency of interest is the frequency for which 180°.φ ω( ) = −  The approx-
imate curve indicates that a phase shift of 180°−  occurs at 46.ω =  The actual phase 
shift at 46ω =  can be readily calculated as

 90° tan tan tan
2

1
,1

1
1

2
1

2
φ ω ωτ ωτ

ζ
( ) = − − + −

−
− − − u

u
 (8.43)

where

0.5, 0.1,   2 0.6, and 50.1 2τ τ ζ ω ω ω= = = = =u n

Then we find that

 46 90° tan 23 tan 4.6 tan 3.55 175°,1 1 1φ( ) = − − + − = −− − −  (8.44)

and the approximate curve has an error of 5° at 46.ω =  However, once the 
approximate frequency of interest is ascertained from the approximate phase curve, 
the accurate phase shift for the neighboring frequencies is readily determined 
by using the exact phase shift relation (Equation 8.43). This approach is usually 
preferable to the calculation of the exact phase shift for all frequencies over several 
decades. In summary, we may obtain approximate curves for the magnitude and 
phase shift of a transfer function ω( )G j  in order to determine the important 
frequency ranges. Then, within the relatively small important frequency ranges, 
the exact magnitude and phase shift can be readily evaluated by using the exact 
equations, such as Equation (8.43).
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Section 8.3 Frequency Response Measurements 569

The Bode plot for the transfer function in Equation 8.42 is shown in Figure 8.22.  
The plot is generated for four decades, and the 0-dB line is indicated, as well as 
the 180°−  line. The plot indicates that the magnitude is 34 dB and that the phase is 

92.36°−  at 0.1.ω =  Similarly, the plot indicates that the magnitude is 43 dB−  and 
that the phase is 243°−  at 100.ω =  Examining the plot, we find that the magnitude 
is 0 dB at 3.0ω =  and the phase is 180°−  at 50.ω =  ■

8.3 FREQUENCY RESPONSE MEASUREMENTS

A sine wave can be used to measure the open-loop frequency response of a system. 
In practice, a plot of amplitude versus frequency and phase versus frequency will 
be obtained [1, 3, 6]. From these two plots, the loop transfer function G j G jc ω ω( ) ( )  
can be deduced. Similarly, the closed-loop frequency response of a control system, 

,ω( )T j  may be obtained and the actual transfer function deduced.
A device called a wave analyzer can be used to measure the amplitude and 

phase variations as the frequency of the input sine wave is altered. Also, a device 
called a transfer function analyzer can be used to measure the loop transfer function 
and closed-loop transfer functions [6].

A typical signal analyzer instrument can perform frequency response measure-
ments from DC to 100 kHz. Built-in analysis and modeling capabilities can derive 
poles and zeros from measured frequency responses or construct phase and mag-
nitude responses from user-supplied models. This device can also synthesize the 
frequency response of a model of a system, allowing a comparison with an actual 
response.

As an example of determining the transfer function from the Bode plot, con-
sider Figure 8.23. The system is a stable circuit consisting of resistors and capacitors. 
Because the magnitude declines at about 20 dB / decade−  as ω  increases be-
tween 100 and 1,000, and because the phase is 45°−  and the magnitude is 3 dB−  at 
300 rad/s, we can deduce that one factor is a pole at 300.1 =p  Next, we deduce that 
a pair of quadratic zeros exist at 2450.ω =n  This is inferred by noting that the phase 
changes abruptly by nearly 180°,+  passing through 0° at 2,450.ω =n  Also, the slope 
of the magnitude changes from 20 dB / decade−  to 20 dB / decade+  at 2,450.ω =n  
Because the slope of the magnitude returns to 0 dB/decade as ω  exceeds 50,000, 
we determine that there is a second pole as well as two zeros. This second pole is at  
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Equation (8.42).
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570 Chapter 8  Frequency Response Methods

20,000,2 =p  because the magnitude is 3 dB−  from the asymptote and the phase 
is 45°+  at this point ( 90°−  for the first pole, 180°+  for the pair of quadratic zeros, 
and 45°−  for the second pole). We sketch the asymptotes for the poles and the 
numerator of the proposed transfer function ( )T s  of Equation (8.45), as shown in 
Figure 8.23(a). The equation is

 
2 1

1 1
.

2

1 2

ω ζ ω( ) ( )
( )( )

( ) =
+ +

+ +
T s

s s

s p s p
n n

 (8.45)

The difference in magnitude from the corner frequency 2,450ω( )=n  of the as-
ymptotes to the minimum response is 10 dB, which, from Equation (8.37), indi-
cates that 0.16.ζ =  (Compare the plot of the quadratic zeros to the plot of the 
quadratic poles in Figure 8.10. Note that the plots need to be turned “upside down” 
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Section 8.4 Performance Specifications in the Frequency Domain 571

for the quadratic zeros and that the phase goes from 0° to 180°+  instead of 180°.− ) 
Therefore, the transfer function is

2450 0.32 2450 1

300 1 20000 1
.

2( ) ( )
( )( )

( ) =
+ +

+ +
T s

s s

s s

This frequency response is actually obtained from a bridged-T network.

8.4 PERFORMANCE SPECIFICATIONS IN THE FREQUENCY DOMAIN

We must ask the question: how does the frequency response of a system relate to 
the expected transient response of the system? In other words, given a set of time- 
domain (transient performance) specifications, how do we specify the frequency 
 response? For a simple second-order system, we have already answered this ques-
tion by considering the time-domain performance in terms of overshoot, settling 
time, and other performance criteria, such as integral squared error. For the sec-
ond-order system shown in Figure 8.24, the closed-loop transfer function is

 
ω

ζω ω
( ) =

+ +
T s

s s
n

n n2
.

2

2 2
 (8.46)

The frequency response of the closed-loop system is shown in Figure 8.25. Because this 
is a second-order system, the damping ratio of the system is related to the maxi mum 
magnitude Mp ,ω  which occurs at the frequency ωr  as shown in Figure 8.25.

-
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At the resonant frequency ωr  a maximum value Mpω  of the frequency 
 response is attained.

The bandwidth, ,ωB  is a measure of a ability of the system to faithfully repro-
duce an input signal.

M08_DORF2374_14_GE_C08.indd   571M08_DORF2374_14_GE_C08.indd   571 26/08/2021   18:5126/08/2021   18:51



572 Chapter 8  Frequency Response Methods

The resonant frequency ωr  and the 3− dB bandwidth can be related to the 
speed of the transient response. Thus, as the bandwidth ωB  increases, the rise time of 
the step response of the system will decrease. Furthermore, the overshoot to a step 
input can be related to Mpω  through the damping ratio .ζ  The curves of Figure 8.11  
relate the resonance magnitude and frequency to the damping ratio of the 
second-order system. With the damping ratio, the percent overshoot to a unit step 
can be computed. Thus, we find as the resonant peak Mpω increases in magnitude, 
the  percent overshoot to a step input increases. In general, the magnitude Mpω  indi-
cates the relative stability of a system.

The bandwidth of a system ,ωB  as indicated on the frequency response, can 
be approximately related to the natural frequency of the system. Figure 8.26 
shows the normalized bandwidth ω ωB n versus ζ  for the second-order system of 
Equation (8.46). The response of the second-order system to a unit step input is 
of the form

 1 cos .1ω θ( )( ) = + +ζω−y t Be ttn  (8.47)

The greater the magnitude of ωn  when ζ  is constant, the more rapidly the response 
approaches the desired steady-state value. Thus, desirable frequency-domain spec-
ifications are as follows:

1. Relatively small resonant magnitudes: 1.5,Mp <ω  for example.

2. Relatively large bandwidths so that the system time constant 1τ ζω( )= n  is sufficiently  
small.

The usefulness of the frequency response specifications and their relation to 
the actual transient performance depend upon the approximation of the system by 
a second-order pair of complex poles, called the dominant roots. If the frequency 

The bandwidth is the frequency ωB at which the frequency response has 
 declined 3 dB from its low-frequency value. This corresponds to approximately 

half an octave, or about 1 2  of the low-frequency value.
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Section 8.4 Performance Specifications in the Frequency Domain 573

response is dominated by a pair of complex poles, the relationships between the 
frequency response and the time response discussed in this section will be valid. 
Fortunately, a large proportion of control systems satisfy this dominant second-or-
der approximation in practice.

The steady-state error specification can also be related to the frequency re-
sponse of a closed-loop system. The steady-state error for a specific test input signal 
is related to the gain and number of integrations (poles at the origin) of the loop 
transfer function. Therefore, for the system shown in Figure 8.24, the steady-state 
error for a ramp input is specified in terms of K ,υ  the velocity constant. The steady-
state error for the system is

( ) =
υ→∞

lim   ,e t
A

Kt

where A is the magnitude of the ramp input. The velocity constant for the system of 
Figure 8.24 without feedback is

 
ω

ζω
ω

ζ
( )

( )
= =

+









 =υ

→ →
lim   lim  

2 2
.

0 0

2
K sG s s

s ss s

n

n

n  (8.48)

The transfer function can be written as

 
ω ζ

ζω τ
( )

( )
( ) ( )

=
+

=
+
υ2

( 2 1) 1
,G s

s s
K

s s
n

n
 (8.49)

and the gain constant is υK  for this type-one system. For example, reexamining 
Example 8.5, we had a type-one system with a loop transfer function

 
5 1

1 1 0.6
,2

1
2

ω
ωτ

ω ωτ ( )
( )

( )
( ) =

+
+ + −

G j
j

j j j u u
 (8.50)

where u n.ω ω=  Therefore, in this case, we have =υ 5.K  In general, if the loop 
transfer function of a feedback system is written as

 

1

1

,1

1

G j

K j

j j

i

M

i

N

k

Q

k

∏

∏
ω

ωτ

ω ωτ

( )

( )
( )

( )

=

+

+

=

=

 (8.51)

then the system is type N and the gain K is the gain constant for the steady-state 
error. Thus, for a type-zero system that has two poles, we have

 
1 1

.
1 2

ω
ωτ ωτ( )( )

( ) =
+ +

G j
K

j j
 (8.52)

In this equation, K Kp=  (the position error constant) that appears as the low-frequency 
gain on the Bode plot.
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574 Chapter 8  Frequency Response Methods

Furthermore, the gain constant = υK K  for the type-one system appears as 
the gain of the low-frequency section of the magnitude characteristic. Considering 
only the pole at the origin and gain of the type-one system of Equation (8.50), 
we have

 
5

,   1 ,1ω
ω ω

ω τ( ) = = <υG j
j

K
j

 (8.53)

and the υK  is equal to the magnitude when this portion of the magnitude character-
istic intersects the 0-dB line. For example, the low-frequency intersection of ωυK j  
in Figure 8.20 is equal to 5,ω =  as we expect.

Therefore, the frequency response characteristics represent the performance of 
a system quite adequately, and with some experience, they are quite useful for the 
analysis and design of feedback control systems.

8.5 LOG-MAGNITUDE AND PHASE DIAGRAMS

There are several alternative methods for presenting the frequency response 
of a function .ω( )G j  We have seen that suitable graphical presentations of the 
frequency response are (1) the polar plot and (2) the Bode plot. An alternative 
 approach to portraying the frequency response graphically is to plot the logarithmic 
magnitude in dB versus the phase angle for a range of frequencies. Consider the 
log-magnitude–phase plot for the transfer function

 
5

0.5 1 6 1
1 ω

ω ω ω( )
( )

( )
=

+ +
G j

j j j
 (8.54)

shown in Figure 8.27. The numbers indicated along the curve are for values of fre-
quency .ω

The log-magnitude–phase curve for the transfer function

 
5 0.1 1

0.5 1 (1 0.6 50 50 )
2 2ω

ω

ω ω ω ω( ) ( )
( ) ( )

( )
=

+

+ + +
G j

j

j j j j
 (8.55)

is shown in Figure 8.28. This curve can be obtained by utilizing the Bode plots 
of Figures 8.20 and 8.21 to transfer the frequency response information to the 
log-magnitude and phase coordinates. The shape of the locus of the frequency 
 response on a log-magnitude–phase diagram is particularly important as the phase 
approaches 180°−  and the magnitude approaches 0 dB. The locus of Equation 
(8.54) and Figure 8.27 differs substantially from the locus of Equation (8.55) and 
Figure 8.28. Therefore, as the correlation between the shape of the locus and the 
transient response of a system is established, we will obtain another useful por-
trayal of the frequency response of a system. We can establish a stability criterion 
in the frequency domain for which it will be useful to utilize the log-magnitude–
phase diagram to investigate the relative stability of closed-loop feedback control 
systems.
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Section 8.6 Design Examples 575

8.6 DESIGN EXAMPLES

In this section, we present two illustrative examples using frequency response meth-
ods to design controllers. The first example describes the control of a photovoltaic 
generator to achieve maximum power delivery as the sunlight varies over time. The 
second example considers the control of one leg of a six-legged robotic device. In 
this example, the specifications that must be satisfied include a mix of time-domain 
specifications (percent overshoot and settling time) and frequency-domain specifi-
cations (bandwidth). The design process leads to a viable PID controller meeting all 
the specifications.

EXAMPLE 8.6 Maximum power pointing tracking for photovoltaic generators

One goal of green engineering is to design products that minimize pollution and 
improve the environment. Using solar energy is one way to provide clean energy 
using photovoltaic generators converting sunlight to electricity directly. However, 
the output of a photovoltaic generator is variable and depends on the available 
sunlight, the temperature, and the attached loads. In this example, we provide a 
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576 Chapter 8  Frequency Response Methods

discussion on regulating the voltage provided by a photovoltaic generator system 
using feedback control [24]. We will design a controller to achieve the desired 
specifications.

Consider the feedback control system in Figure 8.29. The plant transfer func-
tion is

( )
( ) =

+
G s

K
s s p

where 300,000=K  and 360.=p  This model is consistent with a photovoltaic 
generator with 182 cells generating over 1,100 W [24]. Assume a controller of 
the form

 G s K
s
s

c c
τ
τ

( ) =
+
+













1
1

,1

2
 (8.56)

where Kc, 1τ , and 2τ  are to be determined. The controller in Equation (8.56) is a 
lead or lag compensator depending on 1τ  and 2τ . The controller should minimize 
the effects of disturbances and plant changes by providing a high gain at low 
frequencies while minimizing the measurement noise by providing a low gain at 
high frequencies [24]. To accomplish these goals, the design specifications are:

1. G j G jc ω ω ω( ) ( ) ≥ ≤20 dB at  10  rad s

2. G j G jc ω ω ω( ) ( ) ≤ − ≥20 dB at  1,000  rad s

3. Phase margin . . 60°≥P M

The phase margin of the uncompensated system is . . 36.3°=P M  implying that the 
compensated system needs to add approximately . . 25°,=P M  hence the use of the 
compensator to add the required phase lead. Also, the magnitude of the uncom-
pensated frequency response at ω = 1000  rad/s is 11 dB−  indicating that the gain 
needs to be further reduced at high frequencies to meet the specifications.

One possible controller is

G s
s
s

c( ) =
+
+













250
0.04 1
100 1

.

The compensated phase margin is =P M. . 60.4°.  As can be seen in Figure 8.30, 
the low-frequency, high-gain specification is satisfied, as well as the high-frequency, 
low-gain specification. The closed-loop step response is shown in Figure 8.31. The 
settling time is 0.11 s=Ts  and the percent overshoot is . . 19.4%=P O , both very 
acceptable for the control of the photovoltaic generator voltage. ■

-

+
Vref(s) V(s)

Power circuit,
photovoltaic generator,
and current transducer

Controller

s(s + p)

K
Kc

t2s + 1

t1s + 1
FIGURE 8.29
Photovoltaic 
 generator feedback 
control system to 
a track reference 
input voltage.
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Section 8.6 Design Examples 577

EXAMPLE 8.7 Control of one leg of a six-legged robot

The Ambler is a six-legged walking machine being developed at Carnegie-Mellon 
University [23]. An artist’s conception of the Ambler is shown in Figure 8.32.

In this example we consider the control system design for position control of 
one leg. The elements of the design process emphasized in this example are high-
lighted in Figure 8.33. The mathematical model of the actuator and leg is provided. 
The transfer function is

 
1
2 10

.
2( )

( ) =
+ +

G s
s s s

 (8.57)
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578 Chapter 8  Frequency Response Methods

FIGURE 8.32
An artist’s 
 conception of the 
six-legged Ambler.

See Figures 8.32 and 8.34.

Design specifications:
     DS1: vb 7 1Hz.
     DS2: P.O. 6 15% 
 DS3: Zero steady-state
  error to a step.

Control the robot leg
position and maintain the
desired position in the
presence of disturbances.

See Equation (8.58).

Use control design
software.

Leg position.

See Equation (8.57).

Establish the system configuration

Obtain a model of the process, the
actuator, and the sensor

If the performance meets the specifications,
then finalize the design.

If the performance does not meet the
specifications, then iterate the configuration. 

Identify the variables to be controlled

Establish the control goals

Topics emphasized in this example

Write the specifications

Optimize the parameters and
analyze the performance

Describe a controller and select key
parameters to be adjusted

FIGURE 8.33
Elements of the 
control system 
design process 
emphasized in this 
six-legged robot 
example.

The input is a voltage command to the actuator, and the output is the leg po-
sition (vertical position only). A block diagram of the control system is shown in 
Figure 8.34. The control goal is

Control Goal
Control the robot leg position and maintain the position in the presence of 
unwanted measurement noise.
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Section 8.6 Design Examples 579

The variable to be controlled is

Variable to Be Controlled

Leg position, ( )Y s .

We want the leg to move to the commanded position as fast as possible but with 
minimal overshoot. As a practical first step, the design goal will be to produce a 
system that moves, albeit slowly. In other words, the control system bandwidth will 
initially be low.

The control design specifications are

Control Design Specifications

DS1 Closed-loop bandwidth is ω ≥B  1 Hz.
DS2 Percent overshoot is . . ≤P O  15% to a step input.
DS3 Zero steady-state tracking error to a step input.

Specifications DS1 and DS2 are intended to ensure acceptable tracking perfor-
mance. Design specification DS3 is actually a nonissue in our design: the actuator/
leg transfer function is a type-one system so a zero steady-state tracking error to a 
step input is guaranteed. We need to ensure that G s G sc( ) ( ) remains at least a type-
one system.

Consider the controller

 G s
K s as b

s c
c

( )
( ) =

+ +

+
.

2

 (8.58)

As 0,→c  a PID controller is obtained with = =,   ,K K K KP a D  and = .K KbI  
We can let c be a parameter at this point and see if the additional freedom in select-
ing 0≠c  is useful. It may be that we can simply set 0=c  and use the PID form. 
The key tuning parameters are

Select Key Tuning Parameters

K, a, b, and c.

+

-

+
+

Controller

Gc(s)

+

+

N(s)
Measurement

noise

R(s)
Desired leg

position

Y(s)
Actual leg
position

Process

G(s)

Td(s)

Ea(s)

FIGURE 8.34 Control system for one leg.
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580 Chapter 8  Frequency Response Methods

The controller in Equation (8.58) is not the only controller that we can consider. 
For example, we might consider

 G s K
s z
s p

c( ) =
+
+

,  (8.59)

where K, z, and p are the key tuning parameters. The design of the type of controller 
given in Equation (8.59) will be left as a design problem at the end of the chapter.

The response of a closed-loop control system is determined predominantly by 
the location of the dominant poles. Our approach to the design is to determine 
appropriate locations for the dominant poles of the closed-loop system. We can 
determine the locations from the performance specifications by using second-order 
system approximation formulas. Once the controller parameters are obtained so 
that the closed-loop system has the desired dominant poles, the remaining poles are 
located so that their contribution to the overall response is negligible.

Per specification DS1, we want

 1 Hz 6.28  rad s.ω = =B  (8.60)

From the percent overshoot specification, we can determine the minimum value 
of .ζ  Thus for . . 15%,≤P O  we require 0.52;ζ ≥  therefore, we will design with 

0.52.ζ =  Even though settling time is not a design specification for this prob-
lem, we usually attempt to make the system response as fast as possible while 
still meeting all the design specifications. From Figure 8.26 and Equation (8.60) it 
follows that

 
1.1961 1.8508

5.11  rad s.ω
ω
ζ

=
− +

=n
B  (8.61)

Then with 5.11  rad sω =n and 0.52ζ =  and using Equation (8.36) we compute 
3.46  rad s.ω =r

So, if we had a second-order system, we would want to determine values of the 
control gains such that 5.11  rad s  and  0.52,ω ζ= =n  which yields 1.125 and  3.46  rad s.Mp rω= =ω

1.125 and  3.46  rad s.Mp rω= =ω
Our closed-loop system is a fourth-order system and not a second-order system. 

So, a valid design approach would be to select K, a, b, and c so that two poles are 
dominant and located appropriately to meet the design specifications. This will be 
the approach followed here.

Another valid approach is to develop a second-order approximation of the 
fourth-order system. In the approximate transfer function, the parameters K, a, b, 
and c are left as variables. The objective would be to obtain an approximate transfer 
function ( )T sL  in such a way that the frequency response of ( )T sL  is very close to 
that of the original system.

The loop transfer function is

L s G s G s
K s as b

s s s s c
c

( )
( )

( ) ( ) ( )
( )

= =
+ +

+ + +2 10
,

2

2
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and the closed-loop transfer function is

 
2 10 2 10

.
2

4 3 2

( )
( )

( ) ( ) ( )
=

+ +

+ + + + + + + +
T s

K s as b

s c s c K s c Ka s Kb
 (8.62)

The associated characteristic equation is

 2 10 2 10 0.4 3 2( ) ( ) ( )+ + + + + + + + =s c s c K s c Ka s Kb  (8.63)

The desired characteristic polynomial must also be fourth-order, but we want it to 
be composed of multiple factors, as follows:

2 ,2 2 2
1 0P s s s s d s dd n nζω ω( )( )( ) = + + + +

where ζ  and ωn  are selected to meet the design specifications, and the roots of 
2 02 2s sn nζω ω+ + =  are the dominant roots. Conversely we want the roots of 

02
1 0+ + =s d s d  to be the nondominant roots. The dominant roots should lie on 

a vertical line in the complex plane defined by the distance ζω= −s n  away from 
the imaginary axis. Let

2 .1 αζω=d n

Then the roots of 0,2
1 0+ + =s d s d  when complex or equal, lie on a vertical line 

in the complex plane defined by .αζω= −s n  By choosing 1,α >  we effectively 
move the roots to the left of the dominant roots. The larger we select ,α  the further  
the nondominant roots lie to the left of the dominant roots. A reasonable value of 
α is 12.α =  Also, if we select

,0
2 2 2d nα ζ ω=

then we obtain two real roots

0.2
1 0

2αζω( )+ + = + =s d s d s n

Choosing 0
2 2 2d nα ζ ω=  is not required, but this seems to be a reasonable choice 

since we would like the contribution of the nondominant roots to the overall  
response to be quickly fading and nonoscillatory.

The desired characteristic polynomial is then

 2 1 (1 4 )4 3 2 2 2s s sn nζω α ω αζ α( ) ( )+ + + + +  (8.64)

2 1 0.3 2 2 2 4sn nαζω ζ α α ζ ω( )+ + + =

Equating the coefficients of Equations (8.63) and (8.64) yields four relationships 
involving K, a, b, c, and :α

 2 1 2 ,ζω α( )+ = + cn

 1 4 10 2 ,2 2 c Knω αζ α( )( )+ + = + +

 2 1 10 ,3 2 c Kanαζω ζ α( )+ = +

 .2 2 4 Kbnα ζ ω =
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582 Chapter 8  Frequency Response Methods

In our case 0.52,   5.11,ζ ω= =n  and 12.α =  Thus we obtain

 67.13=c

 1239.2=K

 5.17=a

 21.48=b

and the resulting controller is

 1239
5.17 21.48

67.13
.

2
( ) =

+ +
+

G s
s s

s
c  (8.65)

The step response of the closed-loop system using the controller in Equation (8.65) 
is shown in Figure 8.35. The percent overshoot is . . 14%,=P O  and the settling time 
is 0.96 s.=Ts

The magnitude plot of the closed-loop system is shown in Figure 8.36. The 
bandwidth is 27.2  rad s 4.33 Hz.ω = =B  This satisfies DS1 but is larger than the 

1 Hzω =B  used in the design (due to the fact that our system is not a second-order 
system). The higher bandwidth leads us to expect a faster settling time. The peak 
magnitude is 1.21.Mp =ω  We were expecting 1.125.Mp =ω

What is the steady-state response of the closed-loop system if the input is a sinu-
soidal input? From our previous discussions we expect that as the input frequency 
increases, the magnitude of the output will decrease. Two cases are presented 
here. In Figure 8.37 the input frequency is  1 rad s.ω =  The output magnitude is 
approximately equal to 1 in the steady state. In Figure 8.38 the input frequency 
is 500  rad s.ω =  The output magnitude is less than 0.005 in the steady state.  

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

y(t)

P.O. = 14%

Ts = 0.96s

FIGURE 8.35
Step response 
using the controller 
in Equation (8.65).
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This verifies our intuition that the system response decreases as the input sinusoidal 
frequency increases.

Using simple analytic methods, we obtained an initial set of controller parame-
ters for the mobile robot. The controller thus designed proved to satisfy the design 
requirements. Some fine-tuning would be necessary to meet the design specifica-
tions exactly. ■
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FIGURE 8.37
Output response of the 
closed-loop system when 
the input is a sinusoi-
dal signal of frequency 
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FIGURE 8.36
Magnitude plot 
of the closed-
loop system with 
the controller in 
Equation (8.65).
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FIGURE 8.38
Output response 
of the closed-loop 
system when the 
input is a sinusoidal 
signal of frequency 

8.7 FREQUENCY RESPONSE METHODS USING CONTROL DESIGN SOFTWARE

In this section, we cover the functions bode and logspace. The bode function is 
used to generate a Bode plot, and the logspace function generates a logarithmically 
spaced vector of frequencies utilized by the bode function.

Consider the transfer function

 G s
s

s s ss
5 1 0.1

1 0.5 (1 0.6 50 1 / 50 )
.2 2=

+
+ + / + ( )( )

( )
( )

( )  (8.66)

The Bode plot corresponding to Equation (8.66) is shown in Figure 8.39. The plot con-
sists of the logarithmic gain in dB versus ω  in one plot and the phase φ ω( ) in degrees 
versus ω  in rad/s in a second plot. As with the root locus plots, it will be tempting to rely 
exclusively on control design software to obtain the Bode plots. The software should be 
treated as one tool in a tool kit that can be used to design and analyze control systems. 
It is essential to develop the capability to obtain approximate Bode plots manually. 
There is no substitute for a clear understanding of the underlying theory.

A Bode plot is obtained with the bode function shown in Figure 8.40. The 
Bode plot is automatically generated if the bode function is invoked without left-
hand arguments. Otherwise, the magnitude and phase characteristics are placed 
in the workspace through the variables mag and phase. A Bode plot can then be 
obtained with the plot or semilogx function using mag, phase, and ω. The vec-
tor ω  contains the values of the frequency in rad/s at which the Bode plot will 
be calculated. If ω  is not specified, the bode function will automatically choose the 
frequency values by placing more points in regions where the frequency  response 
is changing quickly. If the frequencies are specified explicitly, it is desirable  
to generate the vector ω  using the logspace function. The logspace function is 
shown in Figure 8.41.

500 rad/s.ω =
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FIGURE 8.39
The Bode plot 
associated with 
Equation (8.66).
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FIGURE 8.40
The bode function, 
given G s( ).

The Bode plot in Figure 8.39 is generated using the script shown in Figure 8.42. 
The bode function automatically selected the frequency range. This range is user 
selectable using the logspace function. The bode function can be used with a state 
variable model, as shown in Figure 8.43. The use of the bode function is exactly the 
same as with transfer functions, except that the input is a state-space object instead 
of a transfer function object.
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FIGURE 8.41
The logspace 
function.
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FIGURE 8.42
The script for 
the Bode plot in 
Figure 8.39.

State-space model
sys = ss(A, B, C, D)

Transfer function model
sys = tf(num,den)

FIGURE 8.43
The bode function 
with a state variable 
model.
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Section 8.7 Frequency Response Methods Using Control Design Software 587

Keep in mind that our goal is to design control systems that satisfy certain per-
formance specifications given in the time domain. Thus, we must establish a connec-
tion between the frequency response and the transient time response of a system. 
The relationship between specifications given in the time domain to those given in 
the frequency domain depends upon approximation of the system by a second-order 
system with the poles being the system dominant roots.

Consider the second-order system shown in Figure 8.24. The Bode plot mag-
nitude characteristic associated with the closed-loop transfer function in Equation 
(8.46) is shown in Figure 8.25. The relationship between the resonant frequency, 

r,ω   the maximum of the frequency response, Mp ,ω  and the damping ratio, ,ζ  and  
the natural frequency, ,ωn  is shown in Figure 8.44 (and in Figure 8.11). The infor-
mation in Figure 8.44 will be quite helpful in designing control systems in the fre-
quency domain while satisfying time-domain specifications.

EXAMPLE 8.8 Engraving machine system

Engraving machines employ two drive motors and associated lead screws to posi-
tion the engraving scribe in the desired direction [7]. The block diagram model for 
the position control system is shown in Figure 8.45. Our objective is to select K so 
that the closed-loop system has an acceptable time response to a step command. A 
functional block diagram describing the frequency-domain design process is shown 
in Figure 8.46. First, we choose 2=K  and then iterate K if the performance is 
unacceptable. The script shown in Figure 8.47 is used in the design. The value of K is  
defined at the command level. Then the script is executed and the closed-loop Bode 
plot is generated. The values of Mpω  and ωr  are determined by inspection from 
the Bode plot. Those values are used in conjunction with Figure 8.44 to determine 
the corresponding values of ζ  and .ωn

(b)

zeta ranges from 0.15 to 0.70

Generate plots
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FIGURE 8.44
(a) The relationship  
between Mp r,  ω( )ω   
and n,  ζ ω( )  for a  
second-order  system.  
(b) m-file script.
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functional block 
diagram for the 
 engraving machine.
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Section 8.8 Sequential Design Example: Disk Drive Read System 589

Closed-loop transfer function.

Solving Equations (8.36)
and (8.37) for z and vn.

Closed-loop Bode plot.

Check specifications
and iterate, if necessary.

FIGURE 8.47
Script for the 
 design of an 
 engraving machine.

Given the damping ratio, ,ζ  and the natural frequency, ,ωn  the settling time 
and percent overshoot can be estimated. If the time-domain specifications are not 
satisfied, then we adjust K and iterate.

The values for ζ  and ωn  corresponding to 2=K  are 0.29ζ =  and 0.88.ω =n  
This leads to a prediction of . . 37%=P O  and 15.7 s.=Ts  The step response, shown 
in Figure 8.48, is a verification that the performance predictions are quite accurate 
and that the closed-loop system performs adequately.

In this example, the second-order system approximation is reasonable and leads 
to an acceptable design. However, the second-order approximation may not always 
lead directly to a good design. Fortunately, the control design software allows us to 
construct an interactive design facility to assist in the design process by reducing the 
manual computational loads while providing easy access to a host of classical and 
modern control tools. ■

8.8 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

The disk drive uses a flexure suspension to hold the reader head mount. This flex-
ure may be modeled by a spring and mass. In this chapter, we will include the effect 
of the flexure within the model of the motor-load system [22].

We model the flexure with the mounted head as a mass M, a spring k, and 
a sliding friction b, as shown in Figure 8.49. Here, we assume that the force ( )u t   
is exerted on the flexure by the arm. The transfer function of a spring-mass-
damper is

2

1

1 2
.3

2

2 2 2

Y s
U s

G s
s s s s

n

n n n n

ω
ζω ω ζ ω ω( ) ( )

( )
( )

( )= =
+ +

=
+ +
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590 Chapter 8  Frequency Response Methods

Spring
k

Mass M

y(t)
Arm force

u(t)

Friction
b

FIGURE 8.49
Spring, mass, 
 friction model of 
flexure and head.

y(
t)

Time (s)

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b)

(a)

Percent overshoot = 39%

Settling time = 16 s

FIGURE 8.48
(a) Engraving 
 machine step 
 response for K 2.=   
(b) m-file script.

A typical flexure and head has 0.3ζ =  and a natural resonance at =fn 3000 Hz.  
Therefore, 18.85 103ω = ×n  as shown in the model of the system (see Figure 8.50).

First, we sketch the magnitude characteristics for the open-loop Bode diagram. 
The Bode plot of the loop transfer function with 400=K  is shown in Figure 8.51. 
Note that the actual plot has a 10-dB gain (over the asymptotic plot) at the reso-
nance ,ω ω= n  as shown in the sketch. Note the resonance at .ωn  Clearly, we wish 
to avoid exciting this resonance.

Plots of the magnitude of the loop transfer function and the closed-loop trans-
fer function are shown in Figure 8.52. The bandwidth of the closed-loop system 
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-

+R(s) Y(s)
PD control Motor coil

 t1 = 10-3 t2 = 1/20

Gc(s) = K(s + 1)
5

t1s + 1
G1(s) =

Arm

0.05

s(t2s + 1)
G2(s) =

Flexure and head

1
1 + (2z/vn)s + (s /vn)2G3(s) =

 z = 0.3, vn = 18.85 * 103

FIGURE 8.50 Disk drive head position control, including effect of flexure head mount.
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Sketch of actual curve
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vnv2 = 20vz = 1

Frequency (rad/s)

FIGURE 8.51
Sketch of the Bode 
diagram magnitude 
for the system of 
Figure 8.50.

is ω =B 2000  rad s.  We can estimate the settling time (with a 2% criterion)  
of this system where 0.8ζ �  and �ω ω =n B 2000  rad s.  Therefore, we expect 

2.5 ms=Ts  for the system of Figure 8.50. As long as 400,≤K  the resonance is 
outside the bandwidth of the system.

8.9 SUMMARY

In this chapter, we considered the representation of a feedback control system by its 
frequency response characteristics. The frequency response of a system was defined 
as the steady-state response of the system to a sinusoidal input signal. Several alter-
native forms of frequency response plots were considered. They included the polar 
plot of the frequency response and logarithmic plots, often called Bode plots. The 
value of the logarithmic measure was also illustrated. The ease of obtaining a Bode 
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592 Chapter 8  Frequency Response Methods

plot for the various factors of ω( )G j  was noted. The asymptotic approximation for 
sketching the Bode plot simplifies the computation considerably. A summary of fif-
teen typical Bode plots is shown in Table 8.2. Several performance specifications in 
the frequency domain were discussed; among them were the maximum magnitude  
Mpω  and the resonant frequency r.ω  The relationship between the Bode plot and 
the system error constants (Kp and υ )K  was noted. Finally, the log-magnitude versus 
phase diagram was considered for graphically representing the frequency response  
of a system.

Frequency (rad/s)

(a)

(b)

Frequency (rad/s)

M
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dB
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-20
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-100
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-100

-150
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10-1 100 101 102 103 104 105
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M
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FIGURE 8.52 The magnitude Bode plot for (a) the loop 
transfer function and (b) the closed-loop system.

M08_DORF2374_14_GE_C08.indd   592M08_DORF2374_14_GE_C08.indd   592 26/08/2021   18:5226/08/2021   18:52



Section 8.9 Summary 593

Ta
bl

e 
8.

2 
B

o
d

e 
P

lo
ts

 f
o

r 
Ty

p
ic

al
 T

ra
ns

fe
r 

Fu
nc

tio
ns

G
(S

)
B

od
e 

P
lo

t

1.
 

K
s

1
1τ

+

lo
g 
v

05

-9
05

M
0 

dB
/d

ec

-2
0 

dB
/d

ec

0 
dB

K
dB

-4
55

1 t
1

f

2.
 

τ
τ

(
)(

)
+

+
K

s
s

1
1

1
2

lo
g 
v

-4
0 

dB
/d

ec

-2
0 

dB
/d

ec

0 
dB

1 t
1

1 t
2

05

-1
80
5

f

M

K
dB

3.
 

τ
τ

τ
(

)
(

)(
)

+
+

+
K

s
s

s
1

1
1

1
2

3

-6
0 

dB
/d

ec

-4
0 

dB
/d

ec

0 
dB

1 t
1

1 t
2

1 t
3

f
05

-1
80
5

-2
70
5

M
-2

0 
dB

/d
ec

lo
g 
v

K
dB

G
(S

)
B

od
e 

P
lo

t

4.
 K s

lo
g 
v

f

0 
dB

-2
0 

dB
/d

ec

M

-9
05

5.
 

τ
(

)
+

K
s

s
1

1

-9
05

-1
80
5

M

-2
0 

dB
/d

ec

0 
dB

1 t
1

-4
0 

dB
/d

ec

f

lo
g 
v

6.
 

τ
τ

(
)(

)
+

+
K

s
s

s
1

1
1

2

f

lo
g 
v

-1
80
5

-2
70
5

-4
0

-9
05

M

0 
dB

-6
0 

dB
/d

ec

1 t
1

-

-2
0

1/
t

2

M08_DORF2374_14_GE_C08.indd   593M08_DORF2374_14_GE_C08.indd   593 26/08/2021   18:5226/08/2021   18:52



594 Chapter 8  Frequency Response Methods
Ta

bl
e 

8.
2 

(c
on

ti
nu

ed
)

G
(S

)
B

od
e 

P
lo

t

7.
 

τ
τ

τ
(

)
(

)(
)

+
+

+
K

s
s

s
s

a
1

1
1

1
2

lo
g 
v

-1
80
5

-9
05

M

0 
dB

-4
0 

dB
/d

ec

-2
0 

dB
/d

ec

1 t
1

1 t
a

1/
t

2

-2
0

- 
40

f

8.
 K s2

-1
80
5

M

0 
dB-4

0 
dB

/d
ec

f

lo
g 
v

9.
 

τ
(

)
+

K
s

s
1

2
1

lo
g 
v

-2
70
5

-8
05

M

0 
dB

-6
0 

dB
/d

ec

-4
0 

dB
/d

ec

f

1 t
1

G
(S

)
B

od
e 

P
lo

t

10
. 

τ τ
(

)
(

)
+ +

K
s

s
s

a
1 1

2
1

 
τ

τ
>

a
1

-1
80
5

M

0 
dB-4

0 
dB

/d
ec

-4
0 

dB
/d

ec

f

-2
0 

dB
/d

ec

1 t
a

1/
t

1

lo
g 
v

11
. 

K s3
-1

80
8

-2
70

8

M
0 

dB

-6
0 

dB
/d

ec f

lo
g 
v

12
. 

τ
(

)
+

K
s

sa
1

3
lo

g 
v

-1
80
5

-2
70
5

M

0 
dB-6

0 
dB

/d
ec

-4
0 

dB
/d

ec
f

1/
t

a

M08_DORF2374_14_GE_C08.indd   594M08_DORF2374_14_GE_C08.indd   594 26/08/2021   18:5226/08/2021   18:52



Section 8.9 Summary 595

B
od

e 
P

lo
t

13
. 

τ
τ

(
)(

)
+

+
K

s
s

s
a

b
1

1
3

lo
g 
v

-1
80
5

-9
05

-2
70
5

0 
dB-6

0 
dB

/d
ec

-4
0 

dB
/d

ec

f

-2
0 

dB
/d

ec

1 t
a

1 t
b

M

14
. 

τ
τ

τ
τ

τ
τ

(
)(

)
(

)
(

)(
)

(
)

+
+

+
+

+
+

K
s

s
s

s
s

s
s

a
b

1
1

1
1

1
1

1
2

3
4

f

lo
g 
v

-1
80
5

-9
05

-2
70
5

M

0 
dB

1 t a
1 t
b

1 t
1

1 t
2

1 t
3

1 t
4

-4
0

-6
0

-2
0

-4
0

-2
0

-4
0 -6

0

B
od

e 
P

lo
t

15
. 

τ
τ

τ
(

)
(

)(
)

+
+

+
K

s
s

s
s

a
1

1
1

2
1

2

f

lo
g 
v

-1
80
5

M

0 
dB

1 t
a

1 t
1

1 t
2

-4
0

-2
0

-4
0

-6
0

Ta
bl

e 
8.

2 
(c

on
ti

nu
ed

)

M08_DORF2374_14_GE_C08.indd   595M08_DORF2374_14_GE_C08.indd   595 26/08/2021   18:5226/08/2021   18:52



596 Chapter 8  Frequency Response Methods

SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or False, 
Multiple Choice, and Word Match. To obtain direct feedback, check your answers with the 
answer key provided at the conclusion of the end-of-chapter problems. Use the block diagram 
in Figure 8.53 as specified in the various problem statements.

R(s) Y(s)Gc(s) G(s)

Controller

+

-

Process

FIGURE 8.53 Block diagram for the Skills Check.

In the following True or False and Multiple Choice problems, circle the correct answer.

1. The frequency response represents the steady-state response of a stable  
system to a sinusoidal input signal at various frequencies. True or False

2. A plot of the real part of ω( )G j  versus the imaginary part of ω( )G j  is 
called a Bode plot. True or False

3. A transfer function is termed minimum phase if all its zeros lie in the 
right-hand s-plane. True or False

4. The resonant frequency and bandwidth can be related to the speed of 
the transient response. True or False

5. One advantage of frequency response methods is the ready availability 
of sinusoidal test signals for various ranges of frequencies and amplitudes. True or False

6. Consider the stable system represented by the differential equation

( ) ( ) ( )+ =x 3 .t x t u t�

Determine the phase of this system at the frequency 3 rad/s.ω =  

a. 0°φ =

b. 45°φ = −

c. 60°φ = −

d. 180°φ = −

In Problems 7 and 8, consider the feedback system in Figure 8.53 with the loop transfer 
function

L s G s G s
s

s s sc( ) ( ) ( )
( )

( )( )
= =

+
+ +
8 1

2 2 3
.

7. The Bode plot of this system corresponds to which plot in Figure 8.54?

8. Determine the frequency at which the gain has unit magnitude and compute the phase 
angle at that frequency:

a. 1ω =  rad/s, 82°φ = −

b. 1.26ω =  rad/s, 133°φ = −

c. 1.26ω =  rad/s, 133°φ =

d. 4.2ω =  rad/s, 160°φ = −
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Skills Check 597

In Problems 9 and 10, consider the feedback system in Figure 8.53 with the loop transfer function

L s G s G s
s sc( ) ( ) ( )= =

+ +
50

12 20
.

2

9. The break frequency on the Bode plot is

a. 1ω =  rad/s

b. ω = 4.47 rad/s

c. 8.94ω =  rad/s

d. 10ω =  rad/s

10. The slope of the asymptotic plot at very low 1ω( )�  and high 10ω( )�  frequencies are, 
respectively:

a. At low frequency: slope 20 dB decade= / and at high frequency: slope 20 dB decade= /
b. At low frequency: slope 0 dB decade= / and at high frequency: slope 20 dB decade= − /
c. At low frequency: slope 0 dB decade= / and at high frequency: slope 40 dB decade= − /
d. At low frequency: slope 20 dB decade= − / and at high frequency: slope 20 dB decade= − /
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FIGURE 8.54 Bode plot selections.
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598 Chapter 8  Frequency Response Methods

11. Consider the Bode plot in Figure 8.55.
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FIGURE 8.55 Bode plot for unknown system.

Which loop transfer function L s G s G sc( ) ( ) ( )=  corresponds to the Bode plot in 
Figure 8.55?

a. L s G s G s
s s sc( ) ( ) ( )
( )( )

= =
+ +

100
5 6

b. L s G s G s
s s sc( ) ( ) ( )
( )( )

= =
+ +

24
2 6

c. L s G s G s
s sc( ) ( ) ( )

( )
= =

+
24

62

d. L s G s G s
s sc( ) ( ) ( )= =

+ +
10

0.5 102

12. Suppose that one design specification for a feedback control system requires that the 
percent overshoot to a step input be . . 10%≤P O . The corresponding specification in  
the frequency domain is

a. 0.55≤ωMp

b. 0.59≤ωMp

c. 1.05≤ωMp

d. 1.27≤ωMp

13. Consider the feedback control system in Figure 8.53 with loop transfer function

L s G s G s
s sc( ) ( ) ( )
( )

= =
+
100

11.8
.

M08_DORF2374_14_GE_C08.indd   598M08_DORF2374_14_GE_C08.indd   598 26/08/2021   18:5326/08/2021   18:53



Skills Check 599

The resonant frequency, ωr, and the bandwidth, ωb, are:

a. 1.59ω =r  rad/s, 1.86ω =b  rad/s

b. 3.26ω =r  rad/s, 16.64ω =b  rad/s

c. 12.52ω =r  rad/s, 3.25ω =b  rad/s

d. ω =r 5.51  rad/s, bω = 11.6 rad/s

For Problems 14 and 15, consider the frequency response of a process ω( )G j  depicted 
in Figure 8.56.
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FIGURE 8.56 Bode plot for .G j( )ω

14. Determine the system type (that is, the number of integrators, N):

a. 0=N

b. 1=N

c. 2=N

d. 2>N

15. The transfer function corresponding to the Bode plot in Figure 8.56 is:

a. 100 10 5000
5 6

( )
( )( )
( )( )

=
+ +
+ +

G s
s s

s s s

b. 100
1 20

( )
( )( )

=
+ +

G s
s s

c. 100
1 50 200

( )
( )( )( )

=
+ + +

G s
s s s

d. 100 20 5000
1 50 200

( )
( )( )

( )( )( )
=

+ +
+ + +

G s
s s

s s s
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600 Chapter 8  Frequency Response Methods

In the following Word Match problems, match the term with the definition by writing 
the correct letter in the space provided.

a. Laplace 
transform pair

The logarithm of the magnitude of the transfer 
 function and the phase are plotted versus the 
 logarithm of ω,  the frequency.

b. Decibel (dB) The logarithm of the magnitude of the transfer 
 function, ( )20log .10 G jω

c. Fourier transform A plot of the real part of ωG j( )  versus the imaginary 
part of ωG j( ).

d. Bode plot The steady-state response of a system to a sinusoidal 
input signal.

e. Transfer function 
in the frequency 
domain

All the zeros of a transfer function lie in the left-hand 
side of the s-plane.

f. Decade The frequency at which the frequency response has 
declined 3 dB from its low-frequency value.

g. Dominant roots The frequency at which the maximum value of the 
 frequency response of a complex pair of poles is 
attained.

h. All-pass network The frequency of natural oscillation that would 
occur for two complex poles if the damping were 
equal to zero.

i. Logarithmic 
magnitude

Transfer functions with zeros in the right-hand s-plane.

j. Natural frequency The frequency at which the asymptotic approximation 
of the frequency response for a pole (or zero) changes 
slope.

k. Fourier transform 
pair

The transformation of a function of time into the 
 frequency domain.

l. Minimum phase The ratio of the output to the input signal where the 
input is a sinusoid.

m. Bandwidth The units of the logarithmic gain.

n. Frequency  
response

A pair of complex poles will result in a maximum 
value for the frequency response occurring at the 
 resonant frequency.

o. Resonant 
frequency

A nonminimum phase system that passes all frequen-
cies with equal gain.

p. Break frequency A factor of ten in frequency.

q. Polar plot The roots of the characteristic equation that represent 
or dominate the closed-loop transient response.

r. Maximum value 
of the frequency 
response

A pair of functions, one in the time domain, and the 
other in the frequency domain, and both related by 
the Fourier transform.

s. Nonminimum 
phase

A pair of functions, one in the time domain, and the 
other in the frequency domain, and both related by 
the Laplace transform.
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Exercises 601

E8.1 Increased track densities for computer disk drives 
necessitate careful design of the head positioning 
control [1]. The loop transfer function is

1
.2( ) ( ) ( )

( )
= =

+
L s G s G s

K

s
c

Plot the frequency response for this system when 
10.=K  Calculate the phase and magnitude at  
0,  0.5,  1,  2,  4,ω =  and .∞

Answer: 0.5 8( ) =L j and 0.5 53.13°.( ) = −L j

E8.2 A tendon-operated robotic hand can be imple-
mented using a pneumatic actuator [8]. The actuator 
can be represented by

G s
s s

5000
70 500

.
( )

( )
( )

=
+ +

Plot the frequency response of .ω( )G j  Show that 
the magnitude of ω( )G j  is 17 dB−  at 10ω =  and 
−27.1 dB at 200.ω =  Show also that the phase is 

138.7°−  at 700.ω =

E8.3 A robotic arm has a joint-control loop transfer 
function

L s G s G s
s

s s sc
100 0.1

1 10
.( ) ( ) ( )

( )
( )( )

= =
+

+ +

Show that the frequency equals 11.7ω =  rad/s when 
the phase angle of ω( )L j  is 135°.−  Find the magnitude  
of ω( )L j  at 11.7ω =  rad/s.
Answer: ( ) = −L j11.7 5.1 dB

E8.4 The frequency response for the system

G s
Ks

s a s s5 6.252( )
( )

( )
=

+ + +

is shown in Figure E8.4. Estimate K and a by examin-
ing the frequency response curves.

E8.5 The magnitude plot of a transfer function

G s
K s as bs

s s c s( )
( )

( )
( )( )

( )
=

′ + + +
+ + /

1 0.125 1 1

1 16

is shown in Figure E8.5. Estimate K ,′  a, b, and c from 
the plot.
Answer: K a b c6,   1 3,   1 12,   1 6= = / = / = /

E8.6 Several studies have proposed an extravehicular 
robot that could move around in a NASA space sta-
tion and perform physical tasks at various worksites 
[9]. The arm is controlled by a unity feedback control 
with loop transfer function

8 1 100 1
.

( )( )
( ) ( ) ( )= =

/ + / +
L s G s G s

K
s s sc

Sketch the Bode plot for 30=K , and determine the 
frequency when ω( )20 log L j  is 0 dB.

E8.7 Consider a system with a closed-loop transfer 
function

G s
s s s s

100
2 16 64

.
2 2( )( )

( ) =
+ + + +

This system will have a steady-state error for a step 
input. (a) Plot the frequency response, noting the two 
peaks in the magnitude response. (b) Predict the time 
response to a step input, noting that the system has 
four poles and cannot be represented as a dominant 
second-order system. (c) Plot the step response.

E8.8 Two feedback systems with their respective loop 
transfer function are represented as:

(i) T s
s

s s

100 1

25 1002( )
( )

( )
=

−
+ +
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FIGURE E8.4
Bode plot.
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Bode plot.

M
ag

ni
tu

de
 (

dB
)

40

20

0

-20

-40

0.1 1 10 100 1,000

08

-908

908

Frequency (rad/s)

Ph
as

e 
(d

eg
)

FIGURE E8.9
Bode plot.

(ii) T s
s

s s

100 1

25 100
1 2( )

( )
( )

=
+

+ +

For each transfer function, (a) determine the break 
frequencies for the Bode plot. (b) Determine the 
slope of the asymptotic plot at very low frequencies 
and at high frequencies. (c) Sketch the Bode magni-
tude plot and compare them.

E8.9 The Bode plot of a system is shown in Figure E8.9. 
Estimate the transfer function ( )G s .

E8.10 The dynamic analyzer shown in Figure E8.10(a) 
can be used to display the frequency response of a 
system. Figure E8.10(b) shows the actual frequency 
response of a system. Estimate the poles and zeros of 
the device. Note X 1.37 kHz=  at the first cursor, and 

X 1.257 kHz∆ =  to the second cursor.

E8.11 Consider the feedback control system in Figure 
E8.11. Sketch the Bode plot of ( )G s , and determine 
the crossover frequency, that is, the frequency when  

G j20 log 0 dB.10 ω( ) =

E8.12 Consider the system represented in state variable 
form

t t u tx x  3 1
1 2

1
2

( ) ( ) ( )=
−











 +











�

y t tx[ 1 2 ]( ) ( )= −

(a) Determine the transfer function representation of 
the system. (b) Sketch the Bode plot.

E8.13 Determine the bandwidth of the feedback control 
system in Figure E8.13.

E8.14 Consider the nonunity feedback system in Figure 
E8.14, where the controller gain is 2.=K  Sketch the 
Bode plot of the loop transfer function. Determine the 
phase of the loop transfer function when the magni-
tude L j20 log 0 dB.ω( ) =  Recall that the loop trans-
fer function is .L s G s G s H sc( ) ( ) ( ) ( )=
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Exercises 603

FIGURE E8.10 (a) Photo showing a typical signal analyzer. (b) Frequency 
response. (Courtesy of the Syafiq Adnan/Shutterstock.)

(a)

X = 1.37 kHz
Ya = - 4.9411

¢Ya = 4.076 dB
¢X = 1.275 kHz

M:  Freq Resp 20Avg 0%0vlp Unif
10.0

dB

- 30.0
0 X 2 kHz 4 kHz

(b)

FIGURE E8.11
Unity feedback 
system.

-

+
R(s)

Controller Process

1

s2 + 10s + 100

1000

s + 2
Y(s)
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604 Chapter 8  Frequency Response Methods

FIGURE E8.13
Third-order 
 feedback system.

-

+
R(s)

Controller Process

1

s2 + 10s + 10

100

s + 1
Y(s)

E8.15 Consider the single-input, single-output system 
described by

�x Ax Bt t u t( ) ( ) ( )= +

y t tCx( ) ( )=

where

K
A B C0 1

5 1
, 0

1
, [ 2 4 ].=

− − −











 =











 =

Compute the bandwidth of the system for 1,  2,=K  
and 10. As K increases, does the bandwidth increase 
or decrease?

-

+
KR(s) Y(s)

Controller, Gc(s) Process, G(s) 

1
s2  + 1.4s  + 1

10
s  + 10

Sensor, H(s)FIGURE E8.14
Nonunity feedback 
system with  
controller gain K.

P8.1 Sketch the polar plot for the following loop transfer  
functions:

(a) 
1

1 0.5 1 2( )
( ) ( ) ( )

( )
= =

+ +
L s G s G s

s sc

(b) 
3 1.5 1

2

2

2

( )
( ) ( ) ( )

( )
= =

+ +

−
L s G s G s

s s

s
c

(c) 
6

5 62
( ) ( ) ( )= =

−
+ +

L s G s G s
s

s sc

(d) 
10 6

1 3
( ) ( ) ( )

( )
( )( )

= =
+

+ +
L s G s G s

s

s s sc

P8.2 Sketch the Bode plot representation of the fre-
quency response for the transfer functions given in 
Problem P8.1.

P8.3 A rejection network is the bridged-T network 
shown in Figure P8.3. The transfer function of this 
network is

ω
ω ω( )

( ) =
+

+ +
G s

s
s Q s

n

n n2

2 2

2 2

where ω ω= =LC Q L Rn n2 ,   ,2
1  and 2R  is ad-

justed so that R L Rn 4 [3].  2
2

1ω( )= (a) Determine 
the poles and zeros. (b) Sketch the Bode plot.

PROBLEMS

FIGURE P8.3 Bridged-T network.

+ +

- -

C Cv1(t) v2(t)

L R1

R2
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P8.4 A control system for controlling the pressure in a 
closed chamber is shown in Figure P8.4. Sketch the 
Bode plot of the loop transfer function.

P8.5 The global robot industry is growing rapidly [8]. A 
typical industrial robot has multiple degrees of free-
dom. A unity feedback position control system for a 
force-sensing joint has a loop transfer function.

G s G s
K

s s s sc 1 4 1 8 1 16 1 32
,

( )( )( )( )
( ) ( ) =

+ + + +

where K 20.=  Sketch the Bode plot of this system.

P8.6 The asymptotic log-magnitude curves for two loop 
transfer functions are given in Figure P8.6. Sketch the 
corresponding asymptotic phase shift curves for each 
system. Estimate the transfer function for each sys-
tem. Assume that the systems have minimum phase 
transfer functions.

P8.7 Driverless vehicles can be used in warehouses, air-
ports, and many other applications. These vehicles 
follow a wire embedded in the floor and adjust the 
steerable front wheels in order to maintain proper di-
rection, as shown in Figure P8.7(a) [10]. The sensing 
coils, mounted on the front wheel assembly, detect an 
error in the direction of travel and adjust the steering. 
The overall control system is shown in Figure P8.7(b). 
The loop transfer function is

/ 1
.2 2π π

( )
( ) ( )

=
+

=
+
υL s

K

s s

K

s s

FIGURE P8.4
(a) Pressure 
 controller. (b) Block 
diagram model.

Qo

Desired
pressure

Controller

Infinite
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Pressure
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P0

Valve

(a)

(b)
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s

Controller
-

+

+

-

Valve

2s + 2 
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100
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1
(0.2s + 1)(s/30 + 1)
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FIGURE P8.6 Log-magnitude curves.
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(a) Set K π=υ  and sketch the Bode plot. (b) Using 
the Bode plot, determine the phase at the crossover 
frequency.
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606 Chapter 8  Frequency Response Methods

FIGURE P8.7
Steerable wheel 
control. (b)

(a)

-

+
Controller

Vehicle
wheels

Sensing
coils

Reference
Direction
of travel

Motor

Controller Steering
servo

Steerable
wheels

Sensing
coils

Energized guidepath wire

P8.8 A feedback control system is shown in Figure P8.8.  
The specification for the closed-loop system re-
quires that the percent overshoot to a step input be  
P O. . 10%.≤  (a) Determine the corresponding spec -
ification ωMp  in the frequency domain for the 
closed-loop transfer function. (b) Determine the reso-
nant frequency r.ω  (c) Determine the bandwidth of the 
closed-loop system .ωn

P8.9 Sketch the logarithmic-magnitude versus phase 
angle curve for the transfer functions (a) and (b) of 
Problem P8.1.

P8.10 A linear actuator is used in the system shown in 
Figure P8.10 to position a mass M. The actual posi-
tion of the mass is measured by a slide wire resistor, 
and thus 1.0.( ) =H s  The amplifier gain is selected 
so that the steady-state error of the system is less 
than 1% of the magnitude of the position reference 

( )R s . The actuator has a field coil with a resistance 
0.1 = ΩRf  and 0.2 H.=Lf  The mass of the load is 
0.1 kg=M , and the friction is b 0.2  N s m= . The 

-

+
R(s)

Controller Process

1

s(s + 7.5)
K Y(s)

FIGURE P8.8
Second-order unity 
feedback system.

FIGURE P8.10  
Linear actuator 
control.

Rf

+

-

Amplifier

R(s) K

Measurement
H(s)

Spring k

Load
M, b

Lf

y(t)
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FIGURE P8.11
Frequency 
 response of ship 
control system. Frequency (rad/s)
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spring constant is k 0.4  N m= . (a) Determine the 
gain K necessary to maintain a steady-state error for 
a step input less than 1%. (b) Sketch the Bode plot 
of the loop transfer function. (c) Sketch the Bode 
plot for the closed-loop transfer function. Determine 
Mp r,   ,ωω  and the bandwidth.

P8.11 Automatic steering of a ship is a particularly use-
ful application of feedback control theory [20]. In the 
case of heavily traveled seas, it is important to main-
tain the motion of the ship along an accurate track. 
An automatic system is more likely to maintain a 
smaller error from the desired heading than a helms-
man who recorrects at infrequent intervals. A mathe-
matical model of the steering system has been devel-
oped for a ship moving at a constant velocity and for 
small deviations from the desired track. For a large 
tanker, the transfer function of the ship is

0.164 0.2 0.32
0.25 0.009

,
2δ

( )
( )
( )

( )( )
( )( )

= =
+ − +

+ −
G s

E s
s

s s
s s s

where ( )E s  is the Laplace transform of the deviation 
of the ship from the desired heading and δ( )s  is the 
Laplace transform of the angle of deflection of the 
steering rudder. Verify that the Bode plot of ω( )G j  is 
that shown in Figure P8.11.

P8.12 The block diagram of a feedback control system 
is shown in Figure P8.12(a). The transfer functions of 
the blocks are represented by the frequency response 
curves shown in Figure P8.12(b). (a) When 3G  is dis-
connected from the system, determine the damping 
ratio ζ  of the system. (b) Connect 3G  and determine 
the damping ratio .ζ  Assume that the systems have 
minimum phase transfer functions.

P8.13 A position control system may be constructed by 
using an AC motor and AC components, as shown 
in Figure P8.13. The syncro and control transformer 
may be considered to be a transformer with a rotat-
ing winding. The syncro position detector rotor turns 
with the load through an angle .0θ  The syncro motor 
is energized with an AC reference voltage, for exam-
ple, 115 volts, 60 Hz. The input signal or command is 

inθ( ) ( )=R s s  and is applied by turning the rotor of 
the control transformer. The AC two-phase motor 
operates as a result of the amplified error signal. The 
advantages of an AC control system are (1) freedom 
from DC drift effects and (2) the simplicity and ac-
curacy of AC components. To measure the open-loop 
frequency response, we simply disconnect X from Y 
and ′X  from ′Y  and then apply a sinusoidal modu-
lation signal generator to the − ′Y Y  terminals and 
measure the response at .− ′X X  (The error 0θ θ( )− i  
will be adjusted to zero before applying the AC gen-
erator.) The resulting frequency response of the loop 
transfer function ω( )L j  is shown in Figure P8.13(b). 
Determine the loop transfer function. Assume that 
the system has a minimum phase transfer function.

P8.14 A bandpass amplifier may be represented 
by the circuit model shown in Figure P8.14 [3].  
When R R C C10 k,   1  F,  10  F,1 2 1 2µ µ= = = =  and 
K 100,=  show that

G s
s

s s

10

10 100
.

7

5( )
( )

( )
=

+ +

(a) Sketch the Bode plot of .ω( )G j  (b) Find the mid 
band gain (in dB). (c) Find the high and low fre-
quency 3 dB−  points.
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608 Chapter 8  Frequency Response Methods

FIGURE P8.12
Feedback system.
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(b)
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P8.15 To determine the transfer function of a process 
( )G s , the frequency response may be measured using 

a sinusoidal input. One system yields the data in the 
following table:

ωω, rad s ( )ωωG j Phase, degrees

 0.1 50 –90
 1 5.02 –92.4
 2 2.57 –96.4
 4 1.36 –100
 5 1.17 –104
 6.3 1.03 –110
 8 0.97 –120
10 0.97 –143
12.5 0.74 –169
20 0.13 –145
31 0.026 –158

Determine the transfer function ( )G s .

P8.16 A space shuttle was used to repair satellites. Figure 
P8.16 illustrates how a crew member, with her feet 
strapped to the platform on the end of the shuttle’s 
robotic arm, used her arms to stop the satellite’s 
spin. The control system of the robotic arm has a 
closed-loop transfer function

T s
Y s

R s s s
87

15.9 87
.

2
( )

( )
( )

= =
+ +

(a) Determine the response ( )y t  to a unit step input, 
R s s1 .( ) =  (b) Determine the bandwidth of the 
system.

P8.17 The experimental Oblique Wing Aircraft (OWA) 
has a wing that pivots, as shown in Figure P8.17. The 
wing is in the normal unskewed position for low 
speeds and can move to a skewed position for im-
proved supersonic flight [11]. The aircraft control sys-
tem loop transfer function is

L s G s G s
s

s s s s
c ( )

( ) ( ) ( )
( )

( )
= =

+
+ + +

0.1 3
4 3.2 64

.
2
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FIGURE P8.13
(a) AC motor 
 control. (b) Bode 
plot of the loop 
transfer function.
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FIGURE P8.14 Bandpass amplifier.
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(a) Sketch the Bode plot. (b) Find the crossover 
frequency. Find the frequency when the phase is 

180°.φ ω( ) = −

P8.18 Remote operation plays an important role in hos-
tile environments. Research engineers have been 
trying to improve teleoperations by feeding back 

rich sensory information acquired by the robot to the 
operator with a sensation of presence. This concept is 
called tele-existence or telepresence [9].
 The tele-existence system consists of a system 
with a visual and auditory sensation of presence, a 
computer control system, and an anthropomorphic 
robot mechanism with an arm having seven degrees 
of freedom and a locomotion mechanism. The oper-
ator’s head movement, right arm movement, right 
hand movement, and other auxiliary motion are 
measured. A specially designed stereo visual and au-
ditory input system mounted on the neck mechanism 
of the robot gathers visual and auditory information 
from the remote environment. These pieces of infor-
mation are fed back and are applied to the specially 
designed stereo display system to evoke the sensa-
tion of presence of the operator. The locomotion 
control system has the loop transfer function
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610 Chapter 8  Frequency Response Methods

FIGURE P8.16 Satellite repair.
FIGURE P8.17 The Oblique Wing Aircraft, 
top and side views.

Maximum skewed
wing position

40 1
10 25

.
2

( ) ( ) ( )
( )

= =
+

+ +
L s G s G s

s

s sc

Obtain the Bode plot for the loop transfer function, 
and determine the crossover frequency.

P8.19 A DC motor controller used extensively in au-
tomobiles is shown in Figure P8.19(a). The mea-
sured plot of s I s( ) ( )Θ  is shown in Figure P8.19(b). 
Determine the transfer function of s I s .( ) ( )Θ

P8.20 For the successful development of space projects, 
robotics and automation will be a key technology. 
Autonomous and dexterous space robots can reduce 

FIGURE P8.19
(a) Motor controller. 
(b) Bode plot.
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FIGURE P8.20 A space robot with three arms, shown 
capturing a satellite.

the workload of astronauts and increase operational 
efficiency in many missions. Figure P8.20 shows a 
concept called a free-flying robot [9, 13]. A major 
characteristic of space robots, which clearly distin-
guishes them from robots operated on earth, is the 
lack of a fixed base. Any motion of the manipulator 
arm will induce reaction forces and moments in the 
base, which disturb its position and attitude.
 The control of one of the joints of the robot can 
be represented by the loop transfer function

L s G s G s
s

s sc
823 9.8

22 471
.

2
( ) ( ) ( )

( )
= =

+
+ +

(a) Sketch the Bode plot of ω( )L j . (b) Determine 
the maximum value of ω( )L j , the frequency at which 
it occurs, and the phase at that frequency.

P8.21 Low-altitude wind shear is a major cause of air carrier 
accidents in the United States. Most of these accidents 
have been caused by either microbursts (small-scale, 
low-altitude, intense thunderstorm downdrafts that im-
pact the surface and cause strong divergent outflows of 
wind) or by the gust front at the leading edge of expand-
ing thunderstorm outflows. A microburst encounter is a 
serious problem for either landing or departing aircraft, 
because the aircraft is at low altitudes and is traveling at 
just over 25% above its stall speed [12].

The design of the control of an aircraft encoun-
tering wind shear after takeoff may be treated as a 
problem of stabilizing the climb rate about a desired 
value of the climb rate. The resulting controller uses 
only climb rate information.

The standard negative unity feedback system of 
Figure 8.24 has a loop transfer function

L s G s G s
s

s s sc( ) ( ) ( )= =
−

+ + +
200

14 44 40
.

2

3 2

Note the negative gain in loop transfer function. This 
system represents the control system for the climb 
rate. Sketch the Bode plot and determine gain (in dB) 
when the phase is 180°.φ ω( ) = −

P8.22 The frequency response of a process ω( )G j  is 
shown in Figure P8.22. Determine ( )G s .

P8.23 The frequency response of a process ω( )G j  is 
shown in Figure P8.23. Deduce the type number 
(number of integrations) for the system. Determine 
the transfer function of the system, ( )G s . Calculate 
the error to a unit step input.

P8.24 The Bode plot of a closed-loop film transport sys-
tem is shown in Figure P8.24 [17]. Assume that the sys-
tem transfer function ( )T s  has two dominant complex  

FIGURE P8.22 Bode plot of ( )G s .
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FIGURE P8.23 Frequency response of ω( )G j .
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conjugate poles. (a) Determine the best second- 
order model for the system. (b) Determine the sys-
tem bandwidth. (c) Predict the percent overshoot 
and settling time (with a 2% criterion) for a step 
input.

P8.25 A unity feedback closed-loop system has a 
steady-state error equal to A/10, where the input is 
r t At 2.2( ) = /  The Bode plot is shown in Figure P8.25 
for .ω( )G j  Determine the transfer function ( )G s .

P8.26 Determine the transfer function of the op-
amp circuit shown in Figure P8.26. Assume an 
ideal op-amp. Plot the frequency response when 

10 k ,   9 k ,   1 k ,1 2R R R= Ω = Ω = Ω  and 1  F.µ=C

P8.27 A unity feedback system has the loop transfer 
function

L s G s G s
K s

s sc
30

16 256
.

2
( ) ( ) ( )

( )
= =

+
+ +

Sketch the Bode plot of the loop transfer function, and 
indicate how the magnitude ω( )20 log L j  plot var-
ies as K varies. Develop a table for K 10,  20,=  and 
30, and for each K determine the crossover frequency 

L jc(  for 20 log 0 dB),ω ω( ) =  the magnitude at 
low frequency ω ω( ) �(20 log  for  1),L j  and for the 
closed-loop system determine the bandwidth for each K.

FIGURE P8.24  
Bode plot of 
a closed-film 
transport system.
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FIGURE P8.25 Bode plot of a unity feedback system.
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FIGURE P8.26
An op-amp circuit.

AP8.1 A high pass amplifier may be represented by 
the circuit model shown in Figure AP8.1. When 
R R C C K100  ,   100 k ,   100  F,   10  F,  and  1000,1 2 1 2µ µ= Ω = Ω = = = 

R R C C K100  ,   100 k ,   100  F,   10  F,  and  1000,1 2 1 2µ µ= Ω = Ω = = =  show that

G s
s

s s

10
1 100

.
2

( )
( )( )

=
+ +

(a) Sketch the Bode plot of G j .ω( )  (b) Find the pass 
band gain (in dB). (c) Find the low frequency − 3 dB 
points.

ADVANCED PROBLEMS

FIGURE AP8.1
A high pass 
amplifier

R1

R2C1

C2

V0

V2 = K.I1

V1
+

+

-

+

-

-
I1
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614 Chapter 8  Frequency Response Methods

FIGURE AP8.2
System with 
 parameter b and 
controller gain K.

-
Y(s)R(s)

+
K

b
s + 2

0.1

FIGURE AP8.4
A helicopter 
feedback control 
system. (b)(a)

-

+
R(s)

G(s)
Y(s)
Load

position

1.25

s (s + 3.9)

H(s)

1

s + 1

FIGURE AP8.3 Auto suspension system model.

bk

x(t)

M

AP8.2 A system is shown in Figure AP8.2. The nom-
inal value of the parameter b is 4.0 and K 5.0.=  
Determine the sensitivity Sb

T , and plot S jb
T20 log .ω( )

AP8.3 As an automobile moves along the road, the 
vertical displacements at the tires act as the motion 
excitation to the automobile suspension system [16]. 

Figure AP8.3 is a schematic diagram of a simplified 
automobile suspension system, for which we as-
sume the input is sinusoidal. Determine the transfer 
function X s R s( ) ( ), and sketch the Bode plot when 
M b1 kg,  4  N s m,= =  and k 18  N m.=

AP8.4 A helicopter with a load on the end of a cable is 
shown in Figure AP8.4(a). The position control system 
is shown in Figure AP8.4(b), where the visual feed-
back is represented by ( )H s . Sketch the Bode plot of 
the loop transfer function. Determine the crossover 
frequency, that is, where 20 log10 |H(jω) G(jω)| = 0 dB.

AP8.5 A closed-loop system with unity feedback has a 
transfer function

20 2
18 40

.
2

( )
( )

=
+

+ +
T s

s

s s
(a) Determine the loop transfer function. (b) Plot the log-
arithmic-magnitude versus phase curve, and identify the 
frequency points for ω  equal to 1, 10, 50, 110, and 500.  
(c) Is the open-loop system stable? Is the closed-loop sys-
tem stable?

AP8.6 Consider the spring-mass system depicted in 
Figure AP8.6. Develop a transfer function model 
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FIGURE AP8.6 Suspended spring-mass system with 
parameters k and b.

k

x(t)

u(t)

b

FIGURE AP8.7 Op-amp lead compensator circuit.

Vo(s)Vi(s)

R1

C2

C2

+
+

--

R2

+

-

to describe the motion of the mass 2 kg,=M  when 
the input is ( )u t  and the output is ( )x t . Assume that 
the initial conditions are 0 0( ) =x  and 0 0.( ) =x  
Determine values of k and b such that the maximum 

steady-state response of the system to a sinusoidal 
input sin ω( ) ( )=u t t  is less than 1 for all .ω  For the 
values you selected for k and b, what is the frequency 
at which the peak response occurs?

AP8.7 An op-amp circuit is shown in Figure AP8.7. The 
circuit represents a lead compensator.

(a) Determine the transfer function of this circuit.
(b) Sketch the Bode plot of the circuit when 10 k1 = ΩR   

10 k1 = ΩR , 10 2 = ΩR , 0.1  F1 µ=C , and 1 mF2 =C .

CDP8.1 In this chapter, we wish to use a PD controller 
such that

G s K sc( ) ( )= + 2 .

The tachometer is not used (see Figure CDP4.1). 
Obtain the Bode plot for the system when Mpω  
Determine the step response of this system and es-
timate the overshoot and settling time (with a 2% 
criterion).

DP8.1 Understanding the behavior of a human steering 
an automobile remains an interesting subject [14, 15, 
16, 21]. The design and development of systems for 
four-wheel steering, active suspensions, active, inde-
pendent braking, and “drive-by-wire” steering pro-
vide the engineer with considerably more freedom 
in altering vehicle-handling qualities than existed in 
the past.
 The vehicle and the driver are represented by 
the model in Figure DP8.1, where the driver develops 

anticipation of the vehicle deviation from the cen-
ter line. For 1,=K  obtain the Bode plot of (a) the 
loop transfer function L s G s G sc( ) ( ) ( )=  and (b) the 
closed-loop transfer function ( )T s . (c) Repeat parts 
(a) and (b) when 50.=K  (d) A driver can select 
the gain K. Determine the appropriate gain so that 

2,≤ωMp  and the bandwidth is the maximum attain-
able for the closed-loop system. (e) Determine the 
steady-state error of the system for a ramp input 

.( ) =r t t

DP8.2 The unmanned exploration of planets requires a 
high level of autonomy because of the communica-
tion delays between robots in space and their Earth-
based stations. This affects all the components of the 
system: planning, sensing, and mechanism. In particu-
lar, such a level of autonomy can be achieved only if 
each robot has a perception system that can reliably 
build and maintain models of the environment. The 
perception system is a major part of the development 

DESIGN PROBLEMS

FIGURE DP8.1
Human steering 
control system.

-

+
R(s)

Desired
distance from

center line

Error

Gc(s)
Driver

G(s)
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Y(s)
Distance

from center
line

1

s2(s + 12)
K(s + 2)
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616 Chapter 8  Frequency Response Methods

FIGURE DP8.2
(a) The Mars-bound 
Spider-bot. (Photo 
courtesy of NASA.) 
(b) Block diagram of 
the control system 
for one leg. (b)

(a)

1

s (s2 + 2s + 8)

Amplifier
and controller

Actuator and leg

-

+
R(s) Y(s)

K(s + 1)
s + 4

of a complete system that includes planning and 
mechanism design. The target vehicle is the Spider-
bot, a four-legged walking robot shown in Figure 
DP8.2(a), being developed at NASA Jet Propulsion 
Laboratory  [18]. The control system of one leg is 
shown in Figure DP8.2(b).

(a) Sketch the Bode plot for the loop transfer 
function when 20.=K  Determine (1) the frequency 
when the phase is 180°φ ω( ) = −  and (2) the cross-
over frequency. (b) Obtain the Bode plot for the 
closed-loop transfer function ( )T s  when 20.=K  
(c)  Determine Mp r,   ,ωω  and ωB  for the closed-loop 
system when 22=K  and 25.=K  (d) Select the best 
gain of the two specified in part (c) when it is desired 
that the percent overshoot of the system to a step 
input ( )r t  be . . 5%≤P O  and the settling time be as 
short as possible.

DP8.3 A table is used to position vials under a dis-
penser head, as shown in Figure DP8.3(a). The 
objective is speed, accuracy, and smooth motion 
in order to eliminate spilling. The position control 
system is shown in Figure DP8.3(b). Determine a K 
such that the bandwidth is maximized while keeping 
P.O. ≤ 20% to a unit step input. What is the max-
imum bandwidth, vb, when P.O. ≤ 20? Determine 
the range of K such that the closed-loop system is 
stable.

DP8.4 Anesthesia can be administered automatically 
by a control system. To ensure adequate operating  
conditions for the surgeon, muscle relaxant drugs, 

which block involuntary muscle movements, are 
administered.

A conventional method used by anesthesiolo-
gists for muscle relaxant administration is to inject 
a bolus dose whose size is determined by experience 
and to inject supplements as required. Significant 
improvements may be achieved by introducing the 
concept of automatic control, which results in a con-
siderable reduction in the total relaxant drug con-
sumed [19].

A model of the anesthesia process is shown in 
Figure DP8.4. Select a gain K so that the bandwidth of 
the closed-loop system is maximized while 1.5.≤ωMp  
Determine the bandwidth attained for your design.

DP8.5 Consider the control system depicted in Figure 
DP8.5(a) where the plant is a “black box” for which 
little is known in the way of mathematical mod-
els. The only information available on the plant is 
the frequency response shown in Figure DP8.5(b). 
Design a controller ( )G sc  to meet the following 
specifications: (i) the crossover frequency is be-
tween 10 rad/s and 50  rad/s; (ii) the magnitude of 
the loop transfer function is greater than 20 dB for 

0.1 rad/s.ω <

DP8.6 A single-input, single-output system is described by

�x x
0 1
1 0

t
p

t K u t( ) ( ) ( )=
− −

















+












[ 0 1 ] .y t tx( ) ( )=
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FIGURE DP8.3
Automatic table and 
dispenser. (b)

(a)

-

+ K

s (s + 2)

R(s)
Position

command

Y(s)
Position

Sensor

7
(s + 7)

Dispenser
Vials

y-axis motor
and sensor

x-axis motor
and sensor

FIGURE DP8.4
Model of an 
 anesthesia control 
system.

-

+ K

0.5s + 1

1

0.8s + 1

Controller
R(s)

Desired
relaxation

level

Y(s)
Actual

relaxation
level

Person

Drug

input

(a) Determine p and K such that the unit step response 
exhibits a zero steady-state error and the percent 
overshoot meets the requirement . . 5%.≤P O

(b) For the values of p and K determined in part (a), 
determine the system damping ratio ζ  and the 
natural frequency .ωn

(c) For the values of p and K determined in part (a), 
obtain the Bode plot of the system and deter-
mine the bandwidth .ωB

(d) Estimate the bandwidth using ζ  and ωn  and 
compare the value to the actual bandwidth from 
part (c).

DP8.7 Consider the system of Figure DP8.7. Consider 
the controller to be similar to a proportional plus 
 derivative (PD) given by

0.1 1
.( ) = +

+
G s K

K s
sc P
D

Design the PD controller gains to achieve (a) a 
velocity constant 1≥Kv , (b) a phase margin of 

. . 60≥P M �, and (c) a bandwidth 2.0ω ≥b . Plot the 
response of the closed-loop system to a unit step 
input.
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618 Chapter 8  Frequency Response Methods

FIGURE DP8.5
(a) Feedback 
 system with 
“black box” plant. 
(b) Frequency 
 response plot of 
the “black box” 
represented by 
G s( ).
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Closed-loop 
 feedback system.
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CP8.1 Consider the closed-loop transfer function

T s
s s

25
25

.
2

( ) =
+ +

Develop an m-file to obtain the Bode plot, and 
 verify that the resonant frequency is 5 rad/s and that 
the peak magnitude ωMp  is 14 dB.

CP8.2 For the following transfer functions, sketch the 
Bode plots, then verify with the bode function:

(a) G s
s s

1000
10 100

( )
( )( )

=
+ +

(b) G s
s

s s
100

2 25( )
( )

( )
=

+
+ +

(c) G s
s s

100
2 502

( ) =
+ +

(d) G s
s

s s s

6
3 12 502( )

( )
( )

=
−

+ + +

CP8.3 For each of the following transfer functions, sketch 
the Bode plot and determine the crossover frequency:

(a) 
2500

10 100
( )

( )( )
=

+ +
G s

s s

COMPUTER PROBLEMS
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FIGURE CP8.5 A second-order feedback control 
system.

-
R(s)

+ 100
s(s + 6)

Y(s)

FIGURE CP8.6 Closed-loop feedback system.

-

+
R(s) Y(s)

40
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=
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+
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G s

s
s s

(d) 
100 14 50

1 2 200

2( )
( )

( )( )( )
=

+ +

+ + +
G s

s s

s s s

CP8.4 A unity negative feedback system has the loop 
transfer function

L s G s G s
s sc

150
10

.( ) ( ) ( )
( )

= =
+

Determine the closed-loop system bandwidth. Using 
the bode function, obtain the Bode plot and label the 
plot with the bandwidth.

CP8.5 A block plot of a second-order system is shown in 
Figure CP8.5.
 (a) Determine the resonant peak Mpω  the res-
onant frequency r,ω  and the bandwidth ,ωB  of the  
system from the closed-loop Bode plot. Generate the 
Bode plot with an m-file for 0.1ω =  to 1,000  rad s  usingω =  

1,000  rad s  usingω =  the logspace function. (b) Estimate the 
system damping ratio, ,ζ  and natural frequency ω. 
(c) From the closed-loop transfer function, compute 
the actual ζ  and ωn  and compare with your results in 
part (b).

CP8.7 A unity feedback system has the loop transfer 
function

L s G s G s
p

s s pc ( )
( ) ( ) ( )= =

+
.

2

Generate a plot of the bandwidth versus the parame-
ter p as p0.1 5.< <

CP8.8 Consider the problem of controlling an inverted 
pendulum on a moving base, as shown in Figure 
CP8.8(a). The transfer function of the system is

G s
M L

s M M g M L
b

b s b

1
.

2
( )

( ) ( )
( ) =

−
− +

The design objective is to balance the pendulum 
(i.e., 0θ( ) ≈t ) in the presence of disturbance inputs.  
A block diagram representation of the system is de-
picted in Figure CP8.8(b). Let M M L g as b10 kg,  100 kg, 1 m,  9.81  m s ,   5,2= = = = = 

M M L g as b10 kg,  100 kg, 1 m,  9.81  m s ,   5,2= = = = = M M L g as b10 kg,  100 kg, 1 m,  9.81  m s ,   5,2= = = = =  and 10.=b  
The design specifications, based on a unit step distur-
bance, are as follows:

1. settling time (with a 2% criterion) of 10≤Ts  s,
2. percent overshoot of . . 40%≤P O , and
3. steady-state tracking error less than 0.1° in the 

presence of the disturbance.

Develop a set of interactive m-file scripts to aid in the 
control system design. The first script should accom-
plish at least the following:

1. Compute the closed-loop transfer function from 
the disturbance to the output with K as an adjust-
able parameter.

2. Draw the Bode plot of the closed-loop system.
3. Automatically compute and output ωMp  and r.ω

As an intermediate step, use Mpω  and ωr  and 
Equations (8.36) and (8.37) in Section 8.2 to estimate 
ζ  and .ωn  The second script should at least estimate 
the settling time and percent overshoot using ζ  and 
ωn  as input variables.

If the performance specifications are not satis-
fied, change K and iterate on the design using the first 
two scripts. After completion of the first two steps, the 
final step is to test the design by simulation. The func-
tions of the third script are as follows:

1. plot the response, ,θ( )t  to a unit step disturbance 
with K as an adjustable parameter, and

2. label the plot appropriately.

CP8.6 Consider the feedback system in Figure CP8.6. 
Obtain the Bode plots of the loop transfer function 
and the closed-loop transfer function using an m-file.
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620 Chapter 8  Frequency Response Methods

Utilizing the interactive scripts, design the controller to 
meet the specifications using frequency response Bode 
methods. To start the design process, use analytic 
methods to compute the minimum value of K to meet 
the steady-state tracking error specification. Use the 
minimum K as the first guess in the design iteration.

CP8.9 Design a filter, ( )G s , with the following frequency 
response:

1. For 1  rad s,ω <  the magnitude ω( )G j20  log10
< 0 dB

2. For s1 1000  rad ,ω< <  the magnitude 20  log10 
ω( ) ≥G j 0 dB

3. For s1000  rad ,ω >  the magnitude 20  log10
ω( ) <G j 0 dB

Try to maximize the peak magnitude as close to 
  40  rad sω =  as possible.

FIGURE CP8.8
(a) An inverted 
pendulum on a 
moving base. 
(b) A block diagram 
representation. (b)

(a)

+

-

Controller

+ +
-K(s + a)

s + b

Td(s)
Disturbance

ud(s) = 0 u(s)

-1
Mb L

(Mb + Ms)g

Mb L
s2 -

Pendulum model

Ms

Mb

u(t) g

Input

ANSWERS TO SKILLS CHECK

True or False: (1) True; (2) False; (3) False; (4) True; 
(5) True

Multiple Choice: (6) b; (7) a; (8) b; (9) b; (10) c; (11) b; 
(12) c; (13) d; (14) a; (15) d

Word Match (in order, top to bottom): d, i, q, n, l, m, o, 
j, s, p, c, e, b, r, h, f, g, k, a

All-pass network A nonminimum phase system that 
passes all frequencies with equal gain.

Bandwidth The frequency at which the frequency re-
sponse has declined 3 dB from its low-frequency 
value.

Bode plot The logarithm of the magnitude of the trans-
fer function is plotted versus the logarithm of ,ω  the 

frequency. The phase φ  of the transfer function is sep-
arately plotted versus the logarithm of the frequency.

Break frequency The frequency at which the asymptotic 
approximation of the frequency response for a pole 
(or zero) changes slope.

Corner frequency See Break frequency.

TERMS AND CONCEPTS
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Terms and Concepts 621

Decade A factor of 10 in frequency (e.g., the range of 
 frequencies from 1 rad/s to 10 rad/s is one decade).

Decibel (dB) The units of the logarithmic gain.

Dominant roots The roots of the characteristic equation 
that represent or dominate the closed-loop transient 
response.

Fourier transform  The transformation of a function of 
time ( )f t  into the frequency domain.

Fourier transform pair  A pair of functions, one in the 
time domain, denoted by ( )f t , and the other in 
the frequency domain, denoted by ,ω( )F  related by 
the Fourier transform as F f t^ ,ω { }( ) ( )=  where ^  
denotes the Fourier transform.

Frequency response The steady-state response of a sys-
tem to a sinusoidal input signal.

Laplace transform pair A pair of functions, one in the 
time domain, denoted by f(t), and the other in the 
frequency domain, denoted by F(s), related by the 
Laplace transform as F s f t+ ,{ }( ) ( )=  where +  de-
notes the Laplace transform.

Logarithmic magnitude The logarithm of the magnitude 
of the transfer function, usually expressed in units of 
20 dB, thus 20  log .10 G

Logarithmic plot See Bode plot.

Maximum value of the frequency response A pair of 
complex poles will result in a maximum value for 
the frequency response occurring at the resonant 
frequency.

Minimum phase transfer function All the zeros of a 
 transfer function lie in the left-hand side of the 
s-plane.

Natural frequency The frequency of natural oscillation 
that would occur for two complex poles if the damp-
ing were equal to zero.

Nonminimum phase transfer function Transfer func-
tions with zeros in the right-hand s-plane.

Octave The frequency interval 22 1ω ω=  is an octave 
of frequencies (e.g., the range of frequencies from 

1001ω =  rad/s to 2002ω =  rad/s is one octave).

Polar plot A plot of the real part of ω( )G j  versus the 
imaginary part of .ω( )G j

Resonant frequency The frequency ωr  at which the 
maximum value of the frequency response of a com-
plex pair of poles is attained.

Transfer function in the frequency domain The ratio of 
the output to the input signal where the input is a 
sinusoid. It is expressed as .ω( )G j
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9 Stability in the Frequency 
Domain
9.1 Introduction 623

9.2 Mapping Contours in the s-Plane 624

9.3 The Nyquist Criterion 630

9.4 Relative Stability and the Nyquist Criterion 641

9.5 Time-Domain Performance Criteria in the Frequency Domain 648

9.6 System Bandwidth 655

9.7 The Stability of Control Systems with Time Delays 655

9.8 Design Examples 659

9.9 PID Controllers in the Frequency Domain 677

9.10 Stability in the Frequency Domain Using Control Design Software 678

9.11 Sequential Design Example: Disk Drive Read System 686

9.12 Summary 689

PREVIEW

In previous chapters, we discussed stability and developed various tools to deter-
mine stability and to assess relative stability. We continue that discussion in this 
chapter by showing how frequency response methods can be used to investigate 
stability. The important concepts of gain margin, phase margin, and bandwidth 
are developed in the context of Bode plots, Nyquist plots, and Nichols charts. A 
frequency response stability result—known as the Nyquist stability criterion—is 
presented and its use illustrated through several interesting examples. The impli-
cations of having pure time delays in the system on both stability and performance 
are discussed. We will see that the phase lag introduced by the time delay can 
destabilize an otherwise stable system. The chapter concludes with a frequency 
response analysis of the Sequential Design Example: Disk Drive Read System.

DESIRED OUTCOMES

Upon completion of Chapter 9, students should be able to:

	❏ Explain the Nyquist stability criterion and the role of the Nyquist plot.

	❏ Identify time-domain performance specifications in the frequency domain.

	❏ Describe the importance of considering time delays in feedback control systems.

	❏ Analyze the relative stability and performance of feedback control  systems using 
frequency response methods considering phase and gain margin, and  system 
bandwidth with Bode plots, Nyquist plots, and Nichols charts.
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Section 9.1 Introduction 623

9.1 INTRODUCTION

Stability is a key characteristic of a feedback control system. Furthermore, if the 
system is stable, it is possible to investigate the relative stability. There are sev-
eral methods of determining the absolute and relative stability of a system. The 
Routh–Hurwitz method is useful for investigating the characteristic equation 
 expressed in terms of the complex variable s j .σ ω= +  The relative stability of a 
system can be investigated utilizing the root locus method, which is also expressed 
in terms of the complex variable s. In this chapter, we are concerned with inves-
tigating the stability of a system in the frequency domain, that is, in terms of the 
frequency response.

The frequency response of a system represents the sinusoidal steady-state re-
sponse of a system and provides sufficient information for the determination of the 
relative stability of the system. The frequency response of a system can readily be 
obtained experimentally by exciting the system with sinusoidal input signals; there-
fore, it can be utilized to investigate the relative stability of a system when the sys-
tem parameter values have not been determined. Furthermore, a frequency-domain 
stability criterion would be useful for determining suitable approaches to adjusting 
the parameters of a system in order to increase its relative stability.

A frequency domain stability criterion was developed by H. Nyquist in 1932, 
and it remains a fundamental approach to the investigation of the stability of 
 linear control systems [1, 2]. The Nyquist stability criterion is based on a theorem 
in the theory of the function of a complex variable due to Cauchy. Cauchy’s theo-
rem is concerned with mapping contours in the complex s-plane, and fortunately 
the theorem can be understood without a formal proof requiring complex variable 
theory.

To determine the relative stability of a closed-loop system, we must investigate 
the characteristic equation of the system:

 F s L s1 0.( ) ( )= + =  (9.1)

For the unity feedback control system of Figure 9.1, the loop transfer function is 
.L s G s G sc( ) ( ) ( )=  For a multiloop system, in terms of signal-flow graphs, the char-

acteristic equation is

F s s L L Ln m q1   0,( ) ( )= ∆ = − Σ + Σ =�

where s( )∆  is the graph determinant. Therefore, we can represent the character-
istic equation of single-loop or multiple-loop systems by Equation (9.1), where 
L s( ) is a rational function of s. To ensure stability, we must ascertain that all 
the zeros of F s( ) lie in the left-hand s-plane. Nyquist thus proposed a mapping 
of the  right-hand s-plane into theF s( )-plane. Therefore, to use and understand 
Nyquist’s criterion, we shall first consider briefly the mapping of contours in the 
complex plane.
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624 Chapter 9  Stability in the Frequency Domain

9.2 MAPPING CONTOURS IN THE s-PLANE

Consider the mapping of contours in the s-plane by a function F s( ). A contour map  
is a contour or trajectory in one plane mapped or translated into another plane 
by a relation. Since s is a complex variable, s j ,σ ω= +  the function F(s) is it-
self complex; it can be defined as F s u jv( ) = +  and can be represented on a 
complex F(s)-plane with coordinates u and v. As an example, let us consider a 
function F s s2 1( ) = +  and a contour in the s-plane, as shown in Figure 9.2(a).  
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Section 9.2 Mapping Contours in the s-Plane 625

The  mapping of the s-plane unit square contour to the F(s)-plane is accomplished 
through the relation F(s), and so

 u jv F s s j2 1 2 1.σ ω( )( )+ = = + = + +  (9.2)

Therefore, in this case, we have

 u 2 1σ= +  (9.3)

and

 v 2 .ω=  (9.4)

Thus, the contour has been mapped by F s( ) into a contour of an identical form, a 
square, with the center shifted by one unit and the magnitude of a side multiplied 
by two. This type of mapping, which retains the angles of the s-plane contour on the 
F s( )-plane, is called a conformal mapping. We also note that a closed contour in the 
s-plane results in a closed contour in the F s( )-plane.

The points A, B, C, and D, as shown in the s-plane contour, map into the points 
A, B, C, and D shown in the F s( )-plane. Furthermore, a direction of traversal of the 
s-plane contour can be indicated by the direction ABCD and the arrows shown on 
the contour. Then a similar traversal occurs on the F s( )-plane contour as we pass 
ABCD in order, as shown by the arrows. By convention, the area within a contour 
to the right of the traversal of the contour is considered to be the area enclosed by 
the contour. Therefore, we will assume clockwise traversal of a contour to be pos-
itive and the area enclosed within the contour to be on the right. This convention 
is opposite to that usually employed in complex variable theory, but is equally ap-
plicable and is generally used in control system theory. We might consider the area 
on the right as we walk along the contour in a clockwise direction and call this rule 
“clockwise and eyes right.”

Typically, we are concerned with an F s( ) that is a rational function of s. 
Therefore, it will be worthwhile to consider another example of a mapping of a 
contour. Let us again consider the unit square contour for the function

 F s
s

s 2
.( ) =

+
 (9.5)

Several values of F s( ) as s traverses the square contour are given in Table 9.1, and 
the resulting contour in the F s( )-plane is shown in Figure 9.3(b). The contour in the 
F s( )-plane encloses the origin of the F s( )-plane because the origin lies within the 
enclosed area of the contour in the F s( )-plane.

Table 9.1 Values of F(s)

Point A Point B Point C Point D

σ ω= +s j + j1 1 1 − j1 1 −j1 − − j1 1 −1 − + j1 1 j1

( ) = +F s u jv + j4 2
10

1
3

− j4 2
10

− j1 2
5

−j −1 + j + j1 2
5
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626 Chapter 9  Stability in the Frequency Domain

Cauchy’s theorem is concerned with mapping a function F s( ) that has a finite 
number of poles and zeros within the contour, so that we may express F s( ) as
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 (9.6)

where zi−  are the zeros of the function F s( ) and pk−  are the poles of F s( ). The 
function F s( ) is the characteristic equation, and so

 F s L s1 ,( ) ( )= +  (9.7)

where

L s
N s
D s

.( ) ( )
( )

=

Therefore, we have
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and the poles of L s( ) are the poles of F s( ). However, it is the zeros of F s( ) that are 
the characteristic roots of the system and that indicate its response. This is clear if 
we recall that the output of the system is

 ∑ ∑( ) ( ) ( )
( )

( )
( )

( )= =
∆

∆
=

∆
 

 
  ,Y s T s R s

P

s
R s

P

F s
R s

k k k k
 (9.9)

where Pk and k∆  are the path factors and cofactors as defined in Section 2.7.
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Section 9.2 Mapping Contours in the s-Plane 627

Reexamining the example when F s s2 1 2 ,( )( ) = +  we have one zero of F s( ) at 
s 1 2,= −  as shown in Figure 9.2. The contour that we chose (that is, the unit square) 
enclosed and encircled the zero once within the area of the contour. Similarly, for 
the function F s s s 2 ,( ) ( )= +  the unit square encircled the zero at the origin but 
did not encircle the pole at s 2.= −  The encirclement of the poles and zeros of F s( ) 
can be related to the encirclement of the origin in the F s( )-plane by Cauchy’s theo-
rem, commonly known as the principle of the argument, which states [3, 4]:

If a contour sΓ  in the s-plane encircles Z zeros and P poles of F s( ) and does not pass 
through any poles or zeros of F s( ) and the traversal is in the clockwise direction along 
the contour, the corresponding contour ΓF  in the F s( )-plane encircles the origin of 
the F s( )-plane N Z P= −  times in the clockwise direction.

Thus, for the examples shown in Figures 9.2 and 9.3, the contour in the F s( )- 
plane encircles the origin once, because N Z P 1,= − =  as we expect. As an-
other example, consider the function F s s s 1 2 .( )( ) = +  For the unit square 
 contour shown in Figure 9.4(a), the resulting contour in the F s( ) plane is shown in 
Figure 9.4(b). In this case, N Z P 0,= − =  as is the case in Figure 9.4(b), since the 
contour FΓ  does not encircle the origin.

Cauchy’s theorem can be best comprehended by considering F s( ) in terms of 
the angle due to each pole and zero as the contour Γs  is traversed in a clockwise 
direction. Thus, let us consider the function

 F s
s z s z
s p s p

,1 2

1 2( )( )
( ) ( )( )

=
+ +
+ +

 (9.10)

where zi−  is a zero of F s( ), and pk−  is a pole of F s( ). Equation (9.10) can be 
 written as

 ( ) ( ) ( )=F s F s F s

 =
+ +
+ +

+ + + − + − +
s z s z

s p s p
s z s z s p s p

   

   
  ( )1 2

1 2
1 2 1 2

 φ φ φ φ( )( )= + − −F s z z p p .1 2 1 2  (9.11)

Now, considering the vectors as shown for a specific contour sΓ  (Figure 9.5a), we 
can determine the angles as s traverses the contour. Clearly, the net angle change 
as s traverses along sΓ  (a full rotation of 360° for ,  1 2φ φp p , and z2φ ) is zero degrees. 
However, for z1φ  as s traverses 360° around Γ ,s  the angle z1φ  traverses a full 360° 
clockwise. Thus, as Γs  is completely traversed, the net angle increase of F s( ) is 
equal to 360°, since only one zero is enclosed. If Z zeros were enclosed within Γs, 
then the net angle increase would be equal to Zz 2φ π=  rad. Following this rea-
soning, if Z zeros and P poles are encircled as sΓ  is traversed, then Z P2 2π π−  is 
the net resultant angle increase of F s( ). Thus, the net angle increase of ΓF  of the 
contour in the F s( )-plane is simply
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628 Chapter 9  Stability in the Frequency Domain

F Z P ,φ φ φ= −

or

 N Z P2 2 2 ,π π π= −  (9.12)

and the net number of encirclements of the origin of the F s( )-plane is N Z P.= −  
Thus, for the contour shown in Figure 9.5(a), which encircles one zero, the contour 

FΓ  shown in Figure 9.5(b) encircles the origin once in the clockwise direction.
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Section 9.2 Mapping Contours in the s-Plane 629

As an example of the use of Cauchy’s theorem, consider the pole–zero pattern 
shown in Figure 9.6(a) with the contour sΓ  to be considered. The contour encloses 
and encircles three zeros and one pole. Therefore, we obtain

N 3 1 2,= − = +

and FΓ  completes two clockwise encirclements of the origin in the F s( )-plane, as 
shown in Figure 9.6(b).

For the pole and zero pattern shown and the contour Γs  as shown in 
Figure 9.7(a), one pole is encircled and no zeros are encircled. Therefore, we have

N Z P 1,= − = −

and we expect one encirclement of the origin by the contour ΓF  in the F s( )-plane. 
However, since the sign of N is negative, we find that the encirclement moves in the 
counterclockwise direction, as shown in Figure 9.7(b).
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630 Chapter 9  Stability in the Frequency Domain

Now that we have developed and illustrated the concept of mapping of con-
tours through a function F s( ), we are ready to consider the stability criterion pro-
posed by Nyquist.

9.3 THE NYQUIST CRITERION

To investigate the stability of a control system, we consider the characteristic equation
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∏( )
( ) ( )

( )
= + =

+

+

==

=

1 0.1

1

F s L s

K s z

s p

i

n

i

k

M

k

 (9.13)

For a system to be stable, all the zeros of F s( ) must lie in the left-hand s-plane. 
Thus, we find that the roots of a stable system (the zeros of F s( )) must lie to the left 
of the -axisjω  in the s-plane. Therefore, we choose a contour Γs  in the s-plane that 
encloses the entire right-hand s-plane, and we determine whether any zeros of F s( ) 
lie within Γs  by utilizing Cauchy’s theorem. That is, we plot ΓF  in the F s( )-plane 
and determine the number of encirclements of the origin N. Then the number of 
zeros of F s( ) within the Γs  contour (and therefore, the unstable zeros of F s( )) is

 Z N P.= +  (9.14)

Thus, if P 0,=  as is usually the case, we find that the number of unstable roots of the 
system is equal to N, the number of encirclements of the origin of the F s( )-plane.

The Nyquist contour that encloses the entire right-hand s-plane is shown in 
Figure 9.8. The contour Γs  passes along the -axisjω  from j− ∞ to j ,+ ∞  and this 
part of the contour provides the familiar F j .ω( )  The contour is completed by a 

s
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FIGURE 9.8
Nyquist contour is 
shown as the heavy 
line.
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Section 9.3  The Nyquist Criterion 631

semicircular path of radius r, where r approaches infinity so this part of the contour 
typically maps to a point. This contour ΓF  is known as the Nyquist plot.

The Nyquist criterion is concerned with the mapping of the function

 F s L s1( ) ( )= +  (9.15)

and the number of encirclements of the origin of the F s( )-plane. Alternatively, we 
may define the function

 F s F s L s1 .( ) ( ) ( )′ = − =  (9.16)

The change of functions represented by Equation (9.16) is very convenient be-
cause the loop transfer function L s( ) is typically available in factored form, while 

L s1 ( )+  is not. Then, the mapping of Γs  in the s-plane will be through the func-
tion F s L s( ) ( )′ =  into the L s( )-plane. In this case, the number of clockwise 
 encirclements of the origin of the F s( )-plane becomes the number of clockwise 
encirclements of the 1−  point in the -planeF s L s( ) ( )′ =  because F s F s 1.( ) ( )′ = −  
Therefore, the Nyquist stability criterion can be stated as follows:

A feedback system is stable if and only if the contour ΓL  in the ( )L s -plane 
does not encircle the 1, 0−( )  point when the number of poles of in the  

right-hand s-plane is zero 0=P( ).

When the number of poles of L(s) in the right-hand s-plane is other than zero, 
the Nyquist criterion is stated as follows:

A feedback control system is stable if and only if, for the contour ΓL, the 
 number of counterclockwise encirclements of the 1, 0−( )  point is equal to 

the number of poles of with positive real parts.

The basis for the two statements is the fact that, for the F s L s( ) ( )′ =  mapping, 
the number of roots (or zeros) of L s1 ( )+  in the right-hand s-plane is represented 
by the expression

Z N P.= +

Clearly, if the number of poles of L s( ) in the right-hand s-plane is zero P 0 ,( )=  we 
require for a stable system that N 0,=  and the contour Γp must not encircle the 1−  
point. Also, if P is other than zero and we require for a stable system that Z 0,=  
then we must have N P,= −  or P counterclockwise encirclements.
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632 Chapter 9  Stability in the Frequency Domain

EXAMPLE 9.1 System with two real poles

A unity feedback control system is shown in Figure 9.1, where

 L s
K

s s1 1
.

1 2τ τ
( )

( )( )
=

+ +
 (9.17)

In this case, ,L s G s G sc( ) ( ) ( )=  and we use a contour ΓL  in the L s( )-plane. The 
contour sΓ  in the s-plane is shown in Figure 9.9(a), and the contour ΓL  is shown in 
Figure 9.9(b) for 1,   1 10,1 2τ τ= =  and K 100.=

The -axisjω+  is mapped into the solid line, as shown in Figure 9.9. The -axisjω−  
is mapped into the dashed line, as shown in Figure 9.9. The semicircle with r → ∞ 
in the s-plane is mapped into the origin of the L s( )-plane.

We note that the number of poles of L s( ) in the right-hand s-plane is zero, 
and thus P 0.=  Therefore, for this system to be stable, we require N Z 0,= =  
and the contour must not encircle the 1−  point in the L s( )-plane. Examining 
Figure 9.9(b) and Equation (9.17), we find that, irrespective of the value of K, the 
contour does not encircle the 1−  point, and the system is always stable for all K 
greater than zero. ■

EXAMPLE 9.2 System with a pole at the origin

A unity feedback control system is shown in Figure 9.1, where

τ
=

+( )
( )L s K

s s 1
.

In this single-loop case, ,L s G s G sc( ) ( ) ( )=  and we determine the contour LΓ  in the 
L s( )-plane. The contour sΓ  in the s-plane is shown in Figure 9.10(a), where an in-
finitesimal detour around the pole at the origin is effected by a small semicircle of 
radius ,ε  where 0.ε →  This detour is a consequence of the condition of Cauchy’s 
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Section 9.3  The Nyquist Criterion 633

theorem, which requires that the contour cannot pass through the pole at the origin. 
A sketch of the contour ΓL  is shown in Figure 9.10(b). Clearly, the portion of the 
contour ΓL  from 0ω = +  to ω = +∞  is a plot of the real and imaginary components 
of L j u jω ω υ ω( ) ( ) ( )= + . Let us consider each portion of the Nyquist contour Γs  in 
detail and determine the corresponding portions of the L s( )-plane contour Γ .L

(a) The Origin of the s-Plane. The small semicircular detour around the pole at 
the origin can be represented by setting s e jε= φ  and allowing φ  to vary from 90°−  
at 0ω = − to 90°+  at 0 .ω = +  Because ε approaches zero, the mapping for L s( ) is

 L s
K
e

K
e

j
jlim lim   lim   .

0 0 0ε ε
( ) = =

ε ε φ ε
φ

→ → →
−  (9.18)

Therefore, the angle of the contour in the L s( )-plane changes from 90° at 0ω = − 
to 90°−  at 0 ,ω = +  passing through 0° at 0.ω =  The radius of the contour in the  
L s( )-plane for this portion of the contour is infinite, and this portion of the contour 
is shown in Figure 9.10(b). The points denoted by A, B, and C in Figure 9.10(a) map 
to A, B, and C, respectively, in Figure 9.10(b).

(b) The Portion from 0ω = + to .ω = +∞  The portion of the contour Γs  from 
0ω = +  to ω = +∞  is mapped by the function L jω( ) where

 ω( ) ( )= ω=|L j L s s j  (9.19)

for this part of the contour. This results in the plot with 0ω = +  to ω = +∞  shown 
in Figure 9.10(b). When ω  approaches ,+∞  we have

L j
K

j j
lim lim  

1
ω

ω ωτ
( )

( )
=

+ +ω ω→+∞ →+∞

 
τω

π ωτ( ) ( )= − −
ω→∞

−K
lim   2 tan .

2
1  (9.20)

Therefore, the magnitude approaches zero at an angle of 180°.−
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634 Chapter 9  Stability in the Frequency Domain

(c) The Portion from ω = +∞ to .ω = −∞  The portion of Γs  from ω = +∞  
to ω = −∞  is mapped into the point zero at the origin of the L s( )-plane by the 
function L s( ). The mapping is represented by

 
τ

( ) =φ φ
→∞

=
→∞

−lim   lim
2

2L s
K
r

e
r

s re
j

r
j  (9.21)

as φ  changes from 90°φ = +  at ω = +∞  to 90°φ = −  at .ω = −∞  Thus, the con-
tour moves from an angle of 180°−  at ω = +∞  to an angle of 180°+  at .ω = −∞  
The magnitude of the L s( ) contour when r is infinite is always zero or a constant.

(d) The Portion from ω = −∞ to ω = −0 . The portion of the contour sΓ   
from ω = −∞  to 0ω = − is mapped by the function L jω( )−  where

 ω( ) ( )− = ω=−L j L s s j .  (9.22)

Thus, we obtain the complex conjugate of L j ,ω( )  and the plot for the portion of the 
plot from ω = −∞  to 0ω = − is symmetrical to the plot from ω = +∞  to 0 .ω = +  
This symmetrical plot is shown on the L s( )-plane in Figure 9.10(b).

To investigate the stability of this second-order system, we first note that the 
number of poles, P, within the right-hand s-plane is zero. Therefore, for this system 
to be stable, we require N Z 0,= =  and the contour ΓL  must not encircle the 1−  
point in the L s( )-plane. Examining Figure 9.10(b), we find that irrespective of the 
value of the gain K and the time constant ,τ  the contour does not encircle the 1−  
point, and the system is always stable. We are considering positive values of gain K. 
If negative values of gain are to be considered, we should use K,−  where K 0.≥

We may draw two general conclusions from this example:

1. The plot of the contour ΓL  for the range 0ω−∞ < < − will be the complex 
conjugate of the plot for the range 0 ,ω< < +∞+  and the Nyquist plot of 
L s G s G sc( ) ( ) ( )=  will be symmetrical in the L s( )-plane about the u-axis. 
Therefore, it is sufficient to construct the contour ΓL  for the frequency range 
0 ω< < +∞+  in order to investigate the stability (keeping in mind the detour 
around the origin).

2. The magnitude of L s G s G sc( ) ( ) ( )=  as s re j= φ  and r → ∞ will normally ap-
proach zero or a constant. ■

EXAMPLE 9.3 System with three poles

Consider the unity feedback system shown in Figure 9.1 with the loop transfer 
function

 
1 1

.
1 2

L s G s G s
K

s s s
c τ τ

( ) ( ) ( )
( )( )

= =
+ +

 (9.23)

The Nyquist contour Γs is shown in Figure 9.10(a). This mapping is symmetrical for 
L jω( ) and L jω( )−  so it is sufficient to investigate the -locus.L jω( )  The small semi-
circle around the origin of the s-plane maps into a semicircle of infinite radius, as in 
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Section 9.3  The Nyquist Criterion 635

Example 9.2. Also, the semicircle re jφ  in the s-plane as r → ∞ maps into the point 
L j 0,ω( ) =  as we expect. Therefore, to investigate the stability of the system, it is 
sufficient to plot the portion of the contour LΓ  that is the magnitude and phase of 
L jω( ) for 0 .ω< < +∞+  Thus, when s j ,ω= +  we have

ω
ω ωτ ωτ

τ τ ω ω τ τ

ω τ τ ω τ τ
( )

( )
( )

( )
( )( )

( )
=

+ +
=

− + − −

+ + +1 1

1 1

11 2

1 2
2

1 2
2

1
2

2
2 4

1
2

2
2

L j
K

j j j

K jK

[ 1 ]
tan tan 2 .

4
1 2

2 2 2
1 2

2 1/2

1
1

1
2

K

ω τ τ ω ω τ τ
ωτ ωτ π

( )
( )

( )
( ) ( )=

+ + −
− − −− −

(9.24)

When 0 ,ω = +  the magnitude of the locus is infinite at an angle of 90°−  in the L s( )- 
plane. When ω  approaches ,+∞  we have

 ω
ω τ τ

π ωτ ωτ( ) ( ) ( ) ( )= − − −
ω ω→∞ →∞

− −L jlim lim  
1

/ 2 tan tan
3

1 2

1
1

1
2

 
ω τ τ

π= −
ω→∞
lim  

1
3 2.

3
1 2

 (9.25)

Therefore, L jω( ) approaches a magnitude of zero at an angle of 270°−  [29]. To 
approach at an angle of 270°,−  the locus must cross the u-axis in the L s( )-plane, as 
shown in Figure 9.11. Thus, it is possible to encircle the 1−  point. The number of en-
circlements when the 1−  point lies within the locus, as shown in Figure 9.11, is equal 
to two, and the system is unstable with two roots in the right-hand s-plane. The 

jv

u
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≠L

FIGURE 9.11
Nyquist plot  
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τ

τ

(
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636 Chapter 9  Stability in the Frequency Domain

point where the L s( )-locus intersects the real axis can be found by setting the imag-
inary part of L j u jω υ( ) = +  equal to zero. We then have, from Equation (9.24),

 υ
ω ω τ τ

ω τ τ ω τ τ
( )

( )
( )

=
− −

+ + +
=

1 1

1
0.

2
1 2

2
1
2

2
2 4

1
2

2
2

K
 (9.26)

Thus, 0υ =  when 1 02
1 2ω τ τ− =  or 1 .1 2ω τ τ=  The magnitude of the real part 

of L jω( ) at this frequency is

 
τ τ

ω τ τ ω τ τ
τ τ

τ τ( )
( )

=
− +

+ + +
=

−
+ω τ τ=

u
K K

1
.1 2

2
1
2

2
2 4

1
2

2
2 1/

1 2

1 22
1 2

 (9.27)

Therefore, the system is stable when

K
1,1 2

1 2

τ τ
τ τ
−

+
≥ −

or

 K .1 2

1 2

τ τ
τ τ

≤
+

 (9.28)

Consider the case where 1,1 2τ τ= =  so that

1
.

2
L s G s G s

K

s s
c( ) ( ) ( )

( )
= =

+

Using Equation (9.28), we expect stability when

K 2.≤

The Nyquist plots for three values of K are shown in Figure 9.12. ■
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Section 9.3  The Nyquist Criterion 637

EXAMPLE 9.4 System with two poles at the origin

Consider the unity feedback system shown in Figure 9.1 when

 
1

.
2

L s G s G s
K

s s
c τ

( ) ( ) ( )
( )

= =
+

 (9.29)

When s jω= , we have

 ω
ω ωτ ω τ ω

π ωτ( )
( )

( )=
− +

=
+

− − −L j
K
j

K
1 [ ]

tan .
2 4 2 6 1/2

1  (9.30)

We note that the angle of L jω( ) is always 180°−  or less, and the locus of L jω( ) is 
above the u-axis for all values of .ω  As ω  approaches 0 ,+  we have

 ω
ω

π( ) = −
ω ω→ + → +

L j
K

lim lim .
0 0 2

 (9.31)

As ω  approaches ,+∞  we have

 ω
ω

π( ) = −
ω ω→+∞ →+∞

L j
K

lim lim   3 2.
3

 (9.32)

At the small semicircular detour at the origin of the s-plane where ,s e j∈= φ  we 
have

 lim lim     ,
0 0 2

2L s
K

e j

∈
( ) =

∈ ∈
φ

→ →
−  (9.33)

where 2 2.π φ π− ≤ ≤  Thus, the contour LΓ  ranges from an angle of 0πω+ = − to 
π−  at 0ω = +  and passes through a full circle of 2  radπ  as ω  changes from 0ω = − 

to 0 .ω = +  The complete contour plot of LΓ  is shown in Figure 9.13. Because the 
contour encircles the 1−  point twice, there are two roots of the closed-loop system 
in the right-hand plane, and the system, irrespective of the gain K, is unstable. ■

EXAMPLE 9.5 System with a pole in the right-hand s-plane

Consider the control system shown in Figure 9.14 and determine the stability of the 
system. First, consider the system without derivative feedback, so that K 0.2 =  We 
then have the loop transfer function

 
1

.1L s G s G s
K

s s
c( ) ( ) ( )

( )
= =

−
 (9.34)

Thus, the loop transfer function has one pole in the right-hand s-plane, and there-
fore P 1.=  For this system to be stable, we require N P 1,= − = −  one counter-
clockwise encirclement of the 1−  point. At the semicircular detour at the  origin of 
the s-plane, we let = ∈ φs e j  when 2 2.π φ π− ≤ ≤  Then, when ,= ∈ φs e j  we have
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638 Chapter 9  Stability in the Frequency Domain

 lim   lim   lim 180° .
0 0

1

0

1 φ( ) =
−

= − −
∈ ∈∈ ∈ φ ∈→ → →

L s
K

e
K

j
 (9.35)

Therefore, this portion of the contour LΓ  is a semicircle of infinite magnitude in the 
left-hand L s( )-plane, as shown in Figure 9.15. When s j ,ω=  we have

1
/ 2 tan1 1

2 4 1/2
1L j G j G j

K
j j

K
cω ω ω

ω ω ω ω
π ω

( )
( ) ( ) ( )

( )
( ) ( )= =

−
=

+
− − −−

 
ω ω

π ω
( )

=
+

+ + −K
2 tan .1

2 4 1/2
1  (9.36)
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Section 9.3  The Nyquist Criterion 639

Finally, for the semicircle of radius r as r approaches infinity, we have

 ( ) = φ
→∞

=
→∞

−φlim lim ,1
2

2L s
K
r

e
r

s re
r

j
j  (9.37)

where φ  varies from 2π  to 2π−  in a clockwise direction. Therefore, the contour 
,LΓ  at the origin of the L s( )-plane, varies 2π  rad in a counterclockwise direction. 

The contour LΓ  in the L s( )-plane encircles the 1−  point once in the clockwise 
 direction so N 1,= +  and there is one pole s 1=  in the right-hand plane so P 1.=  
Hence,

 Z N P 2,= + =  (9.38)

and the system is unstable because two roots of the characteristic equation, irre-
spective of the value of the gain K ,1  lie in the right half of the s-plane.

Let us now consider again the system when the derivative feedback is included 
in the system shown in Figure 9.14 K( 0).2 >  Then the loop transfer function is

 
1

1
.1 2L s G s G s

K K s
s s

c( ) ( ) ( )
( )
( )

= =
+
−

 (9.39)

The portion of the contour LΓ  when s e jε= φ  is the same as the system without  
 derivative feedback, as shown in Figure 9.16. However, when s re j= φ  as r 
 approaches infinity, we have

 lim   | lim   ,1 2L s
K K

r
e

r
s re

j
r

j( ) =φ φ
→∞

=
→∞

−  (9.40)

u
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FIGURE 9.15
Nyquist plot for  

( )( ) ( )= − 1 .1L s K s s
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640 Chapter 9  Stability in the Frequency Domain

and the -contourLΓ  at the origin of the L s( )-plane varies π  rad in a  counterclock- 
wise direction. The locus L jω( ) crosses the u-axis at a point determined by 
considering

 
11 2

2
L j G j G j

K K j

j
cω ω ω

ω
ω ω

( ) ( ) ( )
( )

= =
+

− −

 
K K j K K

.
1

2 2
2 2

3
1

2 4

ω ω ω ω

ω ω
( ) ( )

=
− + + −

+
 (9.41)

The -locusL jω( )  intersects the u-axis at a point where the imaginary part of L jω( ) 
is zero. Therefore,

K 02
3ω ω− =

at this point, or ω = K1 .2
2  The value of the real part of L jω( ) at the intersection 

is then

 ω
ω ω

( )
=

− +
+

= −ω
ω

=
=

u
K K

K KK
K

1
.1

2
1 2

2 4
1

1 22
2

2
2

 (9.42)

Therefore, when K K 11 2− < −  or K K 1,1 2 >  the contour LΓ  encircles the 1−  point 
once in a counterclockwise direction, and therefore N 1.= −  Then the number of 
zeros of the system in the right-hand plane is

Z N P 1 1 0.= + = − + =

Thus, the system is stable when K K 1.1 2 >  Often, it may be useful to utilize a com-
puter to plot the Nyquist plot [5]. ■

EXAMPLE 9.6 System with a zero in the right-hand s-plane

Consider the feedback control system shown in Figure 9.1 when

2

1
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Section 9.4  Relative Stability and the Nyquist Criterion 641

We have

 L j
K j

j

K j

j

2

1

2
1 2

.2 2
ω

ω

ω

ω
ω ω( )

( ) ( )
( )

( )
=

−

+
=

−
− +

 (9.43)

As ω  approaches +∞ on the jω+  axis, we have

ω
ω

π( ) = −
ω ω→+∞ →+∞

L j
K

lim   lim   2.

When 5,ω =  we have L j K 2.ω( ) =  At 0 ,ω = +  we have L j K2 .ω( ) = −  The 
Nyquist plot for L j Kω( )  is shown in Figure 9.17. L jω( ) intersects the j1 0− +  point 
when K 1 2.=  Thus, the system is stable for the limited range of gain K0 1 2.< ≤  
When K 1 2,>  the number of encirclements of the 1−  point is N 1.=  The num-
ber of poles of L s( ) in the right half s-plane is P 0.=  Therefore, we have

Z N P 1,= + =

and the system is unstable. Examining the Nyquist plot of Figure 9.17 we conclude 
that the system is unstable for all K 1 2.>  ■

9.4 RELATIVE STABILITY AND THE NYQUIST CRITERION

For the s-plane, we defined the relative stability of a system as the property mea-
sured by the relative settling time of each root or pair of roots. Therefore, a system 
with a shorter settling time is considered relatively more stable. We would like to 
determine a similar measure of relative stability useful for the frequency response 
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Nyquist plot for 
Example 9.6 for 
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642 Chapter 9  Stability in the Frequency Domain

method. The Nyquist criterion provides us with suitable information concerning the 
absolute stability and, furthermore, can be utilized to define and ascertain the rela-
tive stability of a system.

The Nyquist stability criterion is defined in terms of the 1,  0( )−  point on the 
Nyquist plot or the 0-dB, 180°−  point on the Bode plot. The proximity of the 

-locusL jω( )  to this stability point is a measure of the relative stability of a system. 
The critical section of the Nyquist plot for the loop transfer function for several 
values of K with

 
1 11 2

L j G j G j
K

j j j
cω ω ω

ω ωτ ωτ
( ) ( ) ( )

( )( )
= =

+ +
 (9.44)

is shown in Figure 9.18. As K increases, the Nyquist plot approaches the 1−  point and 
eventually encircles the 1−  point for a gain K K .3=  We determined in Section 9.3 
that the locus intersects the u-axis at a point

 u
K

.1 2

1 2

τ τ
τ τ

=
−

+
 (9.45)

Therefore, the system has roots on the -axisjω  when

u K1 or .1 2

1 2

τ τ
τ τ

= − =
+

As K is decreased below this marginal value, the stability is increased, and the mar-
gin between the critical gain K 1 2 1 2τ τ τ τ( )= +  and a gain K K2=  is a measure of 
the relative stability. This measure of relative stability is called the gain margin and 
is defined as the reciprocal of the gain L jω( )  at the frequency at which the phase 
angle reaches 180°−  (that is, v 0= ). The gain margin is a measure of the factor 
by which the system gain would have to be increased for the L jω( ) locus to pass 
through the u 1= −  point. Thus, for a gain K K2=  in Figure 9.18, the gain margin 

u

K3 7 K2 7 K1

-1 -d

0

jn

L( jv)

K(t1 + t2)

K3

K2

K1
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f2

FIGURE 9.18
Nyquist plot for 

ω( )L j  for three 
 values of gain.
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Section 9.4  Relative Stability and the Nyquist Criterion 643

is equal to the reciprocal of L jω( ) when v 0.=  Because ω τ τ= /1 1 2  when the 
phase shift is 180°,−  we have a gain margin equal to

 
1 1

.2 1 2

1 2

1

L j

K
dω

τ τ
τ τ( )

=
+













=
−

 (9.46)

The gain margin can be defined in terms of a logarithmic (decibel) measure as

 
d

d20 log
1

20 log   dB.= −  (9.47)

For example, when 1,1 2τ τ= =  the system is stable when K 2.≤  Thus, when 
K K 0.5,2= =  the gain margin is equal to

 
d

K1
4,2 1 2

1 2

1
τ τ

τ τ
=

+













=
−

 (9.48)

or, in logarithmic measure,

 20 log 4 12 dB.=  (9.49)

Therefore, the gain margin indicates that the system gain can be increased by a fac-
tor of four (12 dB) before the stability boundary is reached.

The gain margin is the increase in the system gain when phase = −180° that 
will result in a marginally stable system with intersection of the 0− j1 +   

point on the Nyquist plot.

An alternative measure of relative stability can be defind in terms of the phase 
margin between a specific and a system that is marginally stable. The phase margin 
is defined as the phase angle through which the L jω( ) locus must be rotated so that 
the unity magnitude L j 1ω =( )  point will pass through the (   )1, 0−  point in the 

 L jω( ) plane. This measure of relative stability is equal to the additional phase lag 
required before the system becomes unstable. This information can be determined 
from the Nyquist plot shown in Figure 9.18. For a gain K K ,2=  an additional 
phase angle, ,2φ  may be added to the system before the system becomes unstable. 
Similarly, for the gain K ,1  the phase margin is equal to ,1φ  as shown in Figure 9.18.

The phase margin is the amount of phase shift of the ω( )L j   at unity 
 magnitude that will result in a marginally stable system with intersection of  

the  1 + 0− j  point on the Nyquist plot.

The gain phase margins are easily evaluated from the Bode plot. The critical 
point for stability is u 1,   0υ= − =  in the L j plane,ω( ) −  which is equivalent to a log-
arithmic magnitude of 0 dB and a phase angle of 180° (or 180°− ) on the Bode plot.
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644 Chapter 9  Stability in the Frequency Domain

It is relatively straightforward to examine the Nyquist plot of a minimum-phase 
system. Special care is required with a nonminimum-phase system, however, and 
the complete Nyquist plot should be studied to determine stability.

The Bode plot associated with the loop transfer function

 
1

1 0.2 1
L j G j G j

j j j
cω ω ω

ω ω ω
( ) ( ) ( )

( )( )
= =

+ +
 (9.50)

is shown in Figure 9.19. The phase angle when the logarithmic magnitude is 0 dB is 
equal to 137°− . Thus, the phase margin is 180° 137° 43°.− =  The logarithmic mag-
nitude when the phase angle is 180°−  is 15 dB,−  and therefore the gain margin is 
G M. . 15 dB= .

The frequency response of a system can be graphically portrayed on the 
logarithmic-magnitude–phase-angle diagram. For the log-magnitude–phase dia-
gram, the critical stability point is the 0-dB, 180°−  point, and the gain margin 
and phase margin can be easily determined and indicated on the diagram. The 
log-magnitude–phase locus of the loop transfer function, L jω( ), in Equation 
(9.50) is shown in Figure 9.20. The indicated phase margin is P M. . 43°= , and the 
gain margin is G M. . 15=  dB. For comparison, the locus for

 
1

1
2 2

L j G j G j
j j

cω ω ω
ω ω

( ) ( ) ( )
( )

= =
+

 (9.51)

is also shown in Figure 9.20. The gain margin for L j2 ω( ) is G M. . 5.7=  dB, and 
the phase margin for L2  is P M. . 20°= . Clearly, the feedback system L j2 ω( ) is 
 relatively less stable than the system L j .1 ω( )  However, the question still remains: 
How much less stable is the system L j2 ω( ) in comparison to the system L j ?1 ω( )  
In the following, we answer this question for a second-order system, and the gen-
eral  usefulness of the relation that we develop will depend on the presence of 
 dominant roots.
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Section 9.4  Relative Stability and the Nyquist Criterion 645

Let us now determine the phase margin of a second-order system and relate 
the phase margin to the damping ratio ζ  of an underdamped system. Consider the 
loop-transfer function of the system shown in Figure 9.1, where

 
2

.
2

L s G s G s
s s

c
n

n

ω
ζω

( ) ( ) ( )
( )

= =
+

 (9.52)

The characteristic equation for the closed-loop second-order system is

 ζω ω+ + =2 0.2 2s sn n  (9.53)

Therefore, the closed-loop roots are

s jn n 1 .2ζω ω ζ= − ± −

The frequency domain form of Equation (9.52) is

 ω
ω

ω ω ζω
( )

( )
=

+ 2
.

2
L j

j j
n

n
 (9.54)

The magnitude of the frequency response is equal to 1 at the crossover frequency 
c;ω  thus,
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1.
2

2 2 2 1 2
n

c c n

ω

ω ω ζ ω( )+
=  (9.55)
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646 Chapter 9  Stability in the Frequency Domain

Rearranging Equation (9.55), we obtain

 ω ζ ω ω ω( ) ( )+ − =4 0.2 2 2 2 2 4
c n c n  (9.56)

Solving for cω  yields
ω
ω

ζ ζ( )= + −4 1 2 .
2

2
4 1/2 2c

n

The phase margin for this system is

c

n
180° 90° tan

2
pm

1φ
ω
ζω

= − − −

90° tan
1

2
4 1 21 4 1 2 2

1 2

ζ
ζ ζ( )= − + −















−

 tan
2

4 1 2
.1

4 1 2 1 2
ζ( )

=
+ −





−  (9.57)

Equation (9.57) is the relationship between the damping ratio ζ  and the phase mar-
gin ,pmφ  which provides a correlation between the frequency response and the time 
response. A plot of ζ  versus pmφ  is shown in Figure 9.21. The actual curve of ζ  
 versus pmφ  can be approximated by the dashed line shown in Figure 9.21. The slope 
of the linear approximation is equal to 0.01, and therefore an approximate linear 
relationship between the damping ratio and the phase margin is

 0.01 ,pmζ φ=  (9.58)

where the phase margin is measured in degrees. This approximation is reasonably 
accurate for 0.7ζ ≤  and is a useful index for correlating the frequency response 
with the transient performance of a system. Equation (9.58) is a suitable approxi-
mation for a second-order system and may be used for higher-order systems if we 
can assume that the transient response of the system is primarily due to a pair of 
dominant underdamped roots. The approximation of a higher-order system by a 
dominant second-order system is a useful approximation. Although it must be used 
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Section 9.4  Relative Stability and the Nyquist Criterion 647

with care, control engineers find this approach to be a simple, yet fairly accurate, 
technique of setting the specifications of a control system.

Therefore, for the system with a loop transfer function, L j ,ω( )  in Equation (9.50) 
we found the phase margin P M. . 43°= . Thus, the damping ratio is approximately

 0.01 0.43.pmζ φ =�  (9.59)

Then the percent overshoot to a step input for this system is approximately

 P O. . 22%.=  (9.60)

It is possible to calculate and plot the phase margin and gain margin versus the gain 
K for a specified L j .ω( )  Consider the system of Figure 9.1 with the loop transfer 
function

 
4

.2L s G s G s H s
K

s s
c( ) ( ) ( ) ( )

( )
= =

+
 (9.61)

The gain for which the system is marginally stable is K K* 128.= =  The gain 
margin and the phase margin plotted versus K are shown in Figures 9.22(a) and 
(b), respectively. The gain margin is plotted versus the phase margin, as shown 
in Figure  9.22(c). The phase margin and the gain margin are suitable measures 
of the performance of the system. We will normally emphasize phase margin as a 
frequency- domain specification.
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648 Chapter 9  Stability in the Frequency Domain

The phase margin is a frequency response measure for indicating the expected 
transient performance of a system. Another useful index of performance in the 
frequency domain is ωMp , the maximum magnitude of the closed-loop frequency 
response, and we shall now consider this practical index.

9.5 TIME-DOMAIN PERFORMANCE CRITERIA IN THE FREQUENCY DOMAIN

The transient performance of a feedback system can be estimated from the closed-
loop frequency response. The closed-loop frequency response is the frequency re-
sponse of the closed-loop transfer function T j .ω( )  The open- and closed-loop fre-
quency responses for a single-loop system are related. Consider the closed-loop 
system:

  
1

.
Y j

R j
T j M e

G j G j

G j G j
j c

c

ω
ω

ω ω
ω ω

ω ω
( )
( )

( )
( ) ( )

( ) ( )
( )= = =

+
φ ω( )  (9.62)

The Nyquist criterion and the phase margin index are defined for the loop transfer 
function .L j G j G jcω ω ω( ) ( ) ( )=  However, as we found in Section 8.2, the maximum 
magnitude of the closed-loop frequency response can be related to the damping 
ratio of a second-order system of

 2 1 , 0.707.2
1

M Tp rω ζ ζ ζ( )( )= = − <ω
−

 (9.63)

Because this relationship between the closed-loop frequency response and the tran-
sient response is a useful one, we would like to be able to determine Mpω  from the 
plots completed for the investigation of the Nyquist criterion. That is, we want to 
be able to obtain the closed-loop frequency response from the open-loop frequency 
response. Of course, we could determine the closed-loop roots of L s1 ( )+  and plot 
the closed-loop frequency response. However, once we have invested all the effort 
necessary to find the closed-loop roots of a characteristic equation, then a closed-
loop frequency response is not necessary.

The relation between the closed-loop and open-loop frequency response is il-
luminated on the magnitude-phase plot when considering unity feedback systems. 
In the unity feedback case, key performance indicators such as Mpω  and rω  can be 
determined from the magnitude-phase plot using circles of constant magnitude of 
the closed-loop transfer function. These circles are known as constant M-circles.

The relationship between T jω( ) and L jω( ) is readily obtained in terms of com-
plex variables in the -plane.L s( )  The coordinates of the -planeL s( )  are u and υ, and 
we have

 .L j G j G j u jcω ω ω υ( ) ( ) ( )= = +  (9.64)

Therefore, the magnitude of the closed-loop transfer function is

 
1 1
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c
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 (9.65)
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Section 9.5  Time-Domain Performance Criteria in the Frequency Domain 649

Squaring Equation (9.65) and rearranging, we obtain

 M u M M u M1 1 2 .2 2 2 2 2 2υ( ) ( )− + − − =  (9.66)

Dividing Equation (9.66) by M1 2−  and adding the term M M12 2 2( )−



  to both 

sides, we have

 u
M u

M
M

M
M

M
M

M
2

1 1 1 1
.2 2

2

2

2

2

2 2

2

2

2

2

υ+ −
−

+
−









 =

−









 +

−









  (9.67)

Rearranging, we obtain

 u
M

M
M

M1 1
,

2

2

2
2

2

2

υ−
−









 + =

−






  (9.68)

which is the equation of a circle on the (u, υ)-plane with the center at

u
M

M1
, 0.

2

2
υ=

−
=

The radius of the circle is equal to ( )/ −M M1 .2  Therefore, we can plot several 
circles of constant magnitude M in the -plane.L s( )  Several constant M circles are 
shown in Figure 9.23. The circles to the left of u 1 2= −  are for M 1,>  and the 
circles to the right of u 1 2= −  are for M 1.<  When M 1,=  the circle becomes the 
straight line u 1 2,= −  which is evident from inspection of Equation (9.66).

The frequency response for a system is shown in Figure 9.24 for two gain values 
where K K .2 1>  The frequency response curve for the system with gain K1 is tan-
gent to magnitude circle M1 at a frequency r .1ω  Similarly, the frequency response 
curve for gain K2 is tangent to magnitude circle M2  at the frequency r .2ω  Therefore, 
the closed-loop frequency response magnitude curves are estimated as shown in  
Figure 9.25. Hence, we can obtain the closed-loop frequency response of a system 
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FIGURE 9.23
Constant ω( )M  
circles.
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650 Chapter 9  Stability in the Frequency Domain

from the -plane.L s( )  If the maximum magnitude, ωMp , is the only information 
desired, then it is sufficient to read this value directly from the Nyquist plot. The 
maximum magnitude of the closed-loop frequency response, ωMp , is the value of 
the M circle that is tangent to the -locus.L jω( )  The point of tangency occurs at 
the frequency ωr, the resonant frequency. The complete closed-loop frequency re-
sponse of a system can be obtained by reading the magnitude M of the circles that 
the -locusL jω( )  intersects at several frequencies. Therefore, the system with a gain 
K K2=  has a closed-loop magnitude M1 at the frequencies 1ω  and .2ω  This magni-
tude is read from Figure 9.24 and is shown on the closed-loop frequency response in 
Figure 9.25. The bandwidth for K1 is shown as B .1ω

It may be empirically shown that the crossover frequency cω  on the open-loop 
Bode plot is related to the closed-loop system bandwidth Bω  by the approximation 
for ζ  in the range 0.2 to 0.8:

 B c1.6 .ω ω=  (9.69)

In a similar manner, we can obtain circles of constant closed-loop phase angles. 
Thus, for Equation (9.62), the angle relation is

φ ω υ υ= = + + +T j u j u j( ) ( ) / (1 )

 
u u

tan tan
1

.1 1υ υ
=







 −

+








− −  (9.70)

Taking the tangent of both sides and rearranging, we have

 u u
N

0,2 2υ
υ

+ + − =  (9.71)
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Section 9.5  Time-Domain Performance Criteria in the Frequency Domain 651

where N tan  .φ=  Adding the term N1 4 1 1 2+



  to both sides of the equation and 

simplifying, we obtain

 u
N N

1
2

1
2

1
4

  1
1

,
2 2

2
υ+







 + −







 = +







  (9.72)

which is the equation of a circle with its center at u 1 2= −  and N1 2 .υ ( )= +  
The radius of the circle is equal to 1 2[1 1 ]2 1 2N+ . Therefore, the constant phase 
angle curves can be obtained for various values of N in a manner similar to the  
M circles.

The constant M and N circles can be used for analysis and design in the L s( )- 
plane. However, it is much easier to obtain the Bode plot for a system, and it would 
be preferable if the constant M and N circles were translated to a logarithmic gain 
phase. N. B. Nichols transformed the constant M and N circles to the log-magnitude–
phase diagram, and the resulting chart is called the Nichols chart [3, 7]. The M and 
N circles appear as contours on the Nichols chart shown in Figure 9.26. The coordi-
nates of the log-magnitude–phase diagram are the same as those used in Section 8.5. 
However, superimposed on the log-magnitude–phase plane we find constant M and 
N lines. The constant M lines are given in decibels and the N lines in degrees. An 
example will illustrate the use of the Nichols chart to determine the closed-loop 
frequency response.

EXAMPLE 9.7 Stability using the Nichols chart

Consider a unity feedback system with a loop transfer function in Equation (9.50). 
The frequency response of L jω( ) is plotted on the Nichols chart and is shown in 
Figure 9.27. The maximum magnitude, ωMp , is equal to 2.5 dB+  and occurs at a 
frequency r 0.8.ω =  The closed-loop phase angle at rω  is equal to 72°.−  The 3-dB 
closed-loop bandwidth, where the closed-loop magnitude is 3 dB,−  is equal to 

B 1.33,ω =  as shown in Figure 9.27. The closed-loop phase angle at Bω  is equal  
to 142°.−  ■

EXAMPLE 9.8 Third-order system

Let us consider a unity feedback system with a loop transfer function

 
0.64

1
,

2
L s G s G s

s s s
c ( )

( ) ( ) ( )= =
+ +

 (9.73)

where 0.5ζ =  for the complex poles. The Nichols chart for this system is shown in 
Figure 9.28. The phase margin for this system as it is determined from the Nichols 
chart is 30°. On the basis of the phase, we use Equation (9.58) to estimate the sys-
tem damping ratio as 0.30.ζ =  The maximum magnitude is equal to 9 dB+  occur-
ring at a frequency r 0.88.ω =  Therefore,

20 log M 9 dB, or 2.8.Mp p= =ω ω
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Solving Equation (9.63), we find that 0.18.ζ =  We are confronted with two con-
flicting damping ratios, where one is obtained from a phase margin measure and 
another from a peak frequency response measure. In this case, we have discovered 
an example in which the correlation between the frequency domain and the time 
domain is unclear and uncertain. This apparent conflict is caused by the nature of 
the frequency response which slopes rapidly toward the 180° line from the 0-dB 
axis. If we determine the roots of the characteristic equation for L s1 ,( )+  we obtain

 s s s0.77 0.225 0.826 0.2( )( )+ + + =  (9.74)

The damping ratio of the complex conjugate roots is equal to 0.124, where the com-
plex roots do not dominate the response of the system. Therefore, the real root will 
add some damping to the system, and we might estimate the damping ratio to be 
approximately the value determined from the Mpω  index; that is, 0.18.ζ =  A de-
signer must use the frequency-domain-to-time-domain correlations with caution. 
However, we are usually safe if the lower value of the damping ratio resulting from 
the phase margin and the Mpω  relation is used for analysis and design purposes. ■

Three 
points on curve are 
shown for ω = 0.5, 
0.8, and 1.35, 
respectively.
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654 Chapter 9  Stability in the Frequency Domain

The Nichols chart can be used for design purposes by altering the frequency re-
sponse of the loop transfer fraction, L s G s G sc( ) ( ) ( )= , so we can obtain a desirable 
phase margin and ωMp . The system gain K is readily adjusted to provide a suitable 
phase margin and Mpω  by inspecting the Nichols chart. For example, let us consider 
again Example 9.8, where

 
1

.
2

L s G s G s
K

s s s
c ( )

( ) ( ) ( )= =
+ +

 (9.75)

The G j G jc ω ω( ) ( )-locus on the Nichols chart for K 0.64=  is shown in Figure 9.28. 
Let us determine a suitable value for K so that the system damping ratio is greater 
than 0.30. From Equation (9.63), we find that it is required that Mpω  be less than 
1.75 (4.9 dB). From Figure 9.28, we find that the -locusG j G jc ω ω( ) ( )  will be tangent 
to the 4.9-dB curve if the magnitude is lowered by a factor of 2.2 dB. Therefore, K 
should be reduced by 1.28. Thus, the gain K must be less than 0.64 1.28 0.50=  if the 
system damping ratio is to be greater than 0.30.
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Section 9.7  The Stability of Control Systems with Time Delays 655

9.6 SYSTEM BANDWIDTH

The bandwidth of the closed-loop control system is an excellent measure of the 
response of the system. In systems where the low-frequency magnitude is 0 dB on 
the Bode plot, the bandwidth is measured at the 3-dB−  frequency. The speed of 
response to a step input will be roughly proportional to B,ω  and the settling time is 
inversely proportional to B.ω  Thus, we seek a large bandwidth consistent with rea-
sonable system components [12].

Consider the two second-order systems with closed-loop transfer functions

 T s
s s

T s
s s

100
10 100

and
900

30 900
.1 2 2 2( ) ( )=

+ +
=

+ +
 (9.76)

Both systems have 0.5ζ = . The frequency response of both closed-loop systems is 
shown in Figure 9.29(a). The natural frequency is n 101ω =  and n 302ω =  for systems 
T s1( ) and T s ,2 ( )  respectively. The bandwidth is B 12.71ω =  and B 38.12ω =  for sys-
tems T s1( ) and T s ,2 ( )  respectively. Both systems have a P O. . 16%= , but T s1( ) has a 
peak time of 0.12=Tp  s compared to 0.36=Tp  for T s ,2 ( )  as shown in Figure 9.29(b). 
Also, note that the settling time for T s2 ( ) is Ts 0.27=  s, while the settling time for 
T s1( ) is Ts 0.8=  s. The system with a larger bandwidth provides a faster response.

9.7 THE STABILITY OF CONTROL SYSTEMS WITH TIME DELAYS

Many control systems have a time delay within the closed loop of the system that 
affects the stability. A time delay is the time interval between the start of an event 
at one point in a system and its resulting action at another point in the system. 
Fortunately, the Nyquist criterion can be utilized to determine the effect of the time 
delay on the relative stability of the feedback system. A pure time delay, without 
attenuation, is represented by the transfer function

 ,G s ed
sT( ) = −  (9.77)

where T is the delay time. The Nyquist criterion remains valid for a system with a 
time delay because the factor e sT−  does not introduce any additional poles or zeros 
within the contour. The factor adds a phase shift to the frequency response without 
altering the magnitude curve.

This type of time delay occurs in systems that have a movement of a material 
that requires a finite time to pass from an input or control point to an output or 
measured point [8, 9]. For example, a steel rolling mill control system is shown in 
Figure 9.30. The motor adjusts the separation of the rolls so that the thickness error 
is minimized. If the steel is traveling at a velocity υ, then the time delay between the 
roll adjustment and the measurement is

T
d

.
υ

=

Therefore, to have a negligible time delay, we must decrease the distance to the 
measurement and increase the velocity of the flow of steel. Usually, we cannot elim-
inate the effect of time delay; thus, the loop transfer function is [10]

 .L s G s G s ec
sT( ) ( ) ( )= −  (9.78)
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656 Chapter 9  Stability in the Frequency Domain

The frequency response of this system is obtained from

 .L j G j G j ec
j Tω ω ω( ) ( ) ( )= ω−  (9.79)

The frequency response of the loop transfer function is graphed on the Nyquist plot 
and the stability ascertained relative to the 1−  point. Alternatively, we can obtain 
the Bode plot including the delay factor and investigate the stability relative to the 
0-dB, 180°−  point. The delay factor e j Tω−  results in a phase shift

 Tφ ω ω( ) = −  (9.80)
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Section 9.7  The Stability of Control Systems with Time Delays 657

and is readily added to the phase shift resulting from .G j G jc ω ω( ) ( )  Note that the 
angle is in radians in Equation (9.80). An example will show the simplicity of this 
approach on the Bode diagram.

EXAMPLE 9.9 Liquid level control system

A level control system is shown in Figure 9.31(a) and the block diagram in Figure 
9.31(b) [11]. The time delay between the valve adjustment and the fluid output is 
T d .υ=  Therefore, if the flow rate is 5  m s,3υ =  and the distance is equal to 
d 5 m= , then we have a time delay T 1 s.=  The loop transfer function is then

L s G s G s G s eA f
sT( ) ( ) ( ) ( )= −

 
s s s s

e sT31.5

1 30 1 9 3 1
  .

2( ) ( )( )( )
=

+ + + +





−  (9.81)

The Bode plot for this system is shown in Figure 9.32. The phase angle is shown 
both for the denominator factors alone and with the additional phase lag due to the 
time delay. The logarithmic gain curve crosses the 0-dB line at 0.8.ω =  Therefore, 
the phase margin of the system without the pure time delay would be P M. . 40°.=  
However, with the time delay added, we find that the phase margin is equal to 
P M. . 3°,= −  and the system is unstable. Consequently, the system gain must be 
reduced in order to provide a reasonable phase margin. To provide a phase mar-
gin of P M. . 30°= , the gain would have to be decreased by a factor of 5 dB, to 
K 31.5 1.78 17.7.= =

A time delay e sT−  in a feedback system introduces an additional phase lag and 
results in a less stable system. Therefore, as pure time delays are unavoidable in 
many systems, it is often necessary to reduce the loop gain in order to obtain a 
stable response. However, the cost of stability is the resulting increase in the steady-
state error of the system as the loop gain is reduced. ■

The systems considered by most analytical tools are described by rational func-
tions (that is, transfer functions) or by a finite set of ordinary constant coefficient 
differential equations. Since the time-delay is given by − ,e sT  where T is the delay, 
we see that the time delay is nonrational. It would be helpful if we could obtain a ra-
tional function approximation of the time-delay. Then it would be more convenient 
to incorporate the delay into the block diagram for analysis and design purposes.

The Padé approximation uses a series expansion of the transcendental function 
e sT−  and matches as many coefficients as possible with a series expansion of a ra-
tional function of specified order. For example, to approximate the function e sT−  
with a first-order rational function, we begin by expanding both functions in a series 
(actually a Maclaurin series1),

 e sT
sT sT sT sTsT 1
2! 3! 4! 5!

,
2 3 4 5( ) ( ) ( ) ( )

= − + − + − +− �  (9.82)

( ) ( ) ( ) ( )= + + + �f s f f fs s0 0 01
1 ! 2 !

2
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and

�.1 0

1 0

0
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0 1 0 1

0
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2n s n
d s d

n
d
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s
d n

d
d n
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s
+
+

= +
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+ −










+

For a first-order approximation, we want to find n n d,   ,   ,0 1 0  and d1 such that

e
n s n
d s d

sT .1 0

1 0
≈

+
+

−

Equating the corresponding coefficients of the terms in s, we obtain the relationships

1,   ,  
2

,   .0

0

1

0

0 1

0
2

1
2

0

0
3

1 1

0
2

2
�

n
d

n
d

n d
d

T
d n

d
d n
d

T
= − = − − =

Solving for n d n,   ,   ,0 0 1  and d1 yields

n d d
d T

n
d T

,  
2

,   and
2

.0 0 1
0

1
0= = = −

Setting d 10 =  and solving yields

 ≈
+
+

=
− +

+
−e

n s n
d s d

s

s
sT

T

T

  1

  1
.1 0

1 0

2

2

 (9.83)

A series expansion of Equation (9.83) yields

 
+
+

=
− +

+
= − + − + �

n s n
d s d

s

s
Ts

T s T s
T

T

  1

  1
1

2 4
.1 0

1 0

2 2 3 3
2

2

 (9.84)

Comparing Equation (9.84) to Equation (9.82), we verify that the first three terms 
match. So for small s, the Padé approximation is a reasonable representation of the 
time-delay. Higher-order rational functions can be obtained.

9.8 DESIGN EXAMPLES

In this example, we present three illustrative examples. The first example we con-
sider is a design problem that supports green engineering and involves controlling 
the pitch angles of blades on large-scale wind turbines. The wind speeds are assumed 
to be high enough so that the pitch angle of the turbine blades can be prescribed 
properly to shed excess power to regulate the generated wind power at desired lev-
els. The second example is a remotely controlled reconnaissance vehicle control 
design. The Nichols chart is illustrated as a key element of the design of a controller 
gain to meet time-domain specifications. The third example considers the control 
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660 Chapter 9  Stability in the Frequency Domain

of a hot ingot robot used in manufacturing. The goal is to minimize the tracking 
error in the presence of disturbances and a known time-delay. The design process 
is illustrated, leading to a PI controller that meets a mixture of time-domain and 
frequency-domain performance specifications.

EXAMPLE 9.10 PID control of wind turbines for clean energy

Wind energy is currently the fastest-growing energy source in the world. It is a 
cost-effective, environmentally friendly solution to energy needs. Modern wind tur-
bines are large, flexible structures operating in uncertain environments as wind di-
rection and flow constantly changes. There are many controls challenges associated 
with efficient energy capture and delivery for wind turbines. In this design prob-
lem, we consider the so-called “above-rated” operational mode of the wind turbine. 
In this mode, the wind speeds are high enough that the pitch angle of the turbine 
blades needs to be prescribed properly to shed excess power so that the generated 
wind power is regulated at desired levels. This mode of operation readily permits 
the application of linear control theory.

Wind turbines are generally constructed in either a vertical axis configuration 
or a horizontal axis configuration, as shown in Figure 9.33. The horizontal axis con-
figuration is the most common for energy production today. A horizontal axis wind 
turbine is mounted on a tower with two or three blades rotating placed atop a tall 
tower and driving an electric generator. The high placement of the blades takes ad-
vantage of the higher wind velocities. The vertical axis wind turbines are generally 
smaller and present a reduced noise footprint.

When there is sufficient wind, in order to regulate the rotor speed of the turbine 
shaft and thus the generator, the pitch of the wind turbine blades is collectively ad-
justed using a blade pitch motor, as illustrated in Figure 9.34(a). A simplified model 
of the turbine from the pitch command to the rotor speed is obtained by including 
a generator mode represented by a first-order transfer function in series with the 

(a) (b)

FIGURE 9.33
(a) Vertical axis 
wind turbine 
(photo courtesy of 
Visions of America/
SuperStock), and 
(b) horizontal axis 
wind turbine (photo 
courtesy of David 
Williams/Alamy).
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Section 9.8  Design Examples 661

drive train compliance represented by a second-order transfer function [32]. The 
third-order transfer function of the turbine is given by

 
τ

ω

ζω ω
( ) =

+










 + +

















1
1 2

,
2

2 2
G s

s

K

s s
n

n n

g

g g

 (9.85)

where K 7000= − , g 5τ =  s, g 0.005ζ = , and ng 20ω =  rad/s. The input to the tur-
bine model is the commanded pitch angle (in radians) plus disturbances and the 
output is the rotor speed (in rpm). For commercial wind turbines, pitch control is 
often achieved using a PID controller, as shown in Figure 9.34(b). Selecting a PID 
controller requires selecting the coefficients of the controller KP, KI , and KD. The 
objective is to design the PID system for fast and accurate control. The control 
specifications are gain margin G M. . 6≥  dB and phase margin P M30° . . 60°≤ ≤ . 
The specifications for the transient response are rise time Tr 41 <  s and time to peak 
TP 10<  s.

The output sω( ) shown in Figure 9.34 is actually the deviation from the rated 
speed of the turbine. At the rated speed, the pitch control of the blades is used to 
regulate the rotor speed. In the linear setting described by Figure 9.34, the input 
desired rotor speed sd 0ω ( ) =  and the goal is to regulate the output to zero in the 
presence of disturbances.

The loop transfer function is

1 2
.2

2

2 2
L s K K

s K K s K K

s s s s
n D

P D I D

n n
g

g g

ω
τ ζω ω( )

( ) ( )
( )

( )
=

+ +

+ + +

The objective is to determine the gains ,   ,K KP I  and KD  to meet the control design 
specifications. The phase margin specification can be used to determine a target 
damping of the dominant roots yielding

P M. .
100

0.3,ζ = =

(a)

(b)

-

+

+

+Desired
rotor speed

vd(s)
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rotor speed
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FIGURE 9.34
(a) Block diagram 
model of the wind 
turbine system. 
(b) Block diagram 
for control system 
design.
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662 Chapter 9  Stability in the Frequency Domain

where we target for a phase margin P M. . 30°= . Then we utilize the rise time de-
sign formula to obtain a target natural frequency of the dominant roots. To this end, 
we use the design formula

2.16 0.6
4 s1Tr

n

ζ
ω

=
+

<

to obtain n 0.31ω >  when 0.3ζ = . For design purposes, we choose n 0.4ω =  and 
0.3ζ =  for the dominant poles. As a final check on the target damping and natural 

frequency, we verify that the time to peak specification is reachable with n 0.4ω =  
and 0.3ζ = . The rise time and time to peak are estimated to be

2.16 0.6
3 s and

1
8 s,

21T Tr
n

P
n

ζ
ω

π

ω ζ
=

+
= =

−
=

which meet the design specification. First we locate the PID zeros in the left half-
plane in the desired performance region defined by nω  and ζ  by specifying the ra-
tios K KP D  and K KI D and select the gain KD  to meet the phase margin and gain 
margin specifications using frequency response plots (that is, Bode plot).

The Bode plot is shown in Figure 9.35, where 5K KP D =  and 20K KI D = . 
The value of 6.22 10 6KD = − × −  was determined by observing the effects of vary-
ing the gain on the phase and gain margins and selecting the gain that satisfied the 
specifications as closely as possible. The PID controller is then given by

G s
s s

s
c 6.22 10

5 20
.6

2
( ) = − ×

+ +











−

The final design results in a phase margin of P M. . 32.9°=  and a gain margin 
of G M. . 13.9=  dB. The step response is shown in Figure 9.36. The rise time 
T sr 3.2 1 =  and the time to peak TP 7.6=  s. All the specifications are satisfied. 
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Section 9.8  Design Examples 663

The dominant poles of the closed-loop feedback control system are n 0.41ω =  and 
0.29ζ = . This is very close to the design values which demonstrates the effective-

ness of the  design formulas even when the system under consideration is not a 
second-order system.

The response of the wind turbine to an impulsive disturbance is shown in 
Figure 9.37. In this numerical experiment, the disturbance (possibly a wind gust) 
imparts a step change in the wind turbine blade pitch angle. In practice, the 
 disturbance would lead to varying pitch angle disturbances on the each blade, but 
for purposes of demonstration, we model this as a single step disturbance input. 
The result of the disturbance is a change on the rotor speed from the nominal that 
is brought back to zero in about 25 seconds. ■

Time (s)

R
ot

or
 s

pe
ed

 (
rp

m
)

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Tr1 = 3.2

Tp = 7.6

FIGURE 9.36
Closed-loop step 
response to a unit 
step showing rise 
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peak specifications 
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664 Chapter 9  Stability in the Frequency Domain

EXAMPLE 9.11 Remotely controlled vehicle

One concept of a remotely controlled vehicle is shown in Figure 9.38(a), R s( ) and 
a proposed speed control system is shown in Figure 9.38(b). The desired speed is 
transmitted by radio to the vehicle; the disturbance T sd ( ) represents hills and rocks. 
The goal is to achieve good overall control with a low steady-state error and a 
low-overshoot response to step commands, R s( ) [13].

First, to achieve a low steady-state error for a unit step command, we calculate

e sE s s
R s

L s
ss

s s
lim   lim   

10 0
( ) ( )

( )
= =

+











→ →

L s K
1

1
1

1 2
,

( )
=

+
=

+

where .L s G s G sc( ) ( ) ( )=  If we select K 20,=  we will obtain a steady-state error 
of 9% of the magnitude of the input command. Using K 20,=  we reformulate 
L s G s G sc( ) ( ) ( )=  for the Bode plot calculations, obtaining

 
10 1 2

1 1 2 4
.

2
L s G s G s

s

s s s
c ( )

( )
( ) ( ) ( )

( )
= =

+
+ + +

 (9.86)

(b)

(a)

G(s)

-

+ Y(s)
Speed

K(s + 2)
s + 1

1

s2 + 2s + 4

R(s)
Desired
speed

Td(s)Gc(s)
Controller

-

+FIGURE 9.38
(a) Remotely 
controlled recon-
naissance vehicle. 
(b) Speed control 
system.
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Section 9.8  Design Examples 665

The Nichols chart for K 20=  is shown in Figure 9.39. Examining the Nichols chart, 
we find that 12 dBMp =ω  and the phase margin is P M. . 15°= . The step response 
of this system is underdamped, and we use Equation (9.58) to compute 0.15ζ �  to 
predict an excessive overshoot of approximately P O. . 61%= .

To reduce the percent overshoot to a step input, we can reduce the gain to 
achieve a predicted overshoot. To limit the percent overshoot to P O. . 25%= ,  
we  select a desired ζ  of the dominant roots as 0.4 and thus require 1.35Mp =ω  
(from Equation (9.63)) or 20 log M 2.6 dB.p =ω  To lower the gain, we will move 
the frequency response vertically down on the Nichols chart, as shown in Figure 
9.39. At 2.8,1ω =  we just intersect the 2.6-dB closed-loop curve. The reduction 
(vertical drop) in gain is equal to 13 dB, or a factor of 4.5. Thus, K 20 4.5 4.44.= =  
For this reduced gain, the steady-state error is

e
1

1 4.4 2
0.31,ss =

+
=

so that we have a e 31%ss =  steady-state error.

8
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666 Chapter 9  Stability in the Frequency Domain

The actual step response when K 4.44,=  as shown in Figure 9.40, has an 
overshoot of P O. . 32%= . If we use a gain of 10, we have a percent overshoot of 
P O. . 48%=  with a steady-state error of e 17%ss = . The performance of the system 
is summarized in Table 9.2. As a suitable compromise, we select K 10=  and draw 
the frequency response on the Nichols chart by moving the response for K 20=  
down by 20 log 2 6 dB,=  as shown in Figure 9.39.

Examining the Nichols chart for K 10,=  we have 7 dB,Mp =ω  and a phase 
margin of P M. . 26°= . Thus, we estimate a ζ  for the dominant roots of 0.26ζ =  
which should result in an overshoot to a step input of P O. . 43%= . The actual 
 response is recorded in Table 9.2. The bandwidth of the system is sB 5.4  rad .ω =  
Therefore, we predict a settling time (with a 2% criterion) of

Ts
n

4 4
0.26 3.53

4.4 s,
ζω ( )( )

= = =

1.6
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Time (s)
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y(
t)

K = 20
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Unit step input

FIGURE 9.40
The response of the 
system for three 
values of K for a unit 
step input ( ).r t

Table 9.2 Actual Response for Selected Gains

K 4.44 10 20
Percent overshoot (%) 32.4 48.4 61.4
Settling time (seconds) 4.94 5.46 6.58
Peak time (seconds) 1.19 0.88 0.67
ess 31% 16.7% 9.1%
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since

 n
B

1.19  1.85
.ω

ω
ζ

=
− +

 

The actual settling time is approximately Ts =5.4 s, as shown in Figure 9.41. 
The steady-state effect of a unit step disturbance can be determined by using the 
final-value theorem with R s 0,( ) =  as follows:

 y s
G s

L s s Ks
lim  

1
1 1

4 2
.

0
( ) ( )

( )
∞ =

+


















 =

+→
 (9.87)

Thus, the unit disturbance is reduced by the factor K4 2 .+  For K 10,=  we have 
y 1 24,( )∞ =  or the steady-state disturbance is reduced to 4% of the disturbance 
magnitude. Thus we have achieved a reasonable result with K 10.=

The best compromise design would be K 10,=  since we achieve a compromise 
steady-state error of ess =16.7%. If the percent overshoot and settling time are ex-
cessive, then we need to reshape the frequency response on the Nichols chart. ■

EXAMPLE 9.12 Hot ingot robot control

The hot ingot robot mechanism is shown in Figure 9.41. The robot picks up hot in-
gots and sets them in a quenching tank. A vision sensor is in place to provide a mea-
surement of the ingot position. The controller uses the sensed position information 
to orient the robot over the ingot (along the x-axis). The vision sensor provides the 
desired position input R s( ) to the controller. The block diagram depiction of the 
closed-loop system is shown in Figure 9.42. More information on robots and robot 
vision systems can be found in [15, 30, 31].

The position of the robot along the track is also measured (by a sensor other 
than the vision sensor) and is available for feedback to the controller. We assume 
that the position measurement is noise free. This is not a restrictive assumption 

Feedback of di�erence
between gripper and

ingot position in x and y
directions

y(t)

x(t)

Track

Vision
sensor

Arm

Gripper

Ingot

Conveyor

Quenching
tank

Robot

Controller

V

FIGURE 9.41
Artist’s depiction of 
the hot ingot robot 
control system.
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668 Chapter 9  Stability in the Frequency Domain

since many accurate position sensors are available today. For example some laser 
diode systems are self-contained (including the power supply, optics, and laser 
diode) and provide position accuracy of over 99.9%.

The robot dynamics are modeled as a second-order system with two poles at 
s 1= −  and include a time delay of T 4  s.π=  Therefore,

 
1

,
2

G s
e

s

sT
( )

( )
=

+

−

 (9.88)

where T 4  s.π=  The elements of the design process emphasized in this example 
are highlighted in Figure 9.43. The control goal is as follows:

Control Goal
Minimize the tracking error E s R s Y s( ) ( ) ( )= −  in the presence of external 
disturbances while accounting for the known time-delay.

To this end the following control specifications must be satisfied:

Design Specifications

DS1 Achieve a steady-state tracking error ess ≤10% for a step input.

DS2 Phase margin P M. . ≥50° with the time-delay T 4  s.π=
DS3 Percent overshoot P O. . ≤10% for a step input.

Our design method is first to consider a proportional controller. We will show that 
the design specifications cannot be simultaneously satisfied with a proportional 
controller; however, the feedback system with proportional control provides a use-
ful vehicle to discuss in some detail the effects of the time-delay. In particular, we 
consider the effects of the time-delay on the Nyquist plot. The final design uses a PI 
controller, which is capable of providing adequate performance (that is, it satisfies 
all design specifications).

As a first attempt, we consider a simple proportional controller:

.G s Kc( ) =

Then ignoring the time-delay for the moment, we have the loop gain

1 2 1
.2 2

L s G s G s
K

s

K
s s

c( ) ( ) ( )
( )

= =
+

=
+ +

-

+R(s)
Desired position

Y(s)
Actual position

e-sT

(s + 1)2

Controller Hot ingot robot

Gc(s)
Ea(s)

FIGURE 9.42
Hot ingot robot 
control system 
block diagram.
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Section 9.8 Design Examples 669

The feedback control system is shown in Figure 9.44 with a proportional controller 
and no time-delay. The system is a type-zero system, so we expect a nonzero steady-
state tracking error to a step input. The closed-loop transfer function is

T s
K

s s K2 1
.

2( ) =
+ + +

With the tracking error defined as

E s R s Y s ,( ) ( ) ( )= −

See Equation (9.91) for
the PI controller.

See Figures 9.41 and 9.42, and
Equation (9.88).

See Figures 9.50 and 9.51.

Establish the system configuration

Obtain a model of the process, the
actuator, and the sensor

If the performance meets the specifications,
then finalize the design.

If the performance does not meet the
specifications, then iterate the configuration. 

Identify the variables to be controlled

Establish the control goals

Topics emphasized in this example

Write the specifications

Optimize the parameters and
analyze the performance

Describe a controller and select key
parameters to be adjusted

FIGURE 9.43 Elements of the control system design process emphasized in the hot ingot robot control example.

-

+R(s)
Desired position

Y(s)
Actual position

1

(s + 1)2

Proportional
controller

Hot ingot robot

K
Ea(s)

FIGURE 9.44
Hot ingot robot 
control system 
block diagram 
with the propor-
tional controller 
and no time-delay.

M09_DORF2374_14_GE_C09.indd   669M09_DORF2374_14_GE_C09.indd   669 26/08/2021   19:5526/08/2021   19:55



670 Chapter 9  Stability in the Frequency Domain

and with R s a s,( ) =  where a is the input magnitude, we have

E s
s s

s s K
a
s

2 1
2 1

  .
2

2( ) =
+ +

+ + +

Using the final value theorem (which is possible since the system is stable for all 
positive values of K) yields

e sE s
a

Ks
lim  

1
.ss

0
( )= =

+→

Per specification DS1, we require the steady-state tracking error be less than 10%. 
Therefore,

e
a

10
.ss ≤

Solving for the appropriate gain K yields K 9.≥  With K 9,=  we obtain the Bode 
plot shown in Figure 9.45.

If we raise the gain above K 9,=  we find that the crossover moves to the 
right (that is, cω  increases) and the corresponding phase margin decreases. Is a 
P M. . 38.9°=  at 2.8  rad sω =  sufficient for stability in the presence of a time-delay 
of T 4  s?π=  The addition of the time-delay term causes a phase lag without 
changing the magnitude plot. The amount of time-delay that our system can with-
stand while remaining stable is T  which implies thatφ ω= −

T
38.9
180

2.8 .
π−

= −

0
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FIGURE 9.45
Bode plot with  

=K 9  and no time- 
delay showing gain 
margin = ∞G M. .  
and phase margin 

=P M. . 38.9°.
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Section 9.8 Design Examples 671

Solving for T yields T 0.24 s.=  Thus for time-delays less than T 0.24 s,=  our 
closed-loop system remains stable. However, the time-delay T 4  sπ=  will cause 
instability. Raising the gain only exacerbates matters, since the phase margin goes 
down further. Lowering the gain raises the phase margin, but the steady-state track-
ing error exceeds the 10% limit. A more complex controller is  necessary. Before 
proceeding, let us consider the Nyquist plot and see how it changes with the  addition 
of the time-delay. The Nyquist plot for the system (without the time-delay)

1 2
L s G s G s

K

s
c( ) ( ) ( )

( )
= =

+

is shown in Figure 9.46, where we use K 9.=  The number of open-loop poles of 
G s G sc( ) ( ) in the right half-plane is P 0.=  From Figure 9.46 we see that there are no 
encirclements of the 1−  point, thus, N 0.=

By the Nyquist theorem, we know that the net number of encirclements N 
equals the number of zeros Z (or closed-loop system poles) in the right half-plane 
minus the number of open-loop poles P in the right half-plane. Therefore,

Z N P 0.= + =

Since Z 0,=  the closed-loop system is stable. More importantly, even when the 
gain K is increased (or decreased), the 1−  point is never encircled—the gain margin 
is .∞  Similarly when the time-delay is absent, the phase margin is always positive. 
The value of the P.M. varies as K varies, but the P.M. is always greater than zero.

With the time-delay in the loop, we can rely on analytic methods to obtain the 
Nyquist plot. The loop transfer function with the time-delay is

1
  .

2
L s G s G s

K

s
ec

sT( ) ( ) ( )
( )

= =
+

−
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FIGURE 9.46
Nyquist plot with 

=K 9  and no 
time-delay showing 
no encirclements of 
the minus 1 point.
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672 Chapter 9  Stability in the Frequency Domain

Using the Euler identity

e T j Tj T cos  sin ,ω ω( ) ( )= −ω−

L s( )and substituting s jω=  into L(s) yields

L j
K

j
e j T

1
 2ω

ω
( )

( )
=

+
ω−

K
T T j T T ([(1 ) cos( ) 2  sin( ) (1 ) sin( ) 2  cos( )],2 2ω ω ω ω ω ω ω ω=

∆
− − − − +  

 (9.89)

where

1 4 .2 2 2ω ω( )∆ = − +

Generating a plot of L jRe ω( )( )  versus L jIm( ( ))ω  yields the plot shown in Figure 9.47. 
With K 9,=  the number of encirclements of the 1−  point is N 2.=  Therefore, the 
system is unstable since Z N P 2.= + =

Figure 9.48 shows the Nyquist plot for four values of time-delay: T 0,=  0.1, 
0.24, and 4 0.78 s.π =  For T 0=  there is no possibility of an encirclement of the 

1−  point as K varies (see the upper left graph of Figure 9.48). We have stability 
(that is, N 0= ) for T 0.1 s=  (upper right graph), marginal stability for T 0.24 s=  
(lower left graph), and for T 4 0.78 sπ= =  we have N 1=  (lower right graph), 
thus the closed-loop system is unstable.

Since we know that T 4π=  in this example, the proportional gain controller is 
not a viable controller. With it we cannot meet the steady-state error specifications 
and have a stable closed-loop system in the presence of the time-delay T 4.π=  
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FIGURE 9.47
Nyquist plot 
with =K 9  and 

π= /T 4  showing 
two  encirclements 
of the −1  point, 

=N 2.
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Section 9.8 Design Examples 673

However, before proceeding with the design of a controller that meets all the speci-
fications, let us take a closer look at the Nyquist plot with a time-delay.

Suppose we have the case where K 9=  and T 0.1 s.=  The associated Nyquist 
plot is shown in the upper right of Figure 9.48. The Nyquist plot intersects (or 
crosses over) the real axis whenever the imaginary part of 0G j G jc ω ω( ) ( ) = , or

1  sin 0.1 2  cos 0.1 0.2ω ω ω ω( ) ( ) ( )− + =

Thus we obtain the relation that describes the frequencies ω  at which crossover 
occurs:

 
1  tan 0.1

2
1.

2ω ω

ω
( ) ( )−

= −  (9.90)

Equation (9.90) has an infinite number of solutions. The first real-axis crossing (far-
thest in the left half-plane) occurs when 4.43  rad s.ω =

The magnitude of 4.43L j( )  is equal to 0.0484 K. For stability we require that 
1L jω( ) <  when 4.43ω =  (to avoid an encirclement of the 1−  point). Thus, for 

stability we find

K
1

0.0484
20.67,< =
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FIGURE 9.48 Nyquist plot with =K 9 and various time-delays.
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674 Chapter 9  Stability in the Frequency Domain

when T 0.1.=  When K 9,=  the closed-loop system is stable, as we already know. 
If the gain K 9=  increases by a factor of 2.3 to K 20.67,=  we will be on the border 
of instability. This factor δ  is the gain margin:

G M. . 20  log 2.3 7.2 dB.10= =

Consider the PI controller

 .G s K
K
s

K s K
s

c P
I P I( ) = + =

+
 (9.91)

The loop system transfer function is

 
1

  .
2

L s G s G s
K s K

s
K

s
ec

P I sT( ) ( ) ( )
( )

= =
+

+
−

The system type is now equal to 1; thus we expect a zero steady-state error to a step 
input. The steady-state error specification DS1 is satisfied. We can now concentrate 
on meeting specification DS3, P O. . 10%<  and DS2, the requirement for stability 
in the presence of the time-delay T 4  s.π=

From the percent overshoot specification we can determine a desired system 
damping ratio. Thus we determine for P O. . 10%≤  that 0.59.ζ ≥  Due to the PI 
controller, the system now has a zero at .s K KI P= −  The zero will not affect the 
closed-loop system stability, but it will affect the performance. Using the approxi-
mation (valid for small ,ζ  P.M. expressed in degrees)

P M. .
100

,ζ ≈

we determine a good target phase margin (since we want 0.59ζ ≥ ) to be 60%. We 
can rewrite the PI controller as

1
,G s K

s
s

c I
τ

( ) =
+

where 1 K KI Pτ =  is the break frequency of the controller. The PI  controller  is 
 essentially a low-pass filter and adds phase lag to the system below the break  frequency. 
We would like to place the break frequency below the crossover frequency so that the 
phase margin is not reduced significantly due to the presence of the PI zero.

The uncompensated Bode plot is shown in Figure 9.49 for

9

1
  ,

2
G s

s
e sT( )

( )
=

+
−

where T 4.π=  The uncompensated system phase margin is P M. . 88.34°= −  at 
c 2.83  rad s.ω =  Since we want P M. . 60°,=  we need the phase to be minus 120° 

at the crossover frequency. In Figure 9.49 we can estimate the phase 120°φ = −  
at 0.87  rad s.ω ≈  This is an approximate value but is sufficiently accurate for 
the design procedure. At 0.87ω =  the magnitude is about 14.5 dB. If we want the 
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Section 9.8 Design Examples 675

crossover to be c 0.87  rad s,ω =  the controller needs to attenuate the system gain 
by 14.5 dB, so that the magnitude is 0 dB at c 0.87.ω =  With

,G s K
s

K
K

s
c p

I

P( ) =
+

we can consider KP to be the gain of the compensator (a good approximation for 
large ω ). Therefore,

10 0.188.14.5 20KP = =( )−

Finally we need to select .KI  Since we want the break frequency of the control-
ler to be below the crossover frequency (so that the phase margin is not reduced 
significantly due to the presence of the PI zero), a good rule-of-thumb is to select 
1 0.1 .K KI P cτ ω= =  To make the break frequency of the controller zero one 
decade below the crossover frequency. The final value of KI  is computed to be 

0.1 0.0164,K KI c Pω= =  where c 0.87  rad s.ω =  Thus the PI controller is

 
0.188 0.0164

.G s
s

s
c( ) =

+
 (9.92)

The Bode plot of G s G s ec
sT( ) ( ) −  is shown in Figure 9.50, where T 4π= . The gain 

and phase margins are G M. . 5.3 dB=  and P M. . 56.5°.=
We consider whether the design specifications have been met. The steady-

state tracking specification (DS1) is certainly satisfied since our system is type one; 
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676 Chapter 9  Stability in the Frequency Domain

the PI controller introduced an integrator. The phase margin (with the time-delay) 
is P M. . 56.5°,=  so the phase margin specification, DS2, is satisfied. The unit 
step response is shown in Figure 9.51. The percent overshoot is approximately 
P O. . 4.2%.≈  The target percent overshoot was P O. . =10%, so DS3 is satisfied. 
Overall the design specifications are satisfied.
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Section 9.9 PID Controllers in the Frequency Domain 677

9.9 PID CONTROLLERS IN THE FREQUENCY DOMAIN

The PID controller provides a proportional term, an integral term, and a derivative 
term. We then have the PID controller transfer function as

 K .G s K
K
s

sc P
I

D( ) = + +  (9.93)

In general, we note that PID controllers are particularly useful for reducing the 
steady-state error and improving the transient response when G s( ) has one or two 
poles (or may be approximated by a second-order process).

We may use frequency response methods to represent the addition of a PID 
controller. The PID controller, Equation (9.93), may be rewritten as

 
    1 1   1

.

2

G s
K

K
K

s
K
K

s

s

K s s

s
c

I
D

I

P

I
I τ

τ
α( )

( )
=

+ +










=
+ +









 (9.94)

The Bode plot of Equation (9.94) is shown in Figure 9.52 for 2,   1,KI τ= =  and 
10.α =  The PID controller is a form of a notch (or bandstop) compensator with 

a variable gain, KI. Of course, it is possible that the controller will have complex  
zeros and a Bode plot that will be dependent on the ζ  of the complex zeros. The 
PID  controller with complex zeros is

 
1 2

.

2

G j
K j

j
c

I n n
ω

ζ ω ω ω ω

ω

( ) ( )
( ) =

+ −



  (9.95)

Typically, we choose 0.9 0.7.ζ> >
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the asymptomatic 
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678 Chapter 9  Stability in the Frequency Domain

9.10 STABILITY IN THE FREQUENCY DOMAIN USING CONTROL DESIGN SOFTWARE

We now approach the issue of stability using the computer as a tool. This section 
revisits the Nyquist plot, the Nichols chart, and the Bode plot in our discussions 
on relative stability. Two examples will illustrate the frequency-domain design 
approach. We will make use of the frequency response of the closed-loop transfer 
function T jω( ) as well as the loop transfer function L j .ω( )  We also present an illus-
trative example that shows how to deal with a time delay in the system by utilizing a 
Padé approximation [6]. The functions covered in this section are nyquist, nichols, 
margin, pade, and ngrid.

It is generally more difficult to manually generate the Nyquist plot than the 
Bode plot. However, we can use the control design software to generate the 
Nyquist plot. The Nyquist plot is generated with the nyquist function, as shown in 
Figure 9.53. When nyquist is used without left-hand arguments, the Nyquist plot is 
automatically generated; otherwise, the real and imaginary parts of the frequency 
response (along with the frequency vector ω ) is returned. An illustration of the 
nyquist function is given in Figure 9.54.

As discussed in Section 9.4, relative stability measures of gain margin and phase 
margin can be determined from both the Nyquist plot and the Bode plot. The gain 
margin is a measure of how much the system gain would have to be increased for 
the L jω( ) locus to pass through the j1 0− +  point, thus resulting in an unstable 
system. The phase margin is a measure of the additional phase lag required be-
fore the system becomes unstable. Gain and phase margins can be determined from 
both the Nyquist plot and the Bode plot.
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FIGURE 9.53 The nyquist function.
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R(s) Y(s)

FIGURE 9.55 A closed-loop  control system  example for Nyquist 
and Bode with  relative stability.

Consider the system shown in Figure 9.55. Relative stability can be determined 
from the Bode plot using the margin function, which is shown in Figure 9.56. If the 
margin function is invoked without left-hand arguments, the Bode plot is automat-
ically generated with the gain and phase margins labeled on the plot. This is illus-
trated in Figure 9.57 for the system shown in Figure 9.55.

The script to generate the Nyquist plot for the system in Figure 9.55 is shown 
in Figure 9.58. In this case, the number of poles of L s G s G sc( ) ( ) ( )=  with positive 
real parts is zero, and the number of counterclockwise encirclements of 1−  is zero; 
hence, the closed-loop system is stable. We can also determine the gain margin and 
phase margin, as indicated in Figure 9.58.

Nichols charts can be generated using the nichols function, shown in Figure 9.59. 
If the nichols function is invoked without left-hand arguments, the Nichols chart is 
automatically generated; otherwise the nichols function returns the magnitude and 

M09_DORF2374_14_GE_C09.indd   679M09_DORF2374_14_GE_C09.indd   679 26/08/2021   19:5626/08/2021   19:56



680 Chapter 9  Stability in the Frequency Domain

-200

10-1 100 101

Frequency (rad/s)

10-1 100 101

Frequency (rad/s)Example

  Gm = gain margin (dB)
  Pm = phase margin (deg)
Wcg = freq. for phase = -180
Wcp = freq. for gain = 0 dB

Ph
as

e 
(d

eg
)

50

0

-50

M
ag

ni
tu

de
 (

dB
)

Gain margin Gm

Wcg

Wcp

Phase margin Pm

FIGURE 9.56
The margin 
function.
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FIGURE 9.57
The Bode plot 
for the system in  
Figure 9.55 with 
the gain margin 
and the phase 
 margin  indicated  
on the plots.
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phase in degrees (along with the frequency ω ). A Nichols chart grid is drawn on 
the existing plot with the ngrid function. The Nichols chart, shown in Figure 9.60, 
is for the system

 G j
j j j

1
1 0.2 1

.ω
ω ω ω

( )
( )( )

=
+ +

 (9.96)
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phase margins.

Label gain and phase
margins on plot.

Nyquist plot
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Pm = 49.365

(a)

(b)

FIGURE 9.58 (a) The Nyquist plot for the system in Figure 9.55 with gain and phase margins. 
(b) m-file script.
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the system of 
Equation (9.97).  ■
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EXAMPLE 9.13 Liquid level control system

Consider a liquid level control system described by the block diagram shown in  
Figure 9.31. Note that this system has a time delay. The loop transfer function is given by

 L s
e

s s s s

sT31.5
1 30 1 9 3 1

.
2( )

( )
( )( )

=
+ + + +

−
 (9.97)

We first change Equation (9.97) in such a way that L s( ) has a transfer function form 
with polynomials in the numerator and the denominator. To do this, we can make 
an approximation to e sT−  with the pade function, shown in Figure 9.61. For exam-
ple, suppose our time delay is T 1 s,=  and we want a second-order approximation 
n 2.=  Using the pade function, we find that

 e
s s
s s

sT 6 12
6 12

.
2

2
=

− +
+ +

−  (9.98)

Substituting Equation (9.98) into Equation (9.97) yields

L s
s s

s s s s s s

31.5 6 12

1 30 1 9 3 1 6 12
.

2

2 2

( )
( )( )

( )
( )( )

=
− +

+ + + + + +

Now we can build a script to investigate the relative stability of the system using the 
Bode plot. Our goal is to have a phase margin of P M. . 30°= . The associated script 
is shown in Figure 9.62. To make the script interactive, we let the gain K (now set at 
K 31.5= ) be adjustable and defined outside the script at the command level. Then 
we set K and run the script to check the phase margin and iterate if necessary. The 
final selected gain is K 16.=  Remember that we have utilized a second-order Padé 
approximation of the time delay in our analysis. ■

EXAMPLE 9.14 Remotely controlled vehicle

Consider the speed control system for a remotely controlled vehicle shown in 
Figure 9.38. The design objective is to achieve good control with a low steady-state 
error and a low overshoot to a step command. Building a script will allow us to 

Order of approximationTime delay

e-sT = 1 - sT + num(s)
den(s)

1
2!

(sT )2 + . . . LFIGURE 9.61
The pade function.
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FIGURE 9.62
(a) Bode plot for the 
liquid level control 
system. (b) m-file 
script.

perform many design iterations quickly and efficiently. First, we investigate the 
steady-state error specification. The steady-state error to a unit step command is

 e
K

1
1 2

.ss =
+

 (9.99)

The effect of the gain K on the steady-state error is clear from Equation (9.99): 
If K 20,=  the error is ess =9% of the input magnitude; if K 10,=  the error is 
ess 17%=  of the input magnitude.
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Now we can investigate the overshoot specification in the frequency domain. 
Suppose we require that the percent overshoot is less than 50%. Solving

P O. . 100 exp 50/ 1 2
≈ ≤ζπ ζ− −

for ζ  yields 0.215.ζ ≥  Referring to Equation (9.63), we find that 2.45.Mp ≤ω  We 
must keep in mind that Equation (9.63) is for second-order systems only and can 
be used here only as a guideline. We now compute the closed-loop Bode plot and 
check the values of .Mpω  Any gain K for which 2.45Mp ≤ω  may be a valid gain for 
our design, but we will have to investigate step responses further to check the actual 
overshoot. The script in Figure 9.63 aids us in this task. We further investigate the 
gains K 20,=  10, and 4.44 (even though 2.45Mp >ω  for K 20= ).

We can plot the step responses to quantify the percent overshoot as shown in 
Figure 9.64. Additionally, we could have used a Nichols chart to aid the design pro-
cess, as shown in Figure 9.65.

(b)

(a)

101100

Frequency (rad/s)

M
ag

ni
tu

de
 (

dB
)

Compute closed-loop
frequency response.

Loop for three gains
K = 20, 10, 4.44.

10-2

10-1

100

101

K = 4.44

K = 20
K = 10

FIGURE 9.63
Remotely 
 controlled vehicle. 
(a) Closed-loop 
 system Bode plot. 
(b) m-file script.
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The results of the analysis are summarized in Table 9.3 for K 20,=  10, and 
4.44. We choose K 10=  as our design gain. Then we obtain the Nyquist plot and 
check relative stability, as shown in Figure 9.66. The gain margin is G M. . = ∞  and 
the phase margin is P M. . 26.1°.=  ■

9.11 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

In this chapter, we will examine the disk drive read system including the effect of 
the flexure resonance and incorporating a PD controller with a zero at s 1.= −  We 
will determine the system gain margin and phase margin when K 400.=

The Bode plot for the system when K 400=  is shown in Figure 9.67. The gain 
margin is G M. . =22.9 dB, and the phase margin is P M. . =37.2°. The plot of the step 
response of this system is shown in Figure 9.68. The settling time of this design is 
Ts 9.6 ms.=

0 1 2 3 4 5 6 7 8 9 10

y(
t)

Time (s)

Loop for three gains
K = 20, 10, 4.44.

Compute step
response.

(b)

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

K = 20

K = 10

K = 4.4 ess

FIGURE 9.64
Remotely controlled 
vehicle. (a) Step 
response. (b) m-file 
script.
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Remotely controlled 
vehicle. (a) Nichols 
chart. (b) m-file 
script.
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FIGURE 9.66
(a) Nyquist plot 
for the remotely 
controlled  vehicle 
with =K 10.  
(b) m-file script.

10-1 100 101 102 103 104 105

Frequency (rad/s)

0

-90

-180

-270

-360

10-1 100 101 102 103 104 105

Frequency (rad/s)

Gm = 22.9 dB, (at 5420 rad/s)    Pm = 37.2 deg. (at 1250 rad/s)
100

0

-100

-200

G
ai

n 
(d

B
)

Ph
as

e 
(d

eg
)

Gain margin = 22.9 dB

Phase margin = 37.25

FIGURE 9.67
Bode plot of the 
disk drive read 
system.
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FIGURE 9.68
Response of the 
disk drive read 
system to a step 
input.

9.12 SUMMARY

The stability of a feedback control system can be determined in the frequency domain 
by utilizing Nyquist’s criterion. Furthermore, Nyquist’s criterion provides us with two 
relative stability measures: (1) gain margin and (2) phase margin. These relative sta-
bility measures can be utilized as indices of the transient performance on the basis of 
correlations established between the frequency domain and the time- domain transient 
response. The magnitude and phase of the closed-loop system can be determined from 
the frequency response of the open-loop transfer function by utilizing constant magni-
tude and phase circles on the polar plot. Alternatively, we can utilize a log-magnitude–
phase diagram with closed-loop magnitude and phase curves superimposed (called 
the Nichols chart) to obtain the closed-loop frequency response. A measure of rela-
tive stability, the maximum magnitude of the closed-loop frequency response, ωMp , is 
available from the Nichols chart. The frequency response, ωMp , can be correlated with 
the damping ratio of the time response and is a useful index of performance. Finally, 
a control system with a pure time delay can be investigated in a manner similar to that 
for systems without time delay. A summary of the Nyquist criterion, the relative stabil-
ity measures, and the Nichols chart is given in Table 9.3 for several transfer functions.

Table 9.3 is very useful and important to the designer and analyst of control sys-
tems. If we have the model of a process G s( ) and a controller ,G sc( )  then we can deter-
mine .L s G s G sc( ) ( ) ( )=  With this loop transfer function, we can examine the transfer 
function table in column 1. This table contains fifteen typical transfer functions. For a 
selected transfer function, the table gives the Bode plot, the Nichols chart, and the root 
locus. With this information, the designer can determine or estimate the performance 
of the system and consider the addition or alteration of the controller .G sc( )
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Table 9.3 Key Plots for Typical Loop Transfer Functions
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Table 9.3 (continued)

Nichols Chart Root Locus Comments
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(continued)
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Table 9.3 (continued)

L(s)  Nyquist Plot Bode Plot
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(continued)

Nichols Chart Root Locus Comments

Table 9.3 (continued)
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Nichols Chart Root Locus Comments

Table 9.3 (continued)
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(continued)
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L(s)  Nyquist Plot Bode Plot
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Nichols Chart Root Locus Comments

Table 9.3 (continued)
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SKILLS CHECK

Gc(s) G(s)

Controller

+

-
R(s) Y(s)

Process

FIGURE 9.69 Block diagram for the Skills Check.

In this section, we provide three sets of problems to test your knowledge: True or False, 
Multiple Choice, and Word Match. To obtain direct feedback, check your answers with the 
answer key provided at the conclusion of the end-of-chapter problems. Use the block diagram 
in Figure 9.69 as specified in the various problem statements.

In the following True or False and Multiple Choice problems, circle the correct answers.

1. The gain margin of a system is the increase in the system gain when the  
phase is 180°−  that will result in a marginally stable system. True or False

2. A conformal mapping is a contour mapping that retains the angles on  
the s-plane on the transformed F s( )-plane. True or False

3. The gain and phase margin are readily evaluated on either a Bode plot  
or a Nyquist plot. True or False

4. A Nichols chart displays curves describing the relationship between the  
open-loop and closed-loop frequency responses. True or False

5. The phase margin of a second-order system (with no zeros) is a function  
of both the damping ratio ζ and the natural frequency, nω . True or False

6. Consider the closed-loop system in Figure 9.69 where

3.25 1 6

1 3 1 8
.L s G s G s

s

s s sc
( )

( )( )
( ) ( ) ( )= =

+

+ +

The crossover frequency and the phase margin are:

a. 2.0  rad sω = , P M. . 37.2°=

b. ω = 2.6  rad s, P M. . 54.9°=

c. 5.3  rad sω = , P M. . 68.1°=

d. 10.7  rad sω = , P M. . 47.9°=

7. Consider the block diagram in Figure 9.69. The plant transfer function is

G s
s s
1

1 0.25 0.5 1
,( )

( )( )
=

+ +

and the controller is

0.2
5

.G s
s
sc( ) =
+
+
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Skills Check 699

Utilize the Nyquist stability criterion to characterize the stability of the closed-loop 
system.

a. The closed-loop system is stable.

b. The closed-loop system is unstable.

c. The closed-loop system is marginally stable.

d. None of the above.

For Problems 8 and 9, consider the block diagram in Figure 9.69 where

G s
s s s

9
1 3 9

,
2( )

( )
( )

=
+ + +

and the controller is the proportional-plus-derivative (PD) controller

1 .G s K T sc d( )( ) = +

8. When Td 0,=  the PD controller reduces to a proportional controller, G s Kc( ) = . In this 
case, use the Nyquist plot to determine the limiting value of K  for closed-loop stability.

a. K 0.5=

b. K 1.6=

c. K 2.4=

d. K 4.3=

9. Using the value of K  in Problem 8, compute the gain and phase margins when Td 0.2.=

a. G M. . 14 dB= , P M. . 27°=

b. G M. . 20 dB= , P M. . 64.9°=

c. G M. .  dB= ∞ , P M. . 60°=

d. Closed-loop system is unstable

10. Determine whether the closed-loop system in Figure 9.69 is stable or not, given the loop 
transfer function

1
4 1

.
2

L s G s G s
s

s sc( ) ( ) ( )
( )

= =
+

+

In addition, if the closed-loop system is stable, compute the gain and phase margins.

a. Stable, G M. . 24 dB= , P M. . 2.5°=

b. Stable, G M. . 3 dB= , P M. . 24°=

c. Stable, G M. .  dB= ∞ , P M. . 60°=

d. Unstable

11. Consider the closed-loop system in Figure 9.69, where the loop transfer function is

4
.

2
L s G s G s

K s
sc( ) ( ) ( )

( )
= =

+

Determine the value of the gain K  such that the phase margin is P M. . 40 .°=
a. K 1.64=
b. K 2.15=
c. K 2.63=
d. Closed-loop system is unstable for all K 0>
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700 Chapter 9  Stability in the Frequency Domain

12. Consider the feedback system in Figure 9.69, where

and
5

.
0.2

G s K G s
e
sc

s
( ) ( )= =

+

−

Notice that the plant contains a time-delay of T 0.2=  seconds. Determine the gain K  
such that the phase margin of the system is P M. . 50°= . What is the gain margin for the 
same gain K ?
a. = =K G M8.36,   . . 2.6 dB
b. K G M2.15,   . . 10.7 dB= =
c. K G M5.22,   . .  dB= = ∞
d. K G M1.22,   . . 14.7 dB= =

13. Consider the control system in Figure 9.69, where the loop transfer function is

1
1

.L s G s G s
s sc( ) ( ) ( )
( )

= =
+

The value of the resonant peak, Mpω
 and the damping factor, ζ , for the closed-loop system 

are:
a. Mp 0.37,   0.707ζ= =

ω

b. Mp 1.15,   0.5ζ= =
ω

c. Mp 2.55,   0.5ζ= =
ω

d. Mp 0.55,   0.25ζ= =
ω

14. A feedback model of human reaction time used in analysis of vehicle control can use the 
block diagram model in Figure 9.69 with

and
1

0.2 1
.G s e G s

s sc
sT( ) ( )

( )
= =

+
−

A typical driver has a reaction time of T 0.3=  s. Determine the bandwidth of the closed-
loop system.
a. b 0.5  rad sω =
b. b 10.6  rad sω =
c. b 1.97  rad sω =
d. b 200.6  rad sω =

15. Consider a control system with unity feedback as in Figure 9.69 with loop transfer function

4
1 5

.L s G s G s
s

s s sc( ) ( ) ( )
( )

( )( )
= =

+
+ +

The gain and phase margin are:
a. G M. .  dB= ∞ , P M. . 58.1°=
b. G M. . 20.4 dB= , P M. . 47.3°=
c. G M. . 6.6 dB= , P M. . 60.4°=
d. Closed-loop system is unstable
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Exercises 701

E9.1 A system has the open-loop transfer function

3 1 5

4 1 2 2
.

2
L s G s G s

s

s s s s
c ( )

( )
( ) ( ) ( )

( )
= =

+

+ + +

Obtain the Bode plot. Show that the phase margin 
is P M. . 20.1°=  and that the gain margin is G M. .  =  
6.61 dB.

E9.2 A system has the loop transfer function

1 20

1 1 10
,

( )
( )

( ) ( ) ( )
( )

= =
+ /

+ / 8 + +
L s G s G s

K s

s s sc

where K 4.=  Show that the system crossover fre-
quency is c 3.51ω =  rad/s and that the phase margin 
is P M. . 56.9°.=

EXERCISES

In the following Word Match problems, match the term with the definition by 
 writing the correct letter in the space provided.

a. Time delay The frequency response of the closed-loop 
 transfer function T(jω).

b. Cauchy’s theorem A chart displaying the curves for the  relationship 
between the open-loop and closed-loop 
 frequency response.

c. Bandwidth A contour mapping that retains the angles on 
the s-plane on the F(s)-plane.

d. Contour map If a contour encircles Z zeros and P poles of F(s) 
traversing clockwise, the corresponding contour 
in the F(s)-plane encircles the origin of the  
F(s)-plane N = Z − P times clockwise.

e. Nichols chart The amount of phase shift of Gc(jω)G(jω) at 
unity magnitude that will result in a marginally 
stable system with intersections of the point  
− 1 + j0 on the Nyquist diagram.

f. Closed-loop  
frequency  
response

Events occurring at time t at one point in the 
system occur at another point in the system at 
a later time, t + T.

g. Logarithmic 
(decibel) measure

A feedback system is stable if and only if the con-
tour in the G(s)-plane does not encircle the  
(−1, 0) point when the number of poles of G(s) 
in the right-hand s-plane is zero. If G(s) has P 
poles in the right-hand plane, then the number 
of counterclockwise encirclements of the (−1, 0) 
point must be equal to for a stable system.

h. Gain margin A contour or trajectory in one plane is mapped 
into another plane by a relation F(s).

i. Nyquist stability 
criterion

The increase in the system gain when  
plane = − 180˚ that will result in a marginally 
stable system with intersection of the − 1 + j0 
point on the Nyquist diagram.

j. Phase margin The frequency at which the frequency response 
has declined 3 dB from its low-frequency value.

k. Conformal 
mapping

A measure of the gain margin.
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702 Chapter 9  Stability in the Frequency Domain

E9.3 An integrated circuit is available to serve as a feed-
back system to regulate the output voltage of a power 
supply. The Bode plot of the loop transfer function is 
shown in Figure E9.3 Estimate the phase margin of 
the regulator.

Answer: P M. . 75°=

E9.8 Consider a unity feedback with the loop transfer 
function

L s G s G s
K

s s sc 2 6
.( ) ( ) ( )

( )( )
= =

+ +

(a) For K 27,=  show that the gain margin is 
G M. . 11=  dB.

(b) To achieve a gain margin . . 28 dB,=G M  deter-
mine the value of the gain K.

Answer: (b) K 3.8=

E9.9 Consider a unity feedlack system with loop transfer 
function

10
11 10

.
2

L s G s G s
s s s

c ( )
( ) ( ) ( )= =

+ +

Compute the phase margin and gain margin.

E9.10 Consider a system with the loop transfer function

L s G s G s
s

s s s s
c

250 5

0.25 12.5 120
.

2( )
( )

( )
( ) ( ) ( )= =

+

+ + +

Obtain the Bode plot, and show that the P M. . 16.9°=   
and that the G M. . 9.63=  dB. Also, show that 
the bandwidth of the closed-loop system is  

B 4.57ω =  rad/s.

E9.11 Consider a unity feedback system with the loop 
transfer function 

5 1 0.5

1 2 2 0.25 0.05
.

2
L s G s G s

s

s s s s
c ( )

( )
( ) ( ) ( )

( )
= =

+

+ + +

(a) Obtain the Bode plot. (b) Find the gain margin 
and the phase margin.

FIGURE E9.3 Power supply regulator.
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FIGURE E9.5 Bode plot of the CMOS circuit.
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E9.4 Consider a system with a loop transfer function

100
10

.L s G s G s
s sc( ) ( ) ( )
( )

= =
+

We wish to obtain a resonant peak Mp 3.0 dB=ω  for 
the closed-loop system. The peak occurs between 6 
and 9 rad/s and is only 1.25 dB. Plot the Nichols chart 
for the range of frequency from 6 to 15 rad/s. Show 
that the system gain needs to be raised by 4.6 dB to 
171. Determine the resonant frequency for the ad-
justed system.

Answer: r 11  rad sω =

E9.5 An integrated CMOS digital circuit can be repre-
sented by the Bode plot shown in Figure E9.5. (a) Find 
the gain and phase margins of the circuit. (b) Estimate 
how much we would need to reduce the system gain 
(dB) to obtain a phase margin of P M. . 60°.=

E9.6 A system has a loop transfer function

L s G s G s
K s

s s sc
10

6 15
.

( )
( ) ( ) ( )

( )
( )

= =
+

+ +

Determine the range of K for closed-loop stability. 
Find the gain margin and phase margin of the system 
with K 40.=

E9.7 A unity feedback system has a loop transfer function

L s G s G s
K

sc 5
.( ) ( ) ( )= =

−

Determine the range of K for which the system is 
 stable using the Nyquist plot.
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Exercises 703

E9.12 A unity feedback system with the loop transfer 
function

1 1
,

1 2
G s G s

K
s s sc τ τ( )( )

( ) ( ) =
+ +

where 0.011τ =  and 0.3 s.2τ =  (a) Select a gain 
K so that the steady-state error for a ramp input is 
20% of the magnitude of the ramp function A, where 

, 0.( ) ( )= ≥r t A t t  (b) Obtain the Bode plot of loop 
transfer function, and determine the phase and gain 
margins. (c) Determine the bandwidth B ,ω  the reso-
nant peak ,Mpω  and the resonant frequency rω  of the 
closed-loop system.

Answer:

(a) K 20=

(b) P M G M. . 19°,   . . 14.6 dB= =

(c) 12.4,   9.82,   7.92ω ω= = =ωMB p r

E9.13 A unity feedback system has a loop transfer 
function 

200
4

.G s G s
s sc( ) ( )
( )

=
+

(a) Find the maximum magnitude of the closed-loop 
frequency response. (b) Find the bandwidth and the 

resonant frequency of this system. (c) Use these fre-
quency measures to estimate the overshoot of the 
system to a step response.

Answers: (a) 11.1 dB, (b) 21.8  rad s,   13.9ω ω= =B r

E9.14 A Nichols chart is given in Figure E9.14 for a sys-
tem with G j G jc ω ω( ) ( ). Using the following table, find 
(a) the peak resonance Mpω  in dB; (b) the resonant 
frequency r ;ω  (c) the 3-dB bandwidth; and (d) the 
phase margin of the system.

 ω1  ω2 ω3 ω4 

rad/s 1 3 6 10

E9.15 Consider a unity feedback system with the loop 
transfer function

L s G s G s
s sc

100
20

.( ) ( ) ( )
( )

= =
+

Find the bandwidth of the closed-loop system.

Answer: B 6.4  rad sω =

FIGURE E9.14
Nichols chart for 

ω ω( ) ( )G j G jc .
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704 Chapter 9  Stability in the Frequency Domain

E9.16 The pure time delay e sT−  may be approximated by 
a transfer function as

e
Ts
Ts

sT 1 2
1 2

.≈
−
+

−

Obtain the Bode plot for the actual transfer function 
and the approximation for T 0.05=  for 0 100.ω< <

E9.17 A unity feedback system has a loop transfer 
function

4

3 20
.

2( )
( ) ( )

( )
=

+
+ +

G s G s
K s

s s s
c

(a) Obtain the Bode plot, and (b) determine the gain 
K required to obtain a phase margin of P M. . 56°= . 
What is the steady-state error for a ramp input for the 
gain of part (b)?

E9.18 An actuator for a disk drive uses a shock mount 
to absorb vibrational energy at approximately 60 Hz 

FIGURE E9.18
Bode plot of the 
loop transfer 
 function of the 
disk drive.

X:  486.93

X:  486.93

Y: - 4.5924m

Y:  36.215

Y:  0.0

Y:  0.0

Trans 1 R#:3 #A:  100 Expand
40.000

40.000
- 10.000

LGMAG
DB

LG HZ 600.00486 Hz
Gain crossover

(a)

Trans 1 R#:3 #A:  100 Expand
180.00

- 180.00
40.000 LG HZ 486 Hz 600.00

Phase margin
at crossover

(b)

36.25Phase
margin
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Exercises 705

[14]. The Bode plot of the loop transfer function of the 
control system is shown in Figure E9.18. (a) Find the 
expected percent overshoot for a step input for the 
closed-loop system, (b) estimate the bandwidth of the 
closed-loop system, and (c) estimate the  settling time 
(with a 2% criterion) of the system.

E9.19 A unity feedback system with G s Kc( ) =  has

15
.

0.12

( )
( ) =

+

−
G s

e
s

s

Select a gain K so that the phase margin of the system 
is P M. . 40°= . Determine the gain margin for the se-
lected gain, K.

E9.20 Consider a simple model of an automobile driver 
following another car on the highway at high speed. 
The model shown in Figure E9.20 incorporates the 
driver’s reaction time, T. One driver has T 1 s,=  and 
another has T 1.5 s.=  Determine the time response 
y t( ) of the system for both drivers for a step change in 
the command signal R s s1 ,( ) = −  due to the braking 
of the lead car.

E9.21 A unity feedback control system has a loop trans-
fer function

L s G s G s
K

s s sc 2 50
.

( )
( ) ( ) ( )

( )
= =

+ +

Determine the phase margin, the crossover frequency, 
and the gain margin when K 1300.=

E9.22 A unity feedback system has a loop transfer 
function

L s G s G s
K

s
c

2
.

2
( ) ( ) ( )

( )
= =

+

(a) Using a Bode plot for K 40,=  determine the 
system phase margin. (b) Select a gain K so that the 
phase margin is P M. . 55°≥ .

E9.23 Consider again the system of E9.21 when K 100.=  
Determine the closed-loop system bandwidth, reso-
nant frequency, and Mpω .

Answers: 5.44  rad s,   3.61  rad s,   5.75ω ω= = =ωMB r p
5.44  rad s,   3.61  rad s,   5.75ω ω= = =ωMB r p

E9.24 A unity feedback system has a loop transfer function

1
,

τ
( ) ( ) ( )

( )
= =

− +
L s G s G s

K
sc

where K 0.4=  and 1.τ =  The Nyquist plot for 
G j G jc ω ω( ) ( ) is shown in Figure E9.24. Determine 
whether the system is stable by using the Nyquist criterion.

FIGURE E9.20
Automobile control 
system.
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FIGURE E9.24 Nyquist plot for G s G s K sc 1 τ( ) ( ) ( )= − +
where K = 0.4.

E9.25 A unity feedback system has a loop transfer 
function

L s G s G s
s s sc

11.7
1 0.05 1 0.1

.
( )

( ) ( ) ( )
( )

= =
+ +

Determine the phase margin and the crossover 
frequency.

Answer: P M c. . 28°,   8.31  rad sω= =

E9.26 For the system of E9.25, determine ,   ,ωωMp r  and 
Bω  for the closed-loop frequency response by using 

the Nichols chart.

E9.27 A unity feedback system has a loop transfer 
function

L s G s G s
K

s s
c

3
.

2
( ) ( ) ( )

( )
= =

+

(a) Determine the maximum gain K for which the 
phase margin is P M. . 30°≥ , and the gain margin is 
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706 Chapter 9  Stability in the Frequency Domain

E9.30 A system is represented in state variable form

�x Ax Bt t u t( ) ( ) ( )= +

,Cx D( ) ( ) ( )= +y t t u t

where

3 2
1 0

, 1
0

,A B= − −









 =













[0 501], [0].C D= =

Sketch the Bode plot.

E9.31 A closed-loop feedback system is shown in Figure 
E9.31. Sketch the Bode plot, and determine the phase 
margin. 

G M. . 8 dB= . (b) Determine the value of gain K and 
cross over frequency for marginal stability.

E9.28 A unity feedback system has the loop transfer 
function

L s G s G s
s sc

10
0.8

.( ) ( ) ( )
( )

= =
+

(a) Determine the phase margin for the system. (b) 
Use the phase margin to estimate the damping ratio, 
and predict the percent overshoot. (c) Calculate the 
actual response for this system, and compare the re-
sult with the part (b) estimate.

E9.29 A loop transfer function is

1
2

.L s G s G s
sc( ) ( ) ( )= =

+

Using the contour in the s-plane shown in Figure 
E9.29, determine the corresponding contour in the 
F s( )-plane B j1 .( )= − +  

FIGURE E9.33  
Nonunity  feedback 
system with 
 proportional  
 controller K.

FIGURE E9.29 Contour in the s-plane.
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FIGURE E9.31 Nonunity feedback system.
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E9.32 Consider the system described in state variable  
form by

�x Ax Bt t u t( ) ( ) ( )= +

Cx( ) ( )=y t t

where

A B C0 1
4 1

, 0
3.2

, [ 2 0 ].=
− −











 =











 =

Compute the phase margin.

E9.33 Consider the system shown in Figure E9.33. 
Compute the loop transfer function L s( ), and sketch 
the Bode plot. Determine the phase margin and gain 
margin when the controller gain K 5.=
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Problems 707

P9.1 For the Nyquist plots of Problem P8.1, use the 
Nyquist criterion to ascertain the stability of the various 
systems. In each case, specify the values of N, P, and Z.

P9.2 Sketch the Nyquist plots of the following loop transfer 
functions ,1 1 1( ) ( ) ( )=L s Gc s G s  and determine whether 
the system is stable by applying the Nyquist criterion:

(a) L s G s G s
K

s s s
c

2 5
.

2( )
( ) ( ) ( )= =

+ +

(b) L s G s G s
K s

s sc
2
5

.
2 ( )

( ) ( ) ( )
( )

= =
+
+

If the system is stable, find the maximum value for 
K by determining the point where the Nyquist plot 
crosses the u-axis.

P9.3 (a) Find a suitable contour sΓ  in the s-plane that can 
be used to determine whether all roots of the charac-
teristic equation have damping ratios greater than .1ζ  
(b) Find a suitable contour sΓ  in the s-plane that can 
be used to determine whether all the roots of the char-
acteristic equation have real parts less than s .1σ= −  
(c) Using the contour of part (b) and Cauchy’s the-
orem, determine whether the following characteristic 
equation has roots with real parts less than = −1:s

q s s s s11 56 96.3 2( ) = + + +

P9.4 The Nyquist plot of a conditionally stable system is 
shown in Figure P9.4 for a specific gain K. (a) Determine 

whether the system is stable, and find the number of 
roots (if any) in the right-hand s-plane. The system has no 
poles of ( ) ( )G s G sc  in the right half-plane. (b) Determine 
whether the system is stable if the 1−  point lies at the 
dot on the axis.

P9.5 A speed control for a gasoline engine is shown in 
Figure P9.5. Because of the restriction at the carbu-
retor intake and the capacitance of the reduction 
manifold, the lag tτ  occurs and is equal to 1.5 seconds. 
The engine time constant eτ  is equal to J b 4 s.=  
The speed measurement time constant is m 0.6 s.τ =  
(a)  Determine the necessary gain K if the steady-
state speed error is required to be less than 20% of 
the speed reference setting. (b) With the gain deter-
mined from part (a), apply the Nyquist criterion to in-
vestigate the stability of the system. (c) Determine the 
phase and gain margins of the system.

P9.6 A direct-drive arm is an innovative mechanical arm in 
which no reducers are used between motors and their 
loads. Because the motor rotors are directly coupled 
to the loads, the drive systems have no backlash, small 
friction, and high mechanical stiffness, which are all im-
portant features for fast and accurate positioning and 
dexterous handling using sophisticated torque control.

The goal of the MIT direct-drive arm project is 
to achieve arm speeds of 10 m/s [15]. The arm has 
torques of up to 660 N m (475 ft lb). Feedback and a 
set of position and velocity sensors are used with each 
motor. The frequency response of one joint of the 
arm is shown in Figure P9.6(a). The two poles appear 
at 3.7 Hz and 68 Hz. Figure P9.6(b) shows the step 
response with position and velocity feedback used. 
The time constant of the closed-loop system is 82 ms. 
Develop the block diagram of the drive system and 
prove that 82 ms is a reasonable result.

P9.7 A vertical takeoff (VTOL) aircraft is an inherently 
unstable vehicle and requires an automatic stabiliza-
tion system. An attitude stabilization system for the 
K-16B U.S. Army VTOL aircraft has been designed 
and is shown in block diagram form in Figure P9.7 [16].
(a) Obtain the Bode plot of the loop transfer func-
tion L s( ) when the gain is K 2.=  (b) Determine the 

PROBLEMS

FIGURE P9.4 Nyquist plot of conditionally 
stable system.
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Gc( jv)G( jv)-plane
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FIGURE P9.5
Engine speed 
control.
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708 Chapter 9  Stability in the Frequency Domain

FIGURE P9.6
The MIT arm: 
(a) frequency 
 response, and 
(b) position 
response.
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gain and phase margins of this system. (c) Determine 
the steady-state error for a wind disturbance of 
T s sd 1 .( ) =  (d) Determine the maximum ampli-
tude of the resonant peak of the closed-loop fre-
quency response and the frequency of the resonance. 
(e)  Estimate the damping ratio of the system from 
Mpω  and the phase margin.

P9.8 Electrohydraulic servomechanisms are used in con-
trol systems requiring a rapid response for a large 
mass. An electrohydraulic servomechanism can pro-
vide an output of 100 kW or greater [17]. An illustra-
tion  of a servovalve and actuator is shown in Figure 
P9.8(a). The output sensor yields a measurement of ac-
tuator position, which is compared with V .in  The error 
is amplified and controls the hydraulic valve position, 

thus controlling the hydraulic fluid flow to the actua-
tor. The block diagram of a closed-loop electrohydrau-
lic servomechanism using pressure feedback to obtain 
damping is shown in Figure P9.8(b) [17, 18]. Typical 
values for this system are 0.02τ =  s; for the hydraulic 
system they are 7 22ω π( )=  and 0.05.2ζ =  The struc-
tural resonance 1ω  is equal to 10 2 ,π( )  and the damp-
ing is 0.05.1ζ =  The loop gain is 1.0.1 2K K KA =  
(a)  Sketch the Bode plot and determine the phase 
margin of the system. (b) The damping of the system 
can be increased by drilling a small hole in the piston 
so that 0.25.2ζ =  Sketch the Bode plot and deter-
mine the phase margin of this system.

P9.9 The space shuttle, shown in Figure P9.9(a), carried 
large payloads into space and returned them to Earth 

-

+

+

+
R(s)

Reference
u(t)

Attitude

Actuator

K (s + 7)
s + 3

Vehicle

8

s2 + 0.4

Rate gyro

s

Td(s)

FIGURE P9.7
VTOL aircraft 
 stabilization 
system.
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FIGURE P9.8
(a) A servovalve 
and actuator  
(b) Block diagram. (b)

-

+
Vin(s)

Amplifier Gain

Servovalve and actuator

Y(s)
Position

KA K1
I(s)

K2

s2

v1
2

2z1

v1
s + 1   +

s2

v2
2

2z2

v2
s + 1   +( )(ts + 1)

(a)

for reuse [19]. The shuttle used elevons at the trailing 
edge of the wing and a brake on the tail to control the 
flight during entry. The block diagram of a pitch rate 
control system is shown in Figure P9.9(b).
(a) Sketch the Bode plot of the system when ( ) = 2G sc  
and determine the stability margin. (b)  Sketch the 
Bode plot of the system when

( ) = + =and 0.5.G s K K s K Kc P I I P

The gain KP  should be selected so that the gain mar-
gin is 10 dB.

P9.10 Machine tools are often automatically controlled 
as shown in Figure P9.10. These automatic systems are 
often called numerical machine controls [9]. On each 
axis, the desired position of the machine tool is com-
pared with the actual position and is used to actuate a 
solenoid coil and the shaft of a hydraulic actuator. The 
transfer function of the actuator is

τ( )
( )

( )
( )

= =
+ 1

,G s
X s
Y s

K
s sa

a

a

where 1Ka =  and a 0.4 s.τ =  The output voltage of 
the difference amplifier is

E s K X s X sd( ) ( ( ) ( )),0 1= −

where x td ( ) is the desired position input. The force 
on the shaft is proportional to the current i t( ) , so that 
F K i t ,2 ( )=  where K 3.0.2 =  The spring constant Ks  
is equal to 1.5, R 0.1,=  and L 0.2.=
(a) Determine the gain K1  that results in a system with 
a phase margin of P M. . 30°= . (b) For the gain K1   
of part (a), determine ωωMp r,   , and the closed-loop  
system bandwidth. (c) Estimate the percent overshoot 
of the transient response to a step input X s sd 1 ,( ) =  
and the settling time (to within 2% of the final value).
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710 Chapter 9  Stability in the Frequency Domain

(b)

(a)
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Vehicle

Sensor

Y(s)
Pitch rate

0.5

(s2 + 0.05s + 16)(s + 70)

0.3(s + 0.05)(s2 + 1600)

FIGURE P9.9
(a) The Earth-
orbiting space 
shuttle against 
the blackness of 
space. The remote 
manipulator robot 
is shown with the 
cargo bay doors 
open in this top 
view, taken by a 
satellite. (b) Pitch 
rate control system. 
(Courtesy of NASA.)
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Work
piece

Supply
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xd(t)
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FIGURE P9.10
Machine tool 
control.

P9.11 A control system for a chemical concentration 
control system is shown in Figure P9.11. The system 
receives a granular feed of varying composition, and 
we want to maintain a constant composition of the 
output mixture by adjusting the feed-flow valve.

The transport of the feed along the conveyor re-
quires a transport (or delay) time, T 1.5 s.=  (a) 
Sketch the Bode plot when K K 1,1 2= =  and inves-
tigate the stability of the system. (b) Sketch the Bode 
plot when K 0.11 =  and K 0.04,2 =  and investigate 

M09_DORF2374_14_GE_C09.indd   710M09_DORF2374_14_GE_C09.indd   710 26/08/2021   19:5726/08/2021   19:57



Problems 711

the stability of the system. (c) When K 0,1 =  use the 
Nyquist criterion to calculate the maximum allow-
able gain K2 for the system to remain stable.

P9.12 A simplified model of the control system for reg-
ulating the pupillary aperture in the human eye is 
shown in Figure P9.12 [20]. The gain K represents the 
pupillary gain, and τ  is the pupil time constant, which 
is 0.75 s. The time delay T is equal to 0.6 s. The pupil-
lary gain is K 2.5= .
(a) Assuming the time delay is negligible, sketch the 
Bode plot for the system. Determine the phase mar-
gin of the system. (b) Include the effect of the time 
delay by adding the phase shift due to the delay. 

Determine the phase margin of the system with the 
time delay included.

P9.13 A controller is used to regulate the temperature of 
a mold for plastic part fabrication, as shown in Figure 
P9.13. The value of the delay time is estimated as 1.2 s.  
(a) Using the Nyquist criterion, determine the sta-
bility of the system for 1.K Ka = =  (b) Determine 
a suitable value for Ka  for a stable system that will 
yield a phase margin P M. . ≥ 50° when K 1.=

P9.14 Electronics and computers are being used to 
control automobiles. Figure P9.14 is an example of 
an automobile control system, the steering control 
for a research automobile. The control stick is used 

FIGURE P9.11
Chemical 
 concentration 
control.
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-
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temperature

Y(s)
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sK +( )Ka

Controller
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dynamics

FIGURE P9.13
Temperature 
controller.

to control the guidance and speed of the vehicle. The 
cart senses the tape path by means of an array of 
16 phototransistors. The block diagram of the steering 
system is shown in Figure P9.16(b). Select a gain K so 
that the phase margin is P M. . 30°= .

P9.17 The primary objective of many control systems is 
to maintain the output variable at the desired or ref-
erence condition when the system is subjected to a 
disturbance [22]. A typical chemical reactor control 
scheme is shown in Figure P9.17. The disturbance is 
represented by U s( ) , and the chemical process by G3 
and G .4  The controller is represented by G1 and the 
valve by G .2  The feedback sensor is H s( ) and will be 
assumed to be equal to 1. We will assume that G G,   ,2 3  
and G4  are all of the form

G s
K

si
i

i1
,

τ
( ) =

+

where 4 s3 4τ τ= =  and K K 0.1.3 4= =  The valve 
constants are K 202 =  and 0.5 s.2τ =  We want to 

-

+
R(s)

Desired
direction
of travel

e-sT
Control stick K

s(0.1s + 1)

Y(s)
Direction
of travel

Vehicle and
front wheels

Human
reaction time

FIGURE P9.14
Automobile steering 
control.

for steering. A typical driver has a reaction time of 
T 0.2 s.=
(a) Using the Nichols chart, determine the magnitude 

of the gain K that will result in a system with a 
peak magnitude of the closed-loop frequency re-
sponse ωMp  2≤  dB.

(b) Estimate the damping ratio of the system based 
on (1) ωMp  and (2) the phase margin. Compare 
the results and explain the difference, if any.

(c) Determine the closed-loop bandwidth of the 
system.

P9.15 Consider the automatic ship-steering system trans-
fer function.

( )
( )( )

( )( )
=

− + −
+ −

0.164 0.2 0.32
0.25 0.009

.
2

G s
s s

s s s

The deviation of the tanker from the straight track is 
measured by radar and is used to generate the error 
signal, as shown in Figure P9.15. This error signal is 
used to control the rudder angle s .δ( )
(a) Is this system stable? Discuss what an unstable 

ship-steering system indicates in terms of the 
transient response of the system. Recall that the 
system under consideration is a ship attempting 
to follow a straight track.

(b) Is it possible to stabilize this system by lowering 
the gain of the transfer function G s( )?

(c) Is it possible to stabilize this system with a deriva-
tive feedback controller?

(d) Suggest a suitable feedback controller.
(e) Repeat part (a), (b), and (c) when switch S is closed.

P9.16 An electric carrier that automatically follows a 
tape track laid out on a factory floor is shown in Figure 
P9.16(a) [15]. Closed-loop feedback systems are used 

-

+

+

Rudder
angle
d(s)

Ship

G(s)
E(s)Heading

Desired constant
heading

Switch S

Derivative
feedback

+

Ks

FIGURE P9.15 Automatic ship steering.
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FIGURE P9.16
(a) An electric 
carrier vehicle 
(photo courtesy of 
Control Engineering 
Corporation). 
(b) Block diagram.

(a)

(b)

-

+
R(s)

Y(s)
Cart heading

Phototransistor
array
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Motor and cart dynamics

1

(s/10 + 1)(s2 + s + 2)

-

+
R(s)

U(s)

Y(s)G1(s) G2(s) G3(s) G4(s)
+

+

H(s)
FIGURE P9.17
Chemical reactor 
control.

maintain a steady-state error ess =5% of the desired 
reference position.

(a) When G s K ,1 1( ) =  find the necessary gain to sat-
isfy the error-constant requirement. For this con-
dition, determine the expected percent overshoot 
to a step change in the reference signal r t( ).

(b) If the controller has a proportional term plus 
an integral term so that G s K s1 1 ,1 1( )( ) = +  
determine a suitable gain to yield a system with 

a percent overshoot of P O. . ≤30%, but P O. . ≥ 
5%. For parts (a) and (b), use the approxima-
tion of the damping ratio as a function of phase 
margin that yields 0.01 .pmζ φ=  For these calcu-
lations, assume that U s 0.( ) =

(c) Estimate the settling time (with a 2% criterion) 
of the step response of the system for the con-
troller of parts (a) and (b).
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714 Chapter 9  Stability in the Frequency Domain

(d) The system is expected to be subjected to a step 
disturbance U s A s.( ) =  For simplicity, assume 
that the desired reference is r t 0( ) =  when the 
system has settled. Determine the response of 
the system of part (b) to the disturbance.

P9.18 A model of an automobile driver attempting 
to steer a course is shown in Figure P9.18, where 
K 2.0.=  (a) Find the frequency response and the 
gain and phase margins when the reaction time   
T 0.=  (b) Find the phase margin when the reaction 
time is T 0.3=  s. (c) Find the reaction time that will 
cause the system to be borderline stable (P M. . 0°= ).

P9.19 In the United States, billions of dollars are spent 
annually for solid waste collection and disposal. One 
system, which uses a remote-control pick-up arm for 
collecting waste bags, is shown in Figure P9.19. The 
loop transfer function of the remote pick-up arm is

L s G s G s
s s sc

0.8
3 1 6

.( ) ( ) ( )
( )( )

= =
+ +

(a) Plot Nichols chart, and show that the gain  margin  
G.M. is 33.5 dB. (b) Determine the phase margin 
and the ωMp  for the closed loop. Also, determine the 
closed-loop bandwidth.

P9.20 The Bell-Boeing V-22 Osprey Tiltrotor is both an 
airplane and a helicopter. Its advantage is the abil-
ity to rotate its engines to a vertical position, as shown 
in Figure P7.33(a), for takeoffs and landings and then 
switch the engines to a horizontal position for cruising 
as an airplane. The altitude control system in the heli-
copter mode is shown in Figure P9.20. (a) Obtain the 
frequency response of the system for K 100.=  (b) Find 
the gain margin and the phase margin for this system. 
(c) Select a suitable gain K so that the phase margin 
is P M. . 40°.=  (Decrease the gain above K 100.)=  
(d) Find the response y t( ) of the system for the gain 
 selected in part (c).

P9.21 Consider a unity feedback system with the loop 
transfer function

L s G s G s
K

s s sc 3 5
.

( )
( ) ( ) ( )

( )
= =

+ +

+

-

e-T

s

K
s2

R(s)
Desired
course

Steering Auto

Lateral
displacement

PredictorPredicted
course

Driver Auto

s2 + 0.75s + 0.35FIGURE P9.18
Automobile and 
driver control.

FIGURE P9.19
Waste collection 
system.

FIGURE P9.20
Tiltrotor aircraft 
control.
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(a) Sketch the Bode plot for K 1.=  Determine 
(b) the gain margin, (c) the value of K required to pro-
vide a gain margin equal to 20 dB, and (d) the value of  
K to yield a steady-state error of 10% of the magni-
tude A for the ramp input r t At t,   0.( ) = >  Can this 
gain be utilized and achieve acceptable performance?

P9.22 The Nichols chart for ω ω( ) ( )G j G jc  of a closed-loop 
system is shown in Figure P9.22. The frequency for 
each point on the graph is given in the following table:

Point 1 2 3 4 5 6 7 8 9

1 2.0 2.6 3.4 4.2 5.2 6.0 7.0 8.0

Determine (a) the resonant frequency, (b) the band-
width, (c) the phase margin, and (d) the gain margin. 
(e) Estimate the overshoot and settling time (with a 
2% criterion) of the response to a step input.

P9.23 A closed-loop system has a loop transfer function

L s G s G s
K

s s sc 3 10
.( ) ( ) ( )

( )( )
= =

+ +

(a) Determine the gain K so that the phase margin is 
P M. . 40°= . (b) For the gain K selected in part (a), 
determine the gain margin of the system.

P9.24 A closed-loop system with unity feedback has a 
loop transfer function

L s G s G s
K s

s
c

30
.

2
( ) ( ) ( )

( )
= =

+

(a) Determine the gain K so that the phase margin 
is P M. . 35°= . (b) For the gain K selected in part (a)  
determine the gain margin of the system. (c) Predict 
the bandwidth of the closed-loop system.
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716 Chapter 9  Stability in the Frequency Domain

P9.25 A closed-loop system has the loop transfer function

1
.L s G s G s

Ke
sc

sT
( ) ( ) ( )

( )
= =

+

−

(a) Determine the gain K so that the phase margin is 
P M. . 60°=  when T 0.15.=  (b) Plot the phase mar-
gin versus the time delay T for K as in part (a).

P9.26 A specialty machine shop is improving the effi-
ciency of its surface-grinding process [21]. The existing 
machine is mechanically sound, but manually oper-
ated. Automating the machine will free the operator 
for other tasks and thus increase overall throughput 
of the machine shop. The grinding machine is shown 
in Figure P9.26(a) with all three axes automated with 
motors and feedback systems. The control system for 
the y-axis is shown in Figure P9.26(b). To achieve a 
low steady-state error to a ramp command, we choose 
K 2.=  Sketch the Bode plot and Nichols chart. 

Determine the gain margin and phase margin of the 
system and the bandwidth of the closed-loop system. 
Estimate the damping ratio of the system and the pre-
dicted percent overshoot and settling time.

P9.27 Consider the system shown in Figure P9.27. 
Determine the maximum value of K Kmax=  for which 
the closed-loop system is stable. Plot the phase margin 
as a function of the gain K K1 .max≤ ≤  Explain what 
happens to the phase margin as K approaches K .max

P9.28 Consider the feedback system shown in Figure P9.28.
(a) Determine the value of KP  such that the phase 

margin is . . 60°.=P M
(b) Using the P.M. obtained, predict the percent over-

shoot of the closed-loop system to a unit step input.
(c) Plot the step response, and compare the actual 

percent overshoot with the predicted percent 
overshoot.

FIGURE P9.26 Surface-grinding wheel control system.
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FIGURE P9.27
Nonunity  feedback 
system with 
 proportional 
 controller K.
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A unity feedback 
system with a 
 proportional 
 controller in the 
loop.
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AP9.1 For positive constants of K, T1, and T2, a control 
system is described by its loop transfer function as

(1 )
1

.1
2

2( )
( ) ( ) ( )= =

+
+

L s G s H s
K T s
s T sc

Considering gain K = 0.06, compute the phase  
margin and gain margin for (a) T1 = 5 and T2 = 2. 
(b) T1 = 2 and T2 = 5. (c) Comment on the stability.

AP9.2 Anesthesia is used in surgery to induce uncon-
sciousness. One problem with drug-induced uncon-
sciousness is differences in patient responsiveness. 
Furthermore, the patient response changes during an 
operation. A model of drug-induced anesthesia con-
trol is shown in Figure AP9.2. The proxy for uncon-
sciousness is the arterial blood pressure.
(a) Obtain the Bode plot and determine the gain 
margin and the phase margin when T 0.05 s.=  
(b)  Repeat part (a) when T 0.1 s.=  Describe the 

effect of the 100% increase in the time delay T. (c) 
Using the phase margin, predict the percent over-
shoot for a step input for parts (a) and (b).

AP9.3 Figure AP9.3 shows an automatic water treat-
ment plant. It is typically a mechanical–chemical 
arrangement that uses reagent to purify water. The 
plant comprises an input pipeline embedded with 
a flow meter and sensors. The temperature and the 
flow rate of the boiler and the cooling water are regu-
lated based on the input-output concentration of the 
chemical water. 

  The transfer function of the system is given by 

0.2 0.06 0.03 0.04
1.12 0.8 0.4

.
3 2

3 2
L s G s H s

s s s
s s s

( ) ( ) ( )= =
+ + +
+ + +

(a) Draw the Bode plot indicating the gain margin 
and phase margin. (b) Find the peak overshoot of the 
system for unit step input.

ADVANCED PROBLEMS

FIGURE AP9.2
Control of blood 
pressure with 
anesthesia.

+

-

2
s + 2

2e-sT

s

R(s)
Desired
blood

pressure

Y(s)
Actual
blood

pressure

2(s + 5)

Controller Body dynamics

Sensor

Controller

Pump

Controller Controller Controller

Waste water
inlet

E�uents

FIGURE AP9.3
An automatic water 
treatment plant.
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718 Chapter 9  Stability in the Frequency Domain

AP9.4 The loop transfer function of a system is described 
as

L s G s H s
K

s s 2.45
.3( )

( ) ( ) ( )= =
+

Find the value of K for marginal stability. Find the 
gain margin and the phase margin for K = 22 and  
K = 42.

AP9.5 A unity feedback control system given by 

L s G s H s
e

s s s

sT5
3 4

.( ) ( ) ( )
( )( )

= =
+ +

−

Determine the (a) phase margin for T = 0 and (b) 
 limiting value of T for stability.

AP9.6 The acidity of water draining from a coal mine is 
often controlled by adding lime to the water. A valve 
controls the lime addition and a sensor is downstream. 
For the model of the system shown in Figure AP9.6, 

determine K and the distance D to maintain stability. 
We require D 2>  meters in order to allow full mixing 
before sensing.

AP9.7 Building elevators are limited to about 800 meters. 
Above that height, elevator cables become too thick 
and too heavy for practical use. One solution is to 
eliminate the cable. The key to the cordless elevator 
is the linear motor technology now being applied to 
the development of magnetically levitated rail trans-
portation systems. Under consideration is a linear syn-
chronous motor that propels a passenger car along the 
track like guideway running the length of the elevator 
shaft. The motor works by the interaction of an elec-
tromagnetic field from electric coils on the guideway 
with magnets on the car [28].

If we assume that the motor has negligible fric-
tion, the system may be represented by the model 
shown in Figure AP9.7. Determine K so that the 
phase margin of the system is P M. . 60°= . For the 
gain K selected, determine the system bandwidth. 
Also calculate the maximum value of the output for a 
unit step disturbance for the selected gain.

FIGURE AP9.6
Mine water acidity 
control.

Y(s)
Actual
acidity

e-sD/4
R(s) = 0
Desired
acidity

K

(s2 + 10s + 100)
+

-

DelayMotor and valve

FIGURE AP9.7
Elevator position 
control.

+

-

R(s)
Desired
elevator
position

Y(s)
Elevator
position

Td(s)
Disturbance

1

s2

Elevator and
linear motor

+

+
K(s + 4)

Controller
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AP9.8 A control system is shown in Figure AP9.8. The 
gain K is greater than 500 and less than 4000. Select a 
gain that will cause the system step response to have 
a percent overshoot of P O. . 20%≤ . Plot the Nichols 
chart and calculate the phase margin.

AP9.9 Consider a unity feedback system with

G s
s s s

 
1
6 122( )

( ) =
+ +

and

.1( ) = +G s K
K
sc P

Let

0.3,
1

=
K
K

P

and determine the gain KP that provides the maximum  
phase margin.

AP9.10 A multiloop block diagram is shown in Figure 
AP9.10.

(a) Compute the transfer function T s Y s R s .( ) ( ) ( )=

(b) Determine K such that the steady-state tracking 
error to a unit step input R s s1( ) =  is zero. Plot 
the unit step response.

(c) Using K from part (b), compute the system band-
width b.ω

AP9.11 Patients with a cardiological illness and less than 
normal heart muscle strength can benefit from an as-
sistance device. An electric ventricular assist device 
(EVAD) converts electric power into blood flow by 
moving a pusher plate against a flexible blood sac. The 
pusher plate reciprocates to eject blood in systole and 
to allow the sac to fill in diastole. The EVAD will be 
implanted in tandem or in parallel with the intact nat-
ural heart as shown in Figure AP9.11(a). The EVAD 
is driven by rechargeable batteries, and the elec-
tric power is transmitted inductively across the skin 
through a transmission system. The batteries and the 
transmission system limit the electric energy storage 
and the transmitted peak power. We desire to drive 
the EVAD in a fashion that minimizes its electric 
power consumption [33].

The EVAD has a single input, the applied motor 
voltage, and a single output, the blood flow rate. The 
control system of the EVAD performs two main 

FIGURE AP9.8
Gain selection.

R(s) Y(s)
-

+ 1

s(s2 + 3.2s + 3.56)
K(s + 1)2

(s + 12)(s + 23)

FIGURE AP9.10
Multiloop feedback 
control system.

+ +

- -

R(s) Y(s)
1

(s + 2)

1
s

S
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720 Chapter 9  Stability in the Frequency Domain

(b)

(a)

R(s)
Desired

flow
rate

Gc(s)
+

-
G(s) = e-sT

Y(s)
Blood

flow rate

V(s)
Motor
voltage

Assist pump

Battery pack Controller

Energy transmission
system

Compliance
chamber

Motor, pump, and
blood sacController

FIGURE AP9.11
(a) An electric  
ventricular 
 assist device for 
 cardiology  patients. 
(b) Feedback 
 control system.

tasks: It adjusts the motor voltage to drive the pusher 
plate through its desired stroke, and it varies the 
EVAD blood flow to meet the body’s cardiac output 
demand. The blood flow controller adjusts the blood 
flow rate by varying the EVAD beat rate. A model 
of the feedback control system is shown in Figure 
AP9.11(b). The motor, pump, and blood sac can 
be modeled by a nominal time delay with T 2 s.=  
The goal is to achieve a step response with zero 
steady-state error and percent overshoot P O. . 15%≤ .

Consider the controller

G s
s sc

2
7

.( )
( )

=
+

For the nominal time delay of T 2 s= , plot the step 
response and verify that steady-state tracking error 
and percent overshoot specifications are satisfied. 
Determine the maximum time delay, T, possible 
with the controller that continues to stabilize the 
closed-loop system. Plot the phase margin as a function 
of time delay up to the maximum allowed for stability.

CDP9.1 The system of Figure CDP4.1 uses a controller 
( ) = .G s Kc a  Determine the value of Ka  so that the 

phase margin is P M. . 70°= . Plot the response of this 
system to a step input.

DP9.1 A mobile robot for toxic waste cleanup is shown 
in Figure DP9.1(a) [23]. The closed-loop speed control 
is a unity feedback system. The Nichols chart in Figure 
DP9.1(b) shows the plot of ω ω( ) ( )G j G j Kc  versus .ω  

DESIGN PROBLEMS
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FIGURE DP9.1
(a) Mobile robot 
for toxic waste 
cleanup. (b) Nichols 
chart. (b)
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722 Chapter 9  Stability in the Frequency Domain

The value of the frequency at the points indicated is 
recorded in the following table:

Point 1 2 3 4 5

2 5 10 20 50

(a) Determine the gain and phase margins of the 
closed-loop system when K 1.=  (b) Determine the 
resonant peak in dB and the resonant frequency for 
K 1.=  (c) Determine the system bandwidth and esti-
mate the settling time (with a 2% criterion) and percent 
overshoot of this system for a step input. (d) Determine 
the appropriate gain K so that the percent overshoot to 
a step input is P O. . 30%= , and estimate the settling 
time of the system.

DP9.2 Flexible-joint robotic arms are constructed of 
lightweight materials and exhibit lightly damped 
open-loop dynamics [15]. A feedback control system 
for a flexible arm is shown in Figure DP9.2. Select K 
so that the system has maximum phase margin. Predict 
the percent overshoot for a step input based on the 
phase margin attained, and compare it to the actual 
overshoot for a step input. Determine the bandwidth 
of the closed-loop system. Predict the settling time 
(with a 2% criterion) of the system to a step input and 
compare it to the actual settling time. Discuss the suit-
ability of this control system.

DP9.3 An automatic drug delivery system is used in the 
regulation of critical care patients suffering from car-
diac failure [24]. The goal is to maintain stable patient 
status within narrow bounds. Consider the use of a 
drug delivery system for the regulation of blood pres-
sure by the infusion of a drug. The feedback control 
system is shown in Figure DP9.3. Select an appropri-
ate gain K that maintains narrow deviation for blood 
pressure while achieving a good dynamic response.

DP9.4 A robot tennis player is shown in Figure DP9.4(a), 
and a simplified control system for t2θ ( ) is shown in 
Figure DP9.4(b). The goal of the control system is to 
attain the best step response while attaining a high Kv  
for the system. Select Kv 0.351 =  and Kv 0.65,2 =  and 
determine the phase margin, gain margin, bandwidth, 
percent overshoot, and settling time for each case. 
Obtain the step response for each case, and select the 
best value for K.

DP9.5 An electrohydraulic actuator is used to actuate 
large loads for a robot manipulator, as shown in Figure 
DP9.5 [17]. The system is subjected to a step input, 
and we desire the steady-state error to be minimized. 
However, we wish to keep the percent overshoot 
P O. . 10%≤ . Let T 0.8 s.=
(a) Select the gain K when ( ) = ,G s Kc  and determine 
the resulting percent overshoot, settling time (with 
a 2% criterion), and steady-state error. (b) Repeat 
part (a) when ( ) = +1 2G s K K sc  by selecting K1  and 
K .2  Sketch the Nichols chart for the selected gains 
K1  and K .2

DP9.6 The physical representation of a steel strip-rolling 
mill is a damped-spring system [8]. The output thick-
ness sensor is located a negligible distance from the 
output of the mill, and the objective is to keep the 
thickness as close to a reference value as possible. Any 
change of the input strip thickness is regarded as a dis-
turbance. The system is a nonunity feedback system, as 
shown in Figure DP9.6. Depending on the maintenance 
of the mill, the parameter varies as 50 400.b≤ <

Determine the phase margin and gain margin for 
the two extreme values of b when the normal value of 
the gain is 100.K =  Recommend a reduced value for 
K so that the phase margin is . . 45°P M ≥  and the gain 
margin is . . 6 dBG M ≥  for the range of b.

FIGURE DP9.2
Control of a flexible 
robot arm.

-

+
R(s) Y(s)
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40s + 1
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Blood

pressure
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FIGURE DP9.3
Automatic drug 
delivery.
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(a)

(b)

K
s + 3.33

1
s + 0.66

u2d(s) u2(s)
+

-

x

y

u1

u2

FIGURE DP9.4
(a) An articulated 
two-link tennis 
player robot. 
(b) Unity feedback 
control system.

FIGURE DP9.5
Electrohydraulic 
actuator.

-

+
R(s) Y(s)

Controller

e-sT

10s + 1

Actuator

Gc(s)

FIGURE DP9.6
Steel strip-rolling 
mill.

-

+
R(s) Y(s)

Controller

K(s + 0.2)
s

300

s2 + bs + 5000

Strip mill

Sensor

4
s + 4

DP9.7 Vehicles for lunar construction and exploration 
work will face conditions unlike anything found on 
Earth. Furthermore, they will be controlled via remote 
control. A block diagram of such a vehicle and the con-
trol are shown in Figure DP9.7. Select the gain K to have 
a percent overshoot of =P O. . 10%. For this K, what is 
the maximum allowed time delay T for stability?

DP9.8 The control of a high-speed steel-rolling mill is 
a challenging problem. The goal is to keep the strip 
thickness accurate and readily adjustable. The model 

of the control system is shown in Figure DP9.8. Design 
a control system by selecting K so that the step re-
sponse of the system is as fast as possible with a per-
cent overshoot of . . 0.7%,≤P O  and a settling time 
(with a 2% criterion) of T 4 ss ≤ . Use the root locus 
to select K, and calculate the roots for the selected K. 
Describe the dominant root(s) of the system.

DP9.9 A two-tank system containing a heated liquid has 
the model shown in Figure DP9.9(a), where T0  is the 
temperature of the fluid flowing into the first tank 
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724 Chapter 9  Stability in the Frequency Domain

FIGURE DP9.7
Lunar vehicle 
control.
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FIGURE DP9.8
Steel-rolling mill 
control.
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control. (b)
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+ +
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Valve
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and T2  is the temperature of the liquid flowing out of 
the second tank. The block diagram model is shown 
in Figure DP9.9(b). The system of the two tanks has a 
heater in tank 1 with a controllable heat input Q. The 
time constants are 10 s1τ =  and 50 s.2τ =

(a) Determine T s2 ( ) in terms of T s0 ( ) and T sd .2 ( )
(b) If T sd ,2 ( )  the desired output temperature, is 

changed instantaneously from T s A sd2 ( ) =  to 
T s A sd 2 ,2 ( ) =  determine the transient response 
of T t2 ( ) when G s Kc 500.( ) = =  Assume that, 
prior to the abrupt temperature change, the sys-
tem is at steady state.

(c) Find the steady-state error ess for the system of 
part (b), where E s T s T sd .2 2( ) ( ) ( )= −

(d) Let ( ) =G s K sc  and repeat parts (b) and (c). 
Use a gain K such that the percent overshoot is 
P O. . 10%≤ .

(e) Design a controller that will result in a system with 
a settling time (with a 2% criterion) of Ts 150 s≤  
and a percent overshoot of P O. . 10%≤ , while 
maintaining a zero steady-state error when

( ) = + .G s K
K
sc P
I
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Gc(s)

Steam generator

Control
rods

Actuator

Temperature
measurement

Temperature
setting

- +

Reactor
core

FIGURE DP9.11
Nuclear reactor 
control.

(f) Prepare a table comparing the percent over-
shoot, settling time, and steady-state error for 
the designs of parts (b) through (e).

DP9.10 Consider the system is described in state vari-
able form by

�x Ax Bt t u t( ) ( ) ( )= +

Cx( ) ( )=y t t

where
0 1
2 3

, 0
1

, [ 1 0 ].A B C=










 =











 =

Assume that the input is a linear combination of the 
states, that is,

,Kx( ) ( ) ( )= − +u t t r t

where r t( ) is the reference input and the gain matrix 
is K KK [ ].1 2=  Substituting u t( ) into the state 
variable equation yields the closed-loop system

�x A BK x B[ ]t t r t( ) ( ) ( )= − +

( ) ( )= .y t tCx

(a) Obtain the characteristic equation associated 
with A–BK.

(b) Design the gain matrix K to meet the following 
specifications: (i) the closed-loop system is sta-
ble; (ii) the system bandwidth b 1  rad s;ω ≥  and 
(iii) the steady-state error to a unit step input 
R s s1( ) =  is zero.

DP9.11 The primary control loop of a nuclear power 
plant includes a time delay due to the need to trans-
port the fluid from the reactor to the measurement 
point as shown in Figure DP9.11. The transfer func-
tion of the controller is

( ) = + .G s K
K
sc P
I

The transfer function of the reactor and time delay is

G s
e
s

sT

1
,

τ
( ) =

+

−

where T 0.5=  s and 0.3τ =  s. Using frequency re-
sponse methods, design the controller so that the 
percent overshoot of the system is P O. . 20%≤ . With 
this controller in the loop, estimate the percent over-
shoot and settling time (with a 2% criterion) to a unit 
step. Determine the actual overshoot and settling 
time, and compare with the estimated values.

CP9.1 Consider a unity negative feedback control 
 system with

141
2 12

.
2

( ) ( ) ( )= =
+ +

L s G s G s
s sc

Verify that the gain margin is ∞  and that the phase 
margin is 10°. 

COMPUTER PROBLEMS
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726 Chapter 9  Stability in the Frequency Domain

CP9.2 Using the nyquist function, obtain the Nyquist plot 
for the following transfer functions:

(a) G s
s

15
20

;( ) =
+

(b) G s
s s

40
6 25

;
2

( ) =
+ +

(c) G s
s s s

12
4 4 1

.
3 2

( ) =
+ + +

CP9.3 Using the nichols function, obtain the Nichols 
chart with a grid for the following transfer functions:

(a) G s
s

1
0.2

;( ) =
+

(b) G s
s s

1
2 1

;
2

( ) =
+ +

(c) G s
s s s

12
6 11 6

.
3 2

( ) =
+ + +

Determine the approximate phase and gain margins 
from the Nichols charts and label the charts accordingly.

CP9.4 A negative feedback control system has the loop 
transfer function

L s G s G s
Ke
sc

Ts

15
.( ) ( ) ( )= =

+

−

(a) When T 0.05 s,=  find K such that the phase 
margin is P M. . 55°≥  using the margin function. (b) 
Obtain a plot of phase margin versus T for K as in part 
(a), with T0 0.4 s.≤ ≤

CP9.5 Consider a unity feedlach system with the loop 
transfer function 

( ) ( ) ( )= =
+

+ +
( 25)

( 10)( 20)
.L s G s G s

K s
s s sc

Develop an m-file to plot the bandwidth of the closed-
loop system as K varies in the interval ≤ ≤K1 80.

CP9.6 A block diagram of the yaw acceleration control 
system for a bank-to-turn missile is shown in Figure 
CP9.6. The input is yaw acceleration command (in g’s), 
and the output is missile yaw acceleration (in g’s). The 
controller is specified to be a proportional, integral 
(PI) controller. The nominal value of b0 is 0.5.

(a) Using the margin function, compute the phase 
margin, gain margin, and system crossover fre-
quency assuming the nominal value of b .0

(b) Using the gain margin from part (a), determine 
the maximum value of b0 for a stable system. 
Verify your answer with a Routh–Hurwitz anal-
ysis of the characteristic equation.

CP9.7 An engineering laboratory has presented a plan 
to operate an Earth-orbiting satellite that is to be 
controlled from a ground station. A block diagram 
of the proposed system is shown in Figure CP9.7. 
It  takes T  seconds for a signal to reach the space-
craft from the ground station and the identical delay 
for a return signal. The proposed ground-based  
controller is a proportional-derivative (PD) control-
ler, where

( ) = + .G s K K sc P D

(a) Assume no transmission time delay (i.e., T 0= ), 
and design the controller to the following spec-
ifications: (1) percent overshoot P O. . 20%≤  to 
a unit step input and (2) time to peak Tp ≤  30 s.

(b) Compute the phase margin with the controller in 
the loop but assuming a zero transmission time 
delay. Estimate the amount of allowable time 
delay for a stable system from the phase margin 
calculation.

(c) Using a second-order Padé approximation to the 
time delay, determine the maximum allowable 
delay Tmax  for system stability by developing a 

FIGURE CP9.6
A feedback control 
system for the yaw 
acceleration control 
of a bank-to-turn 
missile.

-

+ay
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ay
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s
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FIGURE CP9.7
A block diagram of 
a ground-controlled 
satellite.
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m-file script that employs the pade function and 
computes the closed-loop system poles as a func-
tion of the time delay T. Compare your answer 
with the one obtained in part (b).

CP9.8 Consider the system represented in state variable

t t u tx x0 2
1 18

0
20

( ) ( ) ( )=
− −











 +











�

x6 0 0 .( ) ( ) [ ] ( )= 



 +y t t u t

Using the nyquist function, obtain the Nyquist plot.

CP9.9 For the system in CP9.8, use the nichols function 
to obtain the Nichols chart and determine the phase 
margin and gain margin.

CP9.10 A closed-loop feedback system is shown in Figure 
CP9.10. (a) Obtain the Nyquist plot, and determine the  
phase margin. Assume that the time delay T 0 s.=  

(b) Compute the phase margin when T 0.05 s.=  
(c) Determine the minimum time delay that destabi-
lizes the closed-loop system.

+

-
R(s) Y(s)e-sT

1
s + 1

10
s

Time delay

FIGURE CP9.10 Nonunity feedback system with a time 
delay.

ANSWERS TO SKILLS CHECK

True or False: (1) True; (2) True; (3) True; (4) True; 
(5) False

Multiple Choice: (6) b; (7) a; (8) d; (9) a; (10) d; (11) b; 
(12) a; (13) b; (14) c; (15) a

Word Match (in order, top to bottom): f, e, k, b, j, a, i, 
d, h, c, g

Bandwidth The frequency at which the frequency re-
sponse has declined 3 dB from its low-frequency value.

Cauchy’s theorem If a contour encircles Z zeros and P 
poles of F(s) traversing clockwise, the corresponding 
contour in the F(s)-plane encircles the origin of the 
F(s)-plane N Z P= −  times clockwise.

Closed-loop frequency response The frequency re-
sponse of the closed-loop transfer function T j .ω( )

Conformal mapping A contour mapping that retains the 
angles on the s-plane on the F(s)-plane.

Contour map A contour or trajectory in one plane is 
mapped into another plane by a relation F(s).

Gain margin The increase in the system gain when 
phase 180°= −  that will result in a marginally stable 
system with intersection of the j1 0− +  point on the 
Nyquist diagram.

Logarithmic (decibel) measure A measure of the gain 

margin defined as d20  log 1 ,10 ( )  where 
ω( )

=
1 1
d L j

 

when the phase shift is 180°.−

Nichols chart A chart displaying the curves for the re-
lationship between the open-loop and closed-loop 
frequency response.

Nyquist stability criterion A feedback system is stable if, 
and only if, the contour in the L(s)-plane does not 
encircle the 1,  0( )−  point when the number of poles 
of L(s) in the right-hand s-plane is zero. If L(s) has 
P poles in the right-hand plane, then the number of 
counterclockwise encirclements of the 1,  0( )−  point 
must be equal to P for a stable system.

Phase margin The amount of phase shift of the L jω( ) at 
unity magnitude that will result in a marginally stable 
system with intersections of the j1 0− +  point on the 
Nyquist diagram.

Principle of the argument See Cauchy’s theorem.

Time delay A time delay T, so that events occurring at 
time t at one point in the system occur at another 
point in the system at a later time t T.+

TERMS AND CONCEPTS
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PREVIEW

In this chapter, we address the central issue of the design of compensators. Using 
the methods of the previous chapters, we develop several design techniques in the 
frequency domain that enable us to achieve the desired system performance. The 
powerful lead and lag controllers are used in several design examples. Phase-lead 
and phase-lag control design approaches using both root locus plots and Bode 
plots are presented. The proportional-integral (PI) controller is revisited in the 
context of achieving high steady-state tracking accuracies. The chapter concludes 
with a proportional-derivative (PD) controller design with prefiltering for the 
Sequential Design Example: Disk Drive Read System.

DESIRED OUTCOMES

Upon completion of Chapter 10, students should be able to:

	❏ Explain the design of lead and lag compensators using root locus and Bode plot 
methods.

	❏ Identify the value of prefilters and design for deadbeat response.

	❏ Distinguish between the varied approaches available for control system design.
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Section 10.1 Introduction 729

10.1 INTRODUCTION

The performance of a feedback control system is of primary importance. A suitable 
control system is stable and results in an acceptable response to input commands, is 
less sensitive to system parameter changes, results in a minimum steady-state error 
for input commands, and is able to reduce the effect of undesirable disturbances.  
A feedback control system that provides an optimum performance without any 
 necessary adjustments is rare. Usually, we find it necessary to compromise among 
the many conflicting and demanding specifications and to adjust the system parameters 
to provide a suitable and acceptable performance when it is not possible to obtain 
all the desired optimum specifications.

It is generally possible to adjust the system parameters in order to provide the 
desired system response. However, we may find that it is not sufficient to adjust a 
single system parameter and obtain the desired performance. Rather, we may be 
required to consider the structure of the system and redesign the system in order 
to obtain a suitable one. That is, sometimes we must examine the scheme or plan 
of the system and obtain a new design or plan that results in a suitable system. Thus, 
the design of a control system is concerned with the arrangement, or the plan, of 
the system structure and the selection of suitable components and parameters. For 
example, if we desire a set of performance measures to be less than some specified 
values, we often encounter a conflicting set of requirements. Hence, if we wish a 
system to have a percent overshoot less . .   20%≤P O  and 3.3,ω =Tn p  we obtain 
a conflicting requirement on the system damping ratio ζ. If we are unable to relax 
these two performance requirements, we must alter the system in some way. The 
alteration or adjustment of a control system in order to provide a suitable perfor-
mance is called compensation; that is, compensation is the adjustment of a system in 
order to make up for deficiencies or inadequacies.

In redesigning a control system to alter the system response, an additional com-
ponent is inserted within the structure of the feedback system. It is this additional 
component or device that equalizes or compensates for the performance deficiency. 
The compensating device is often called a compensator.

A compensator is an additional component that is inserted into a control 
 system to compensate for a deficient performance.

The transfer function of a compensator is designated as ( ) ( ) ( )=G s E s E sc ,o in  
and the compensator can be placed in a suitable location within the structure of 
the system. Several types of compensation are shown in Figure 10.1 for a simple, 
single-loop feedback control system. The compensator placed in the feedforward 
path is called a cascade compensator (Figure 10.1a). Similarly, the other compen-
sation schemes are called feedback, output (or load), and input compensation, as 
shown in Figures 10.1(b), (c), and (d), respectively. The selection of the compensa-
tion scheme depends upon a consideration of the specifications, the power levels at 
various signal nodes in the system, and the networks available for use. Usually, the 
output ( )Y s  is a direct output of the process ( )G s  and the output compensation of 
Figure 10.1(c) is not physically realizable.
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730 Chapter 10  The Design of Feedback Control Systems

10.2 APPROACHES TO SYSTEM DESIGN

The performance of a control system can be described in terms of the time-domain 
performance measures or the frequency-domain performance measures. The per-
formance of a system can be specified by requiring a certain peak time, Tp, maxi-
mum percent overshoot, P.O., and settling time, Ts, for a step input. Furthermore, it 
is usually necessary to specify the maximum allowable steady-state error for several 
test signal inputs and disturbance inputs. These performance specifications can be 
defined in terms of the desirable location of the poles and zeros of the closed-loop 
system transfer function ( )T s . Thus, the location of the s-plane poles and zeros of 

( )T s  can be specified. The locus of the roots of the closed-loop system can be read-
ily obtained for the variation of one system parameter. However, when the locus of 
roots does not result in a suitable root configuration, we must add a compensator 
to alter the locus of the roots as the parameter is varied. Therefore, we can use the 
root locus method and determine a suitable compensator so that the resultant root 
locus yields the desired closed-loop root configuration.

Alternatively, we can describe the performance of a feedback control system 
in terms of frequency performance measures. Then a system can be described in 
terms of the peak of the closed-loop frequency response, ωMp ,  the resonant fre-
quency, ,ωr  the bandwidth, ,ωB  the gain margin, G.M., and the phase margin, P.M., 
of the system. We can add a suitable compensator, if necessary, in order to satisfy 
the system specifications. The design of the compensator, represented by ( )G sc ,  
is developed in terms of the frequency response as portrayed on the Nyquist plot, 
the Bode plot, or the Nichols chart. Because a cascade transfer function is readily 
accounted for on a Bode plot by adding the frequency response of the network, we 
often prefer to approach the frequency response methods.

Thus, the design of a system is concerned with the alteration of the frequency 
response or the root locus of the system in order to obtain a suitable system 
 performance. For frequency response methods, we are concerned with altering 
the system so that the frequency response of the compensated system will sat-
isfy the system specifications. Hence, in the frequency response approach, we use 

(c)

(a)

-

+
R(s) Y(s)

H(s)

Compensator

Gc(s)

Process

G(s)

-

+
R(s) Y(s)

H(s)

Gc(s)G(s)

(d)

(b)

-

+
R(s) Y(s)

H(s)Gc(s)

G(s)

-

+
R(s) Y(s)

H(s)

Gc(s) G(s)

FIGURE 10.1
Types of 
 compensation. 
(a) Cascade 
compensation. 
(b) Feedback 
compensation. 
(c) Output, or load, 
 compensation. 
(d) Input 
compensation.
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Section 10.3 Cascade Compensators 731

compensators to alter and reshape the system characteristics represented on the 
Nyquist plot, Bode plot, or Nichols chart.

Alternatively, the design of a control system can be accomplished in the s-plane by 
root locus methods. For the case of the s-plane, the designer wishes to alter and reshape 
the root locus so that the roots of the system lie in the desired locations in the s-plane.

When possible, one way to improve the performance of a control system is to 
alter the process itself. That is, if the system designer is able to specify and alter the 
design of the process represented by the transfer function ( )G s , then the perfor-
mance of the system may be improved. For example, to improve the transient be-
havior of a servomechanism position controller, we might choose a better motor for 
the system. In the case of an airplane control system, we might be able to alter the 
aerodynamic design of the airplane and thus improve the flight transient character-
istics. Thus, a control system designer should recognize that an alteration of the pro-
cess may result in an improved system. However, the process is often unalterable or 
has been altered as much as possible and still results in unsatisfactory performance. 
Then the addition of compensators becomes imperative for improving the perfor-
mance of the system.

In the following sections, we will assume that the process has been improved 
as much as possible and that the ( )G s  representing the process is unalterable. First, 
we shall consider the addition of a phase-lead compensator and describe the design 
of the network by root locus and frequency response techniques. Then, using both 
the root locus and frequency response techniques, we will describe the design of the 
integration compensators in order to obtain a suitable system performance.

10.3 CASCADE COMPENSATORS

In this section, we consider the design of a cascade compensator, as shown in Fig ures 
10.1(a) and (b), respectively. The compensator, G sc( ), is cascaded with the process ( )G s  
to provide a suitable loop transfer function ( ) ( ) ( ) ( )=L s G s G s H sc . The compensa-
tor ( )G sc  can be chosen to alter either the shape of the root locus or the frequency 
response. In either case, the compensator may be chosen to have a transfer function

 .1

1

G s

K s z

s p

c
i

M

i

j

n

j

∏

∏( )
( )

( )

=

+

+

=

=

 (10.1)

Then the problem reduces to the judicious selection of the poles and zeros of the 
compensator. To illustrate the properties, we consider a first-order compensator. 
The compensation approach developed on the basis of a first-order compensator 
can then be extended to higher-order compensators, for example, by cascading sev-
eral first-order compensators.

A compensator ( )G sc  is used with a process ( )G s  so that the overall loop gain 
can be set to satisfy the steady-state error requirement, and then ( )G sc  is used to 
adjust the system dynamics favorably without affecting the steady-state error.
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732 Chapter 10  The Design of Feedback Control Systems

Consider the first-order compensator with the transfer function

 ( ) ( )
=

+
+

G s
K s z

s p
c .  (10.2)

The design problem then becomes the selection of z, p, and K in order to provide 
a suitable performance. When <z p ,  the compensator is called a phase-lead  
compensator and has a pole–zero s-plane configuration, as shown in Figure 10.2. If 
the pole was negligible, that is, �p z , and the zero occurred at the origin of the  
s-plane, we would have a differentiator so that

 ( ) ≈G s
K
p

sc .  (10.3)

Thus, a compensator of the form of Equation (10.2) is a differentiator-type 
 compensator. The differentiator compensator of Equation (10.3) has the frequency 
characteristic

 ω ω ω( ) = =










+G j j
K
p

K
p

ec
j90°  (10.4)

and a phase angle of 90°.+  Similarly, the frequency response of the differentiating 
compensator of Equation (10.2) is

 ω
ω

ω
ωατ

α ωτ
( ) ( ) ( )

( )
=

+
+

=
+
+

G j
K j z

j p

K j

j
c

  1
1

,  (10.5)

where τ α= =p p z1  and  . The frequency response of this phase-lead compensa-
tor is shown in Figure 10.3. The angle of the frequency characteristic is

 φ ω αωτ ωτ( ) ( ) ( )= −− −tan tan .1 1  (10.6)

Because the zero occurs first on the frequency axis, we obtain a phase-lead char-
acteristic, as shown in Figure 10.3. The slope of the asymptotic magnitude curve is 
+20  dB decade.

The phase-lead compensator transfer function can be written as

 
ατ

α τ
( ) ( )

( )
=

+
+

G s
K s

s
c

1
1

,  (10.7)

s

jv

-z-pFIGURE 10.2
Pole–zero diagram 
of the phase-lead 
compensator.
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Section 10.3 Cascade Compensators 733

where 1τ = p and 1α = >p z . The maximum value of the phase lead occurs at a 
 frequency ,ωm  where ωm  is the geometric mean of 1 τ=p  and 1 ;ατ( )=z  that is, 
the maximum phase lead occurs halfway between the pole and zero frequencies on 
the logarithmic frequency scale. Therefore,

 
1

.zpmω
τ α

= =  (10.8)

To obtain an equation for the maximum phase-lead angle, we rewrite the phase 
angle of Equation (10.5) as

 tan
1

.1
2

φ
αωτ ωτ

ωτ α( )
=

−

+
−  (10.9)

Then, substituting the frequency for the maximum phase angle, 1 ,ω τ( )= am  we 
have

 φ
α α α α

α
=

−
+

=
−

mtan 
1

1 1
1

2
. (10.10)

We use the trigonometric relationship sin  tan  1 tan2φ φ φ= +  and obtain

 sin 
1
1

.φ
α
α

=
−
+

m  (10.11)

Equation (10.11) is very useful for calculating a necessary α  ratio between the 
pole and zero of a compensator in order to provide a required maximum phase 
lead. A plot of φm  versus α  is shown in Figure 10.4. The phase angle readily 
obtainable from this compensator is not much greater than 70°. Also, there 
are practical limitations on the maximum value of α  that we should attempt to 
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FIGURE 10.3
Bode plot of 
the phase-lead 
compensator.
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734 Chapter 10  The Design of Feedback Control Systems

obtain. Therefore, if we required a maximum angle greater than 70°, two cas-
cade compensators could be used.

It is often useful to add a cascade compensator that provides a phase-lag 
 characteristic. The phase-lag compensator transfer function is

 α
τ

ατ
( ) =

+
+

G s K
s
s

c  
1

1
, (10.12)

where z1τ =  and z pα = > 1. The pole lies closest to the origin of the s-plane, as 
shown in Figure 10.5. This type of compensator is often called an integrating com-
pensator because it has a frequency response like an integrator over a finite range 
of frequencies. The Bode plot of the phase-lag compensator is obtained from the 
transfer function

 ω α
ωτ

ωατ
( ) =

+
+

G j K
j

j
c  

1
1

 (10.13)

and is shown in Figure 10.6. The form of the Bode plot of the lag compensator is 
similar to that of the phase-lead compensator; the difference is the resulting attenu-
ation and phase-lag angle instead of amplification and phase-lead angle. However, 
note that the shapes of the diagrams of Figures 10.3 and 10.6 are similar. Therefore, 
we can show that the maximum phase lag occurs at .ω = zpm

In the succeeding sections, we wish to utilize these compensation networks to 
obtain a desired system frequency response or s-plane root location. The lead com-
pensator can provide a phase-lead angle and thus a satisfactory phase margin for 
a system. Alternatively, the phase-lead compensator can enable us to reshape the 
root locus and thus provide the desired root locations. The phase-lag compensator 
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FIGURE 10.4
Maximum phase 
angle mφ  versus α 
for a phase-lead 
compensator.
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s
FIGURE 10.5
Pole–zero diagram 
of the phase-lag 
compensator.
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Section 10.4 Phase-Lead Design Using the Bode Plot 735

is used, not to provide a phase-lag angle, which is normally a destabilizing influ-
ence, but rather to provide an attenuation and to increase the steady-state error 
constant [3].

10.4 PHASE-LEAD DESIGN USING THE BODE PLOT

The Bode plot is used to design a suitable phase-lead compensator in preference to 
other frequency response plots. The frequency response of the cascade compensator 
is added to the frequency response of the uncompensated system. That is, because 
the total loop transfer function of Figure 10.1(a) is ω ω ω ω( ) ( ) ( ) ( )=L j G j G j H jc , 
we will first plot the Bode plot for .ω ω( ) ( )G j H j  Then we can examine the plot 
for ω ω( ) ( )G j H j  and determine a suitable location for p and z of ω( )G jc  in order 
to satisfactorily reshape the frequency response. The uncompensated ω ω( ) ( )G j H j  
is plotted with the desired gain to allow an acceptable steady-state error. Then the 
phase margin and the expected Mpω  are examined to find whether they satisfy the 
specifications. If the phase margin is not sufficient, phase lead can be added to 
the phase-angle curve of the system by placing the ω( )G jc  in a suitable location. To 
obtain maximum additional phase lead, we adjust the network so that the frequency 
ωm  is located at the frequency where the magnitude of the compensated magnitude 
curve crosses the 0-dB axis. The value of the added phase lead required allows us 
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FIGURE 10.6 Bode plot of the phase-lag compensator.
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736 Chapter 10  The Design of Feedback Control Systems

to determine the necessary value for α from Equation (10.11) or Figure 10.4. The 
zero 1 ατ( )=z  is located by noting that the maximum phase lead should occur at 

,ω = zpm  halfway between the pole and the zero. Because the total magnitude 
gain for the compensator is 20 log  ,α  we expect a gain of 10 log α  at .ωm  Thus, we 
determine the compensator by completing the following steps:

1. Evaluate the uncompensated system phase margin when the error constants are satisfied.

2. Allowing for a small amount of safety, determine the necessary additional phase lead mφ .

3. Evaluate α  from Equation (10.11).

4. Assume α ( )=K G ss1 in  in Equation (10.7). This gain will be adjusted in step 8.

5. Evaluate α10 log   and determine the frequency where the uncompensated magnitude 
curve is equal to α−10 log   dB.  Because the compensator provides a gain of α10 log   
at mω , this frequency is the new 0-dB crossover frequency and mω  simultaneously.

6. Calculate the pole p amω=  and z p .α=

7. Draw the compensated frequency response, check the resulting phase margin, and re-
peat the steps if necessary.

8. Finally, for an acceptable design, raise the gain, K, compensator in order to account for 
the attenuation α( )1 .

EXAMPLE 10.1 A lead compensator for a type-two system

Let us consider a single-loop feedback control system as shown in Figure 10.1(a), 
where

 
10

2( ) =G s
s

 (10.14)

and H s( ) = 1.  The uncompensated system is a type-two system and at first appears 
to possess a satisfactory steady-state error for both step and ramp input signals. 
However, the response of the uncompensated system is an undamped oscillation 
because

 
10

10
.

2( ) ( )
( )

= =
+

T s
Y s
R s s

 (10.15)

Therefore, the compensator is added so that the loop transfer function is 
L s G s G sc( ) ( ) ( )=  .  The specifications for the system are

Ts ≤Settling time,  4 s;

System damping constant  0.45.ζ ≥

The settling time (with a 2% criterion) requirement is

4
4;

ζω
= =Ts

n

therefore,
1 1

0.45
2.22.ω

ζ
= = =n
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Section 10.4 Phase-Lead Design Using the Bode Plot 737

Perhaps the easiest way to check the value of ωn  for the frequency response is to 
relate ωn  to the bandwidth ,ωB  and evaluate the −3 -dB bandwidth of the closed-
loop system. For a closed-loop system with 0.45,ζ =  we estimate the closed-loop 
bandwidth 1.19 1.85 3.00.ω ζ ω( )= − + =B n  The bandwidth can be checked follow-
ing compensation by utilizing the Nichols chart. The Bode plot of

 
10

2ω
ω

( )
( )

=G j
j

 (10.16)

is shown as solid lines in Figure 10.7. The phase margin of the system is required to 
be approximately

 
0.01

0.45
0.01

45°.pmφ
ζ

= = =  (10.17)

The phase margin of the uncompensated system is 0° because the double integration 
results in a constant 180° phase lag. Therefore, we must add a 45° phase-lead angle 
at the crossover (0-dB) frequency of the compensated magnitude curve. Evaluating 
the value of ,α  we have

 
1
1

sin  sin 45°,
α
α

φ
−
+

= =m  (10.18)

and thus 5.8.α =  To provide a margin of safety, we will use 6.α =  The value of 
10 log α  is then equal to 7.78 dB. Then the lead compensator will add an addi-
tional gain of 7.78 dB at the frequency ,ωm  and we want to have ωm  equal to the 
compensated slope near the 0-dB axis (the dashed line) so that the new crossover 
is ωm  and the dashed magnitude curve is 7.78 dB above the uncompensated curve 
at the crossover frequency. Thus, the compensated crossover frequency is located 
by evaluating the frequency where the uncompensated magnitude curve is equal to 

7.78 dB,−  which in this case is 4.95.ω =  Then the maximum phase-lead angle is 
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738 Chapter 10  The Design of Feedback Control Systems

added to 4.95,ω ω= =m  as shown in Figure 10.7. Using step 6, we determine the 
pole 12.0ω α= =p m  and the zero 2.0.α= =z p

The transfer function of the compensator is

 
ατ

α τ
( ) ( )

( )
=

+
+

=
+
+

G s K
s
s

K s
s

c  
1

1 6
1 2.0
1 12.0

,  (10.19)

in the form of Equation (10.8). We select 6=K  so that the total loop gain is still equal 
to 10. When we add the compensated Bode plot to the uncompensated Bode plot, as 
in Figure 10.7, we assume that we can raise the gain to account for the 1 α attenuation.

The total loop transfer function is

10 1 2

1 12
60 2

12
.

2 2
( )

( )
( ) ( )

( )
=

+
+

=
+

+
L s

s

s s
s

s s

The closed-loop transfer function is

 
60 2

12 60 120
60 2
6 20 6

,
3 2 2( )

( ) ( ) ( )
( )

=
+

+ + +
≈

+
+ + +

T s
s

s s s
s

s s s
 (10.20)

and the effects of the zero at 2= −s  and the third pole at 6= −s  will affect the tran-
sient response. The percent overshoot is . . 34%=P O , the settling time is 1.3=Ts  s, 
the bandwidth is 8.4  radω = sB , and the phase margin is . . 45.6°=P M . ■

EXAMPLE 10.2 A lead compensator for a second-order system

A unity feedback control system has a loop transfer function

 
40

2
,( )

( )
=

+
L s

s s
 (10.21)

where ( ) ( ) ( )=L s G s G sc .  We want to have a steady-state error for a ramp input of 
ess = 5% of the velocity of the ramp. Therefore, we require that

 
0.05

20.
ss

= = =υK
A
e

A
A

 (10.22)

Furthermore, we desire that the phase margin of the system be at least . . 40°.=P M  
The first step is to obtain the Bode plot of the uncompensated transfer function

 
20

0.5 1
,ω

ω ω
( )

( )
=

+
G j

j j
 (10.23)

where K K ,= υ  as shown in Figure 10.8(a). The frequency at which the magnitude 
curve crosses the 0-dB line is 6.2 rad/s, and the phase margin at this frequency is 
determined readily from

 ω φ ω ω( ) ( ) ( )= = − − −90° tan 0.5 .1G j  (10.24)
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Example 10.2.
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740 Chapter 10  The Design of Feedback Control Systems

At the crossover frequency cω ω= = 6.2  rad s, we have

 162°,φ ω( ) = −  (10.25)

and therefore the phase margin is . . 18°.=P M  We need to add a phase-lead com-
pensator so that the phase margin is raised to . . 40°=P M  at the new crossover 
(0-dB) frequency. Because the compensation crossover frequency is greater than 
the uncompensated crossover frequency, the phase lag of the uncompensated sys-
tem is also greater. We shall account for this additional phase lag by attempting to 
obtain a maximum phase lead of 40° 18° 22°,− =  plus a small increment of phase 
lead to account for the added lag. Thus, we will design a compensator with a maxi-
mum phase lead equal to 22° 8° 30°.+ =  Then, calculating ,α  we obtain

 
1
1

sin 30° 0.5,
α
α

−
+

= =  (10.26)

and therefore 3.α =
The maximum phase lead occurs at ,ωm  and this frequency will be selected 

so that the new crossover frequency and ωm  coincide. The lead compensator will 
add an additional α = =10 log  10 log 3 4.8 dB at .ωm  The compensated crossover 
frequency is then evaluated where the magnitude of ω( )G j  is 4.8 dB,−  and thus 

8.4.ω ω= =m c  Drawing the compensated magnitude line so that it intersects the 
0-dB axis at 8.4,ω ω= =c  we find that z mω α= =/ 4.8  and 14.4.α= =p z  
Therefore, the compensator is

 ( ) =
+
+

G s
K s

s
c

3
 

1 4.8
1 14.4

.  (10.27)

The total loop gain must be raised by a factor of three in order to account for the 
factor 1 .α  With 3,=K  the compensated loop transfer function is

 
( )

( )
( ) ( ) ( )

( )
= =

+
+ +

L s G s G s
s

s s s
c

20 4.8 1

0.5 1 14.4 1
.  (10.28)

To verify the final phase margin, we can evaluate the phase of ω ω( ) ( )G j G jc  at 
8.4ω ω= =c  and thus obtain the phase margin. The phase angle is then

90° tan  0.5 tan
14.4

tan
4.8

1 1 1φ ω ω
ω ω

( ) = − − − +− − −
c c

c c

90° 76.5° 30.0° 60.2°= − − − +

136.3°.= −  (10.29)

Therefore, the phase margin for the compensated system is . . 43.7°.=P M  The step 
response of this system yields . . 28%=P O  with a settling time of 0.9=Ts  s. The 
compensated system has a steady-state error of 5% to a ramp, as desired.

The Nichols chart for the compensated and uncompensated system is shown in 
Figure 10.8(b). The reshaping of the frequency response locus is clear on this chart. 
Note the increased phase margin for the compensated system as well as the reduced 
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Section 10.5 Phase-Lead Design Using the Root Locus 741

magnitude of Mp ,ω  the maximum magnitude of the closed-loop frequency response. 
In this case, Mpω  has been reduced from an uncompensated +value of  12 dB to a 
compensated value of +approximately  3.2 dB. Also, we note that the closed-loop 
3-dB bandwidth of the compensated system is equal to 12 rad/s compared with 9.5 
rad/s for the uncompensated system. ■

10.5 PHASE-LEAD DESIGN USING THE ROOT LOCUS

The design of the phase-lead compensator can also be readily accomplished using 
the root locus. The locations of the compensator zero and pole are selected so as 
to result in a satisfactory root locus for the compensated system. The specifications 
of the system are used to specify the desired location of the dominant roots of the 
system. The s-plane root locus method is as follows:

1. List the system specifications and translate them into a desired root location for the 
dominant roots.

2. Sketch the root locus with a constant gain controller, ( ) =G s Kc , and determine whether 
the desired root locations can be realized.

3. If a compensator is necessary, place the zero of the phase-lead compensator directly 
below the desired root location (or to the left of the first two real poles).

4. Determine the pole location so that the total angle at the desired root location is 180° 
and therefore is on the compensated root locus.

5. Evaluate the total system gain at the desired root location and then calculate the error 
constant.

6. Repeat the steps if the error constant is not satisfactory.

Therefore, we first locate our desired dominant root locations so that the 
dominant roots satisfy the specifications in terms of ζ  and ,ωn  as shown in 
Figure  10.9(a). The root locus of the system with ( ) =G s Kc  is sketched as illus-
trated in Figure 10.9(b). Then the zero is added to provide a phase lead by placing 
it to the left of the first two real poles. Some caution is necessary because the zero 
must not alter the dominance of the desired roots; that is, the zero should not be 
placed closer to the origin than the second pole on the real axis, or a real root near 
the origin will result and will dominate the system response. Thus, in Figure 10.9(c), 
we note that the desired root is directly above the second pole, and we place the 
zero z somewhat to the left of the second real pole.

Consequently, the real root may be near the real zero, and the coefficient of this 
term of the partial fraction expansion may be relatively small. Hence, the response due 
to this real root may have very little effect on the overall system response. Nevertheless, 
the designer must be continually aware that the compensated system response will be 
influenced by the roots and zeros of the system and that the dominant roots will not by 
themselves dictate the response. It is usually wise to allow for some margin of error in 
the design and to test the compensated system using a computer simulation.

Because the desired root is a point on the root locus when the final compensa-
tion is accomplished, we expect the algebraic sum of the vector angles to be 180° 
at that point. Thus, we calculate the angle θp  from the pole of the compensator in 
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742 Chapter 10  The Design of Feedback Control Systems

order to result in a total angle of 180°. Then, locating a line at an angle θp  intersect-
ing the desired root, we are able to evaluate the compensator pole p, as shown in 
Figure 10.9(d).

The advantage of the root locus method is the ability of the designer to specify 
the location of the dominant roots and therefore the dominant transient response. 
The disadvantage of the method is that we cannot directly specify an error constant 
(for example, υK ) as in the Bode plot approach. After the design is complete, we 
evaluate the gain of the system at the root location, which depends on p and z, and 
then calculate the error constant for the compensated system. If the error constant 
is not satisfactory, we must repeat the design steps and alter the location of the de-
sired root as well as the location of the compensator pole and zero.

EXAMPLE 10.3 Lead compensator using the root locus

Consider again the system of Example 10.1 where the loop transfer function is

 ( ) ( ) ( )= =L s G s G s
K

s
c

10
.

2
 (10.30)

The characteristic equation of the closed-loop system is

 1 1  
10

0,
2( )+ = + =L s K

s
 (10.31)

(a)  Desired root location (b)  Root locus with Gc(s) = K

(c)  Addition of zero (d)  Location of new pole
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s

FIGURE 10.9
Compensation on 
the s-plane using 
a phase-lead 
compensator.
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Section 10.5 Phase-Lead Design Using the Root Locus 743

and the root locus is the j -axis.ω  Therefore, we propose to compensate this system 
with the compensator

 ( ) =
+
+

G s K
s z
s p

c ,  (10.32)

where .z p<  The specifications for the system are

Ts( ) ≤Settling time  with a 2% criterion ,   4 s;

P O ≤Percent overshoot for a step input  . . 35%.

Therefore, the damping ratio should be 0.32.ζ ≥  The settling time requirement is

4
4,

ζω
= =Ts

n

so 1.ζω =n  We will choose a desired dominant root location as

 ,   ˆ 1 2,1 1 = − ±r r j  (10.33)

as shown in Figure 10.10 (hence, 0.45ζ = ).
Now we place the zero of the compensator directly below the desired location 

at 1,= − = −s z  as shown in Figure 10.10. Measuring the angle at the desired root, 
we have

 2 116° 90° 142°.φ ( )= − + = −  (10.34)
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FIGURE 10.10
Phase-lead 
 compensator 
 design for 
Example 10.3.
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744 Chapter 10  The Design of Feedback Control Systems

Therefore, to have a total of 180° at the desired root, we evaluate the angle from the 
undetermined pole, ,θp  as

 180° 142° ,θ− = − − p  (10.35)

or 38°.θ =p  Then a line is drawn at an angle 38°θ =p  intersecting the desired root 
location and the real axis, as shown in Figure 10.10. The point of intersection with 
the real axis is then 3.6.= − = −s p  Therefore, the compensator is

 ( ) =
+

+
G s K

s
s

c
1

3.6
,  (10.36)

and the compensated loop transfer function for the system is

 ( ) ( ) ( ) ( )
( )

= =
+

+
L s G s G s

K s
s s

c
10 1

3.6
.

2
 (10.37)

The gain K is evaluated by measuring the vector lengths from the poles and zeros to 
the root location. Hence,

 
2.23 3.25

2 10
0.81.

2( ) ( )
( )

= =K  (10.38)

Finally, the error constants of this system are evaluated. We find that this system 
with two open-loop integrations will result in a zero steady-state error for a step and 
ramp input signal. The acceleration constant is

 
10 0.81

3.6
2.25.

( )
= =Ka  (10.39)

The steady-state performance of this system is quite satisfactory, and there-
fore the compensation is complete. When we compare the compensator evaluated 
by the s-plane method with the compensator obtained by using the Bode plot ap-
proach, we find that the magnitudes of the poles and zeros are different. However, 
the resulting system will have the same performance, and we need not be concerned 
with the difference. In fact, the difference arises from the design step (number 3), 
which places the zero directly below the desired root location. If we placed the zero 
at 2.0,= −s  we would find that the pole evaluated by the s-plane method is approx-
imately equal to the pole evaluated by the Bode plot approach.

The specifications for the transient response of this system were originally ex-
pressed in terms of the percent overshoot and the settling time. These specifications 
were translated, on the basis of an approximation of the system by a second-order 
system, to an equivalent ζ  and ωn  and therefore a desired root location. However, 
the original specifications will be satisfied only if the selected roots are dominant. 
The zero of the compensator and the root resulting from the addition of the com-
pensator pole result in a third-order system with a zero. The validity of approximat-
ing this system with a second-order system without a zero is dependent upon the 
validity of the dominance assumption. Often, the designer will simulate the final 
design and obtain the actual transient response of the system. The actual percent 
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Section 10.5 Phase-Lead Design Using the Root Locus 745

overshoot is . . 46%=P O  and a settling time (to within 2% of the final value) is 
3.8=Ts  s for a step input. These values compare moderately well with the specified 

values of . . 35%=P O  and 4=Ts  s, and they justify the use of the dominant root 
specifications. The difference in the percent overshoot from the specified value is 
due to the zero, which is not negligible. Thus, again we find that the specification of 
dominant roots is a useful approach but must be utilized with caution and under-
standing. A second attempt to obtain a compensated system with a percent over-
shoot of . . 30%=P O  would use a prefilter to eliminate the effect of the zero in the 
closed-loop transfer function. ■

EXAMPLE 10.4 Lead compensator for a type-one system

Consider the system of Example 10.2 and design a compensator based on the root 
locus approach. The system loop transfer function is

 ( ) ( ) ( )
( )

= =
+

L s G s G s
K

s s
c

40
2

,  (10.40)

when ( ) =G s Kc . We want the damping ratio of the dominant roots of the system to 
be 0.4ζ =  and the velocity error constant to be 20≥υK .

To achieve a rapid settling time, we will select the real part of the desired roots 
as 4,ζω =n  and therefore 1 s.=Ts  This implies the natural frequency of these roots 
is fairly large, 10;ω =n  hence, the velocity constant should be reasonably large. The 
location of the desired roots is shown in Figure 10.11(a) for 4,   0.4,ζω ζ= =n  and 

10.ω =n
The zero of the compensator is placed at 4,= − = −s z  directly below the de-

sired root location. Then the angle at the desired root location is

 114° 102° 90° 126°.φ = − − + = −  (10.41)

Therefore, the angle from the undetermined pole is determined from

180° 126° ,θ− = − − p

and thus 54°.θ =p  This angle is drawn to intersect the desired root location, and p 
is evaluated as 10.6,= − = −s p  as shown in Figure 10.11(a). The gain of the com-
pensated system is then

 
10 9.4 11.3

9.2 40
2.9.

( )( )
( )

= =K  (10.42)

The compensated system loop transfer function is then

 ( ) ( ) ( ) ( )
( )( )

= =
+

+ +
L s G s G s

s
s s s

c
115.5 4

2 10.6
.  (10.43)

Therefore, the velocity constant of the compensated system is

 [ ]( ) ( ) ( )
( )

= = =υ
→

K s G s G s
s

clim  
115.5 4
2 10.6

21.8.
0

 (10.44)
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746 Chapter 10  The Design of Feedback Control Systems

The velocity constant of the compensated system meets the requirement ≥υK 20.
The step response of the compensated system yields a percent overshoot of 

. . 34%=P O  with a settling time of 1.06=Ts  s, as shown in Figure 10.11(b). The 
phase margin is . . 38.4°.=P M  ■

The phase-lead compensator is useful for altering the performance of a  control 
system. The phase-lead compensator adds a phase-lead angle to provide an  adequate 
phase margin. Using an s-plane design approach, we can choose the phase-lead com-
pensator in order to alter the system root locus and place the roots of the system in a 
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FIGURE 10.11
(a) Design of 
a phase-lead 
 compensator on 
the s-plane for 
Example 10.4. 
(b) Step response 
of the  compensated 
system of 
Example 10.4.
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Section 10.6 System Design Using Integration Compensators 747

desired position in the s-plane. When the design specifications include an error con-
stant requirement, the Bode plot method is more suitable, because the error  constant 
of a system designed on the s-plane must be ascertained following the choice of a 
compensator pole and zero. Therefore, the root locus method often results in an it-
erative  design procedure when the error constant is specified. On the other hand, the 
root locus is a very satisfactory approach when the specifications are given in terms 
of percent overshoot and settling time, thus specifying the ζ  and ωn  of the desired 
dominant roots in the s-plane. The use of a lead compensator extends the band-
width of a feedback system, which may be objectionable for systems subjected to 
large amounts of noise. Also, lead compensators are not suitable for providing high 
steady-state  accuracy in systems requiring very high error constants. To provide large 
error constants, typically Kp  and K ,υ  we must consider the use of integration-type 
compensators.

10.6 SYSTEM DESIGN USING INTEGRATION COMPENSATORS

For many control systems, the primary objective is obtaining a high steady-state 
accuracy. Another goal is maintaining the transient performance of these systems 
within reasonable limits. The steady-state accuracy of many feedback systems can 
be improved by increasing the gain in the forward channel. However, the resulting 
transient response may be unacceptable—even unstable. Therefore, it is often nec-
essary to introduce a compensator in the forward path of a feedback control system 
in order to provide a sufficient steady-state accuracy.

Consider the single-loop control system shown in Figure 10.12. The compen-
sator is chosen to provide a large error constant. With 1,G sp( ) =  the steady-state 
error of this system is

 ( ) ( )
( ) ( ) ( )

=
+→∞ →

e t s
R s

G s G s H st s c
lim   lim  

1
.

0
 (10.45)

The steady-state error of a system depends on the number of poles at the origin for 
.L s G s G s H sc( ) ( ) ( ) ( )=  A pole at the origin can be considered an integration, and 

therefore the steady-state accuracy of a system ultimately depends on the number of 
integrations in the loop transfer function. If the steady-state accuracy is not sufficient, 
we will introduce an integration-type compensator G sc( ) in order to compensate for 
the lack of integration in the uncompensated loop transfer function G s H sc c( ) ( )..

One widely used form of controller is the proportional plus integral (PI) con-
troller, which has a transfer function

 .G s K
K
s

c p
I( ) = +  (10.46)

-

+
R(s) Y(s)

H(s)

Gp(s) G(s)Gc(s)
FIGURE 10.12
Single-loop feed-
back control 
system.
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748 Chapter 10  The Design of Feedback Control Systems

As an example, consider a control system where the transfer function 1,( ) =H s  
and the transfer function of the process is [28]

 G s
K

s sτ τ( )( )
( ) =

+ +1 1
.

1 2

 (10.47)

The steady-state error of the uncompensated system is

 e t s
A s

G s
A

Kt s
( )

( )
=

+
=

+→∞ →
lim lim

/
1 1

,
0

 (10.48)

where ,( ) =R s A s  and lim   .
0

K G s
s

( )=
→

 To obtain a small steady-state error, the 

magnitude of the gain K  must be quite large. However, when K  is quite large, 
the transient performance of the system will very likely be unacceptable. Therefore, 
we must consider the addition of a compensator G sc( ),  as shown in Figure 10.12. To 
eliminate the steady-state error of this system, we might choose

 .G s K
K
s

K s K
s

c P
I P I( ) = + =

+
 (10.49)

The steady-state error for a step input of the system is always zero, because

lim lim
10

e t s
A s

G s G st s c
( )

( ) ( )
=

+→∞ →

lim
1 1 1

0.
0

1 2

A

K s K s K s ss P I τ τ( )( )( )
=

+ + + +





=
→  (10.50)

The transient performance can be adjusted to satisfy the system specifications by 
adjusting the constants K KP,   , and KI. The adjustment of the transient response is 
perhaps best accomplished by using root locus methods and drawing a root locus for 
the gain K KP  after locating the zero s K KI P= −  on the s-plane.

The addition of an integration as G s K K sc P I( ) = +  can also be used to re-
duce the steady-state error for a ramp input ,   0.( ) = ≥r t t t  For example, if the un-
compensated system ( )G s  possessed one integration, the additional integration due 
to G sc( )  would result in a zero steady-state error for a ramp input.

EXAMPLE 10.5 Temperature control system

The transfer function of a temperature control system process is

 
1

0.5 2
.( )

( )( )
=

+ +
G s

s s
 (10.51)

To maintain zero steady-state error for a step input, we will add the PI compensa-
tion compensator

  .G s K
K
s

K
s K K

s
c P

I
P

I P( ) = + =
+

 (10.52)
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Section 10.6 System Design Using Integration Compensators 749

Therefore, the loop transfer function is

 
0.5 2

.( ) ( ) ( )
( )( )

= =
+

+ +
L s G s G s K

s K K
s s s

c P
I P  (10.53)

The transient response of the system is required to have a percent overshoot less than 
or equal to . . 20%≤P O . Since the PI compensator introduces a zero that will  interact 
with the dominant poles, we will target a slightly higher damping ratio of the dominant 
poles to increase the likelihood of achieving the desired percent overshoot. Therefore, 
the dominant complex roots will be placed on the 0.6ζ =  line, as shown in Figure 10.13. 
We will adjust the compensator zero so that the negative real part of the complex roots 
is 0.75,ζω =n  and thus the settling time (with a 2% criterion) is Ts n4 16

3
ζω( )= =  s. 

We determine the location of the zero z K KI P= −  by ensuring that the angle at the 
desired root is 180°.−  Therefore, the sum of the angles at the desired root is

180° 127° 104° 38° ,θ− = − − − + z

where θz  is the angle from the undetermined zero. Consequently, we find that 
89°,θ = +z  and the location of the zero is 0.75.= −z  Finally, to determine the gain at 

the desired root, we evaluate the vector lengths from the poles and zeros and obtain
1.25 1.03 1.6

1.0
2.KP

( )
= =

The compensated root locus and the location of the zero are shown in Figure 10.13. 
Note that the zero z K KI P= −  should be placed to the left of the pole at 0.5= −s  
to ensure that the complex roots dominate the transient response. In fact, the third 
root of the compensated system of Figure 10.13 can be determined as 1.0,= −s  and 
therefore this real root is only 4

3  times the real part of the complex roots. Although 
complex roots dominate the response of the system, the equivalent damping of the 
system is somewhat less than 0.60ζ =  due to the real root and zero.

The closed-loop transfer function is

 
1

2 0.75

1 1.5 1.5
.

2
T s

G s G s
G s G s

s

s s s
c

c ( )
( )

( ) ( )
( ) ( )

( )
( )

=
+

=
+

+ + +
 (10.54)
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385
1045 1275uz

FIGURE 10.13
The s-plane design 
of an integration 
compensator.
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750 Chapter 10  The Design of Feedback Control Systems

The effect of the zero is to increase the overshoot to a step input. The percent over-
shoot is . . 16%=P O , the setting time is 4.9=Ts  s, and the steady-state error to a 
unit step is zero, as desired. ■

10.7 PHASE-LAG DESIGN USING THE ROOT LOCUS

The phase-lag compensator is an integration-type compensator and can be used to 
increase the error constant of a feedback control system. The transfer function of 
the phase-lag compensator is of the form

 
1

1
,G s K

s z
s p

K
s
s

c α
τ

ατ
( ) =

+
+

=
+

+
 (10.55)

where

z p z
1

and .
τ

α= =

Begin by supposing that the controller is a constant gain controller, G s Kc( ) = . We 
refer to the system with loop transfer function ( ) ( )=L s KG s  as the uncompensated 
system. Then, for example, the velocity error constant of a type-one uncompen-
sated system is

 ( )=υ
→

lim .,unc
0

K K sG s
s

 (10.56)

If we add the phase-lag compensator in Equation (10.55), we have

   ,,comp ,unc=υ υK
z
p

K  (10.57)

or

 .,comp

,unc
α=υ

υ

K

K
 (10.58)

Now, if the pole and zero of the compensator are chosen so that α= <z p 1, 
the resultant ,compυK  will be increased at the desired root location by α. Then, for 
example, if 0.1=z  and 0.01,=p  the velocity constant of the desired root location 
will be increased by a factor of 10. If the compensator pole and zero appear rela-
tively close together on the s-plane, their effect on the location of the desired root 
will be negligible. Therefore, the compensator pole–zero combination near the ori-
gin of the s-plane can be used to increase the error constant of a feedback system by 
the factor α while altering the root location very slightly.

The steps necessary for the design of a phase-lag compensator on the s-plane 
are as follows:

1. Obtain the root locus of the uncompensated system with a constant gain controller, 
G s Kc( ) = .

2. Determine the transient performance specifications for the system and locate suit-
able dominant root locations on the uncompensated root locus that will satisfy the 
specifications.
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Section 10.7 Phase-Lag Design Using the Root Locus 751

3. Calculate the loop gain at the desired root location and thus the uncompensated system 
error constant.

4. Compare the uncompensated error constant with the desired error constant, and 
calculate the necessary increase that must result from the pole–zero ratio α  of the 
compensator.

5. With the known ratio of the pole–zero combination of the compensator, determine a 
suitable location of the pole and zero of the compensator so that the compensated root 
locus will still pass through the desired root location. Locate the pole and zero near the 
origin of the s-plane.

The fifth requirement can be satisfied if the magnitudes of the pole and zero 
are significantly less than ωn  of the dominant roots and they appear to merge as 
measured from the desired root location. The pole and zero will appear to merge at 
the root location if the angles from the compensator pole and zero are essentially 
equal as measured to the root location. One method of locating the zero and pole of 
the compensator is based on the requirement that the difference between the angle 
of the pole and the angle of the zero as measured at the desired root is less than 2°.

EXAMPLE 10.6 Design of a phase-lag compensator

Consider a unity feedback system where the uncompensated loop transfer function is

 
2

.L s G s G s
K

s s
c( ) ( ) ( )

( )
= =

+
 (10.59)

We require the damping ratio of the dominant complex roots to be 0.45ζ ≥ , with a 
system velocity constant 20≥υK . The uncompensated root locus is a vertical line 
at 1= −s  and results in a root on the 0.45ζ =  line at 1 2,= − ±s j  as shown in 
Figure 10.14. Measuring the gain at this root, we have 2.24 5.2( )= =K  Therefore, 
the velocity constant of the uncompensated system is

2
5
2

2.5.= = =υK
K

j1

j2
z = 0.45

K = 5

-2 0
s

jv

FIGURE 10.14
Root locus of the 
uncompensated 
system of Example 
10.6.
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752 Chapter 10  The Design of Feedback Control Systems

Thus, the required ratio of the zero to the pole of the compensator is

 α= = = =υ

υ

z
p

K

K
20
2.5

8.,comp

,unc
 (10.60)

Examining Figure 10.15, we find that we might set 0.1=z  and then 0.1 8.=p  The 
difference of the angles from p and z at the desired root is approximately 1°; there-
fore, 1 2= − ±s j  is still the location of the dominant roots. The compensated root 
locus is shown as a heavy line in Figure 10.15. Thus, the compensated system loop 
transfer function is

 
5 0.1
2 0.0125

.L s G s G s
s

s s s
c( ) ( ) ( )

( )
( )( )

= =
+

+ +
 (10.61) ■

EXAMPLE 10.7 Design of a phase-lag compensator

Consider a system that is difficult to design using a phase-lead compensator. The 
loop transfer function of the uncompensated unity feedback system is

 
10

.
2

L s G s G s
K

s s
c( ) ( ) ( )

( )
= =

+
 (10.62)

It is specified that the velocity constant of this system be 20K ≥υ , while the damping 
ratio of the dominant roots is equal to 0.707ζ = . The gain necessary for a 20K =υ  is

20
10

,2K
K

( )
= =υ

or = 2000.K  However, using Routh’s criterion, we find that the roots of the charac-
teristic equation lie on the j -axisω  at 10± j  when = 2000.K  The roots of the system 
when the Kυ  requirement is satisfied are a long way from satisfying the damping ratio 
specification, and it would be difficult to bring the dominant roots from the j -axisω  

j1

j2

-2 0
s

jv

Compensated
root locus

Desired root
location

z = 0.45

-1
-z -p

L15

FIGURE 10.15
Root locus of the 
compensated 
 system of Example 
10.6. Note that 
the actual root 
will  differ from the 
desired root by a 
slight amount. The 
 vertical  portion of 
the locus leaves 
the σ  axis at 

0.95.σ = −
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Section 10.8 Phase-Lag Design Using the Bode Plot 753

to the 0.707ζ =  line by using a phase-lead compensator. Therefore, we will attempt 
to satisfy the Kυ  and ζ  requirements by using a phase-lag compensator. The uncom-
pensated root locus of this system is shown in Figure 10.16, and the roots are shown 
when 0.707ζ =  and 2.9 2.9.= − ±s j  Measuring the gain at these roots, we find that 

242.=K  Therefore, the necessary ratio of the zero to the pole of the compensator is

z
p

α = = =
2000
242

8.3.

Thus, we will choose 0.1=z  and 0.1 9=p  in order to allow a small margin of 
safety. Examining Figure 10.16, we find that the difference between the angle from 
the pole and zero of G sc( )  is negligible. Therefore, the compensated system loop 
transfer function is

 
242 0.1

10 0.0111
,2L s G s G s

s

s s s
c( ) ( ) ( )

( )
( ) ( )

= =
+

+ +
 (10.63)

where 
242 0.1

0.0111
.G s

s
s

c( )
( )

( )
=

+
+

 ■

10.8 PHASE-LAG DESIGN USING THE BODE PLOT

The design of a phase-lag compensator can be readily accomplished on the Bode plot. 
The transfer function of the phase-lag compensator, written in Bode plot form, is

 
1

1
.G j K

j
j

c ω α
ωτ

ωατ
( ) =

+
+

 (10.64)
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FIGURE 10.16
Design of a phase-
lag compensator on 
the s-plane.
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754 Chapter 10  The Design of Feedback Control Systems

The Bode plot of the phase-lag compensator is shown in Figure 10.6. On the Bode 
plot, the pole and the zero of the compensator have a magnitude much smaller than 
the smallest pole of the uncompensated system. Thus, the phase lag is not the useful 
effect of the compensator; it is the attenuation 20 log α−  that is the useful effect 
for compensation. The phase-lag compensator is used to provide an attenuation 
and therefore to lower the 0-dB (crossover) frequency of the system. However, at 
lower crossover frequencies, we usually find that the phase margin of the system is 
increased, and our specifications can be satisfied. The design procedure for a phase-
lag compensator on the Bode plot is as follows:

1. Obtain the Bode plot of the uncompensated system with the constant gain controller, 
,G s Kc( ) =  and with the gain adjusted for the desired error constant.

2. Determine the phase margin of the uncompensated system and, if it is insufficient, pro-
ceed with the following steps.

3. Determine the frequency where the phase margin requirement would be satisfied if the 
magnitude curve crossed the 0-dB line at this frequency, cω′ .  (Allow for 5° phase lag 
from the phase-lag compensator when determining the new crossover frequency.)

4. Place the zero of the compensator one decade below the new crossover frequency cω′ ,  
and thus ensure only 5° of additional phase lag at cω ′  (see Figure 10.8) due to the lag 
network.

5. Measure the necessary attenuation at cω′  to ensure that the magnitude curve crosses at 
this frequency.

6. Calculate α  by noting that the attenuation introduced by the phase-lag compensator is 
α−20 log   at cω′ .

7. Calculate the pole as p z1 ,ω ατ ω α( )= =  and the design is completed.

An example of this design procedure will illustrate that the method is simple to 
carry out in practice.

EXAMPLE 10.8 Design of a phase-lag compensator

Consider the unity feedback system of Example 10.6 and design a phase-lag com-
pensator so that the desired phase margin is obtained. The uncompensated loop 
transfer function is

 
2 0.5 1

,L j G j G j
K

j j
K

j j
cω ω ω

ω ω ω ω
( ) ( ) ( )

( ) ( )
= =

+
=

+
υ  (10.65)

where 2.K K=υ  We want 20K ≥υ  with a phase margin of . . 45°=P M . The un-
compensated Bode plot is shown as a solid line in Figure 10.17. The uncompensated 
system has a phase margin of . . 18°=P M , and the phase margin must be increased. 
Allowing 5° for the phase-lag compensator, we locate the frequency ω  where 

130°,φ ω( ) = −  which is to be our new crossover frequency cω′ .  In this case, we find 
that cω =′ 1.66. We select cω =′ 1.5 to allow for a small margin of safety. The atten-
uation necessary to cause cω′  to be the new crossover frequency is equal to 20 dB. 
Both the compensated and uncompensated magnitude curves are an asymptotic ap-
proximation. Thus, cω =′ 1.5, and the required attenuation is 20 dB.
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FIGURE 10.17 (a) Design of a phase-lag compensator on the Bode plot for Example 10.8. (b) Time 
response to a step input for the uncompensated system (solid line) and the compensated system (dashed 
line) of Example 10.8.
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756 Chapter 10  The Design of Feedback Control Systems

Then we find that 20 dB 20 log  ,α=  or 10.α =  Therefore, the zero is one decade 
below the crossover, or z cω ω= =′ 10 0.15, and the pole is at 10 0.015.ω ω= =p z  
The compensated system is then

 
20 6.66 1

0.5 1 66.6 1
,L j G j G j

j

j j j
cω ω ω

ω
ω ω ω

( ) ( ) ( )
( )

( )( )
= =

+
+ +

 (10.66)

and the phase-lag compensator is

4 0.15
0.015

.G s
s

s
c( )

( )
( )

=
+

+

The frequency response of the compensated system is shown in Figure 10.17(a) with 
dashed lines. It is evident that the phase lag introduces an attenuation that lowers the 
crossover frequency and therefore increases the phase margin. Note that the phase 
angle of the lag compensator has almost totally disappeared at the crossover fre-
quency cω′ .  As a final check, we numerically evaluate the phase margin and find that 

. . 46.9°=P M  at cω =′ 1.58 which is the desired result. Using the Nichols chart, we find 
that the closed-loop bandwidth of the system has been reduced from 10  radω = s  for 
the uncompensated system to ω = 2.5  rad s for the compensated system. Due to the 
reduced bandwidth, we expect a slower time response to a step command.

The time response of the system is shown in Figure 10.17(b). Note that the per-
cent overshoot is . . 25%=P O  and the peak time is 1.84=Tp  s. Thus, the response 
is within the specifications. ■

EXAMPLE 10.9 Design of a phase-lag compensator

Consider the unity feedback system of Example 10.7 with

 
10 0.1 1

,2 2L j G j G j
K

j j

K

j j
cω ω ω

ω ω ω ω
( ) ( ) ( )

( ) ( )
= =

+
=

+
υ  (10.67)

where 100.K K=υ  A velocity constant of 20K ≥υ  is specified. Furthermore, we 
aim for a phase margin . . 70°=P M . The frequency response of the uncompensated 
system is shown in Figure 10.18. The phase margin of the uncompensated system is 0°. 
Allowing 5° for the phase-lag compensator, we locate the frequency where the phase 
is 105°.φ ω( ) = −  This frequency is equal to 1.3ω = , and therefore we will  attempt to 
locate the new crossover frequency at cω =′ 1.3. Measuring the  necessary  attenuation 
at cω ω= ′,  we find that 24 dB is required; then 24 20 log α=  gives 16.α =  The zero 
of the compensator is located one decade below the crossover  frequency, and thus

z
cω

ω
= =

′

10
0.13.

The pole is then
0.13
16.0

.ω
ω
α

= =p
z

Therefore, the compensated system is

 
20 7.69 1

0.1 1 123.1 1
,2L j G j G j

j

j j j
cω ω ω

ω

ω ω ω
( ) ( ) ( )

( )
( ) ( )

= =
+

+ +
 (10.68)
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Section 10.8 Phase-Lag Design Using the Bode Plot 757

where
125 0.13

0.00815
.G s

s
s

c( )
( )

( )
=

+
+

The compensated frequency response is shown in Figure 10.18. As a final check, we 
evaluate the phase margin at cω =′ 1.24 and find that . . 70.3°,=P M  which is within 
the specifications. ■

We have seen that a phase-lag compensator can be used to alter the fre-
quency response of a feedback control system in order to attain satisfactory sys-
tem performance. The system design is satisfactory when the asymptotic curve for 
the magnitude of the compensated system crosses the 0-dB line with a slope of 
−20  dB decade. The attenuation of the phase-lag compensator reduces the mag-
nitude of the crossover (0-dB) frequency to a point where the phase margin of the 
system is satisfactory. Thus, in contrast to the phase-lead compensator, the phase-
lag compensator reduces the closed-loop bandwidth of the system as it maintains a 
suitable error constant.

The phase-lead compensator alters the frequency response of a system by add-
ing a positive (leading) phase angle and therefore increases the phase margin at the 
crossover (0-dB) frequency. It becomes evident that a designer might wish to con-
sider using a compensator that provides the attenuation of a phase-lag compensator 
and the lead-phase angle of a phase-lead compensator. Such a network does exist. It 
is called a lead-lag network. The transfer function of this compensator is

  
1 1

1 1
.1 2

1 2

G s K
s s

s s
c

β
α

ατ τ

τ βτ
( )( )
( )( )

( ) =
+ +

+ +
 (10.69)
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on the Bode plot 
for Example 10.9.
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758 Chapter 10  The Design of Feedback Control Systems

The first factors in the numerator and denominator, which are functions of ,1τ  
provide the phase-lead portion of the compensator. The second factors, which are 
functions of ,2τ  provide the phase-lag portion of the compensator. The parameter 
β  is adjusted to provide suitable attenuation of the low-frequency portion of the 
frequency response, and the parameter α is adjusted to provide an additional phase 
lead at the new crossover (0-dB) frequency. Alternatively, the compensation can be 
designed on the s-plane by placing the lead pole and zero compensation in order to 
locate the dominant roots in a desired location. Then the phase-lag compensator is 
used to raise the error constant at the dominant root location. The design of a phase 
lead-lag compensator follows the procedures already discussed. Other literature 
will further illustrate the utility of lead-lag compensation [2, 3, 25].

10.9 DESIGN ON THE BODE PLOT USING ANALYTICAL METHODS

An analytical technique of selecting the parameters of a single-stage compensator 
has been developed for the Bode plot [3–5]. For a single-stage compensator,

 
1
1

,G s
s

s
c

ατ
τ

( ) =
+
+

 (10.70)

where 1α <  yields a phase lag and 1α >  yields phase lead. The phase contribution of 
the compensator at the desired crossover frequency ωc  (see Equation 10.9) is given by

 tan 
1

.2φ
αω τ ω τ

ω τ α( )
= =

−

+
p c c

c
 (10.71)

The magnitude M (in dB) of the compensator in Equation (10.70) at ωc  is

 10
1

1
./10

2

2
ω ατ
ω τ

( )
( )

= =
+

+
c M c

c
 (10.72)

Eliminating ω τc  from Equations (10.71) and (10.72), we obtain the nontrivial solu-
tion equation for α as

 1 2 0.2 2 2 2 2 2α α( )− + + + + − =p c p c p c c c  (10.73)

For a single-stage compensator, it is necessary that 1.2> +c p  If we solve for α 
from Equation (10.73), we can obtain τ  from

 
1

 
1

.
2

τ
ω α

=
−

−
c

cc
 (10.74)

The design steps for adding phase lead are:

1. Select the desired cω .

2. Determine the phase margin desired and therefore the required phase φ  for Equation 
(10.71).

3. Verify that the phase lead is applicable: φ > 0  and M > 0.

4. Determine whether a single stage will be sufficient by testing c p> + 1.2
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Section 10.10 Systems with a Prefilter 759

5. Determine α  from Equation (10.73).

6. Determine τ  from Equation (10.74).

If we need to design a single-stage, phase-lag compensator, then 0φ <  and 0<M  
(step 3). Step 4 will require 1 1 .2( )< +c p  Otherwise the method is similar.

EXAMPLE 10.10 Design using an analytical technique

Consider the system of Example 10.1 using the analytical technique. Examine the 
uncompensated curves in Figure 10.7. We select 5.ω =c  Then, as before, we desire 
a phase margin of . . 45°=P M . The compensator must yield this phase, so

 tan 45° 1.= =p  (10.75)

The required magnitude contribution is 8 dB, or 8,=M  so that

 10 6.31.8/10= =c  (10.76)

Using c and p, we obtain

 4.31 12.62 73.32 0.2α α− + + =  (10.77)

Solving for ,α  we obtain 5.84.α =  Solving Equation (10.74), we obtain 0.087.τ =  
Therefore, the compensator is

 
1 0.515
1 0.087

.G s
s
s

c( ) =
+
+

 (10.78)

The pole is equal to 11.5, and the zero is 1.94. This can be written in phase-lead 
compensator form as

5.9
1.94
11.5

.G s
s
s

c( ) =
+
+

 ■

10.10 SYSTEMS WITH A PREFILTER

In the earlier sections of this chapter, we utilized compensators of the form

 G s K
s z
s p

c( ) =
+
+

that alter the roots of the characteristic equation of the closed-loop system. 
However, the closed-loop transfer function ( )T s  will contain the zero of G sc( ) as 
a zero of ( )T s . This zero will significantly affect the response of the system ( )T s .

Let us consider the system shown in Figure 10.19, where

1
.( ) =G s

s

We will introduce a PI compensator, so that

.G s K
K
s

K s K

s
c P

I IP( ) = + =
+
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760 Chapter 10  The Design of Feedback Control Systems

The closed-loop transfer function of the system with a prefilter is

 .
2

T s
K s K G s

s K s K
P I p

P I
( )

( ) ( )
=

+

+ +
 (10.79)

For illustrative purposes, the specifications require a settling time (with a 2% cri-
terion) of 0.5=Ts  s and a percent overshoot of approximately . . 4%=P O . We 
use 1 2ζ =  and note that

4
.

ζω
=Ts

n

Thus, we require that 8ζω =n  or 8 2.ω =n  We now obtain

2 16 and 128.2K KP n I nζω ω= = = =

The closed-loop transfer function when 1G sp ( ) =  is then

16 8
16 128

.
2( ) ( )

=
+

+ +
T s

s
s s

The effect of the zero on the step response is significant. The percent overshoot to 
a step is . . 21%=P O .

We use a prefilter G sp( ) to eliminate the zero from ( )T s  while maintaining the 
DC gain of 1, thus requiring that

8
8

.G s
s

p( ) =
+

Then we have
128
16 128

,
2( ) =

+ +
T s

s s

and the percent overshoot of this system is . . 4.5%=P O , as expected.
Let us now consider again Example 10.3, which includes the design of a lead 

compensator. The resulting closed-loop transfer function can be determined to be 
(using Figure 10.22)

8.1 1

( 1.94 4.88)( 1.66)
.

2
T s

s G s

s s s
p( )

( ) ( )
=

+

+ + +

If 1G sp( ) =  (no prefilter), then we obtain a response with a percent overshoot of 
. . 46.6%=P O  and a settling time of 3.8=Ts  s. If we use a prefilter,

-

+R(s)
Input

G(s) Y(s)

Prefilter

Gp(s) Gc(s)

Compensator Process

FIGURE 10.19
Control system with 
a prefilter G sp .( )
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Section 10.10 Systems with a Prefilter 761

1
1

,G s
s

p( ) =
+

we obtain a percent overshoot of . . 6.7%=P O  and a settling time of =Ts    
3.8 s. The real root at 1.66= −s  helps to damp the step response. The prefilter is 
very useful in permitting the designer to introduce a compensator with a zero to ad-
just the root locations (poles) of the closed-loop transfer function while eliminating 
the effect of the zero incorporated in ( )T s .

In general, we will add a prefilter for systems with lead compensators or PI com-
pensators. Typically, we will not use a prefilter for a system with a lag compensator, 
since we expect the effect of the zero to be insignificant. To check this assertion, let 
us consider again the design obtained in Example 10.6. The system with a phase-lag 
compensator is

5 0.1
2 0.0125

.L s G s G s
s

s s s
c( ) ( ) ( )

( )
( )( )

= =
+

+ +

The closed-loop transfer function is then

( ) ( )
=

+
+ + +

≈
+ +

T s
s

s s s s s
5 0.1

( 1.98 4.83)( 0.104)
5

1.98 4.83
,

2 2

since the zero at 0.1= −s  and the pole at 0.104= −s  approximately cancel. We 
expect a percent overshoot of . . 20%=P O  and a settling time (with a 2% criterion) 
of 4.0=Ts  s for the design parameters 0.45ζ =  and 1.ζω =n  The actual response 
has a percent overshoot of . . 26%=P O  and a settling time of 5.8=Ts  s. Thus, we 
usually do not use a prefilter with systems that utilize lag compensators.

EXAMPLE 10.11 Design of a third-order system

Consider a system of the form shown in Figure 10.19 with

1
1 5

.( )
( )( )

=
+ +

G s
s s s

Design a system that will yield a step response with a percent overshoot . . 2%≤P O  and 
a settling time 3≤Ts  s by using both G sc( ) and G sp( ) to achieve the desired response.

Consider the lead compensator

1.2
10

G s
K s

s
c( )

( )
=

+
+

and select K to find the complex roots with 1 2 .ζ =  Then, with 78.7,=K  the 
closed-loop transfer function is

78.7 1.2

( 3.42 5.83)( 1.45)( 11.1)
.

2
T s

s G s

s s s s
p( )

( ) ( )
=

+

+ + + +

If we choose

 G s
p

s p
p( ) =

+
, (10.80)
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762 Chapter 10  The Design of Feedback Control Systems

the closed-loop transfer function is

( ) ( )
=

+
+ + + + +

T s
p s

s s s s s p
78.7 1.2

( 3.42 5.83)( 1.45)( 11.1)( )
.

2

If 1.2,=p  we cancel the effect of the zero. The response of the system with a pre-
filter is summarized in Table 10.1. We choose the appropriate value for p to achieve 
the response desired. Note that 2.40=p  will provide a response that may be de-
sirable, since it effects a faster rise time than 1.20.=p  The prefilter provides an 
additional parameter to select for design purposes. ■

10.11 DESIGN FOR DEADBEAT RESPONSE

Often, the goal for a control system is to achieve a fast response to a step command 
with minimal overshoot. We define a deadbeat response as a response that proceeds 
rapidly to the desired level and holds at that level with minimal overshoot. We use 
the 2%±  band at the desired level as the acceptable range of variation from the de-
sired response. Then, if the response enters the band at time ,Ts  it has satisfied the 
settling time Ts upon entry to the band, as illustrated in Figure 10.20. A deadbeat 
response has the following characteristics:

1. Steady-state =error 0

2. Fast →response minimum  Tr and Ts

3. ≤ <0.1% . . 2%P O

4. Percent undershoot P.O. < 2%.

Characteristics (3) and (4) require that the response remain within the 2%±  band 
so that the entry to the band occurs at the settling time.

Consider the transfer function ( )T s  of a closed-loop system. To determine the 
coefficients that yield the optimal deadbeat response, the standard transfer function 
is first normalized. An example of this for a third-order system is

 
ω

αω βω ω
( ) =

+ + +
.

3

3 2 2 3
T s

s s s
n

n n n
 (10.81)

Dividing the numerator and denominator by ω3
n  yields

 

ω
α

ω
β

ω

( ) =
+ + +

1

1
.3

3

2

2

T s
s s s

n n n

 (10.82)

Table 10.1 Effect of a Prefilter on the Step Response

 Gp(s) p = 1 p = 1.20 p = 2.4

Percent overshoot 0% 0% 5%
90% rise time (seconds) 2.6 2.2 1.60
Settling time (seconds) 4.0 3.0 3.2
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Section 10.11 Design for Deadbeat Response 763

Let ω=s s n  to obtain

 
1

1
.

3 2
T s

s s sα β
( ) =

+ + +
 (10.83)

Equation (10.83) is the normalized, third-order, closed-loop transfer function. For 
a higher order system, the same method is used to derive the normalized equation. 
The coefficients of the equation— ,   ,   ,α β γ  and so on—are then assigned the values 
necessary to meet the requirement of deadbeat response. The coefficients recorded 
in Table 10.2 were selected to achieve deadbeat response and minimize settling 
time and rise time Tr . The form of Equation (10.83) is normalized since s s n.ω=  
Thus, we choose ωn  based on the desired settling time or rise time. Therefore, if we 
have a third-order system with a required settling time of 1.2=Ts  s, we note from 
Table 10.2 that the normalized settling time is

4.04.ω =Tn s

1.2

1

0.9

0.8

0.6

0.4

0.2

0 0.5Ts 1Ts 1.5Ts 2Ts 2.5Ts 3Ts

Tr

;2%

y(t)

A

Normalized time

FIGURE 10.20
The deadbeat 
 response. A is the 
magnitude of the 
step input.

Table 10.2 Coefficients and Response Measures of a Deadbeat System

System 
Order

Coefficients Percent  
Overshoot P.O.

Percent  
Overshoot P.U.

90% Rise 
Time Tr

Settling 
Time Tsα β γ δ ∈

2nd 1.82 0.10% 0.00% 3.47 4.82
3rd 1.90 2.20 1.65% 1.36% 3.48 4.04
4th 2.20 3.50 2.80 0.89% 0.95% 4.16 4.81
5th 2.70 4.90 5.40 3.40 1.29% 0.37% 4.84 5.43
6th 3.15 6.50 8.70 7.55 4.05 1.63% 0.94% 5.49 6.04

Note: All times are normalized.

M10_DORF2374_14_GE_C10.indd   763M10_DORF2374_14_GE_C10.indd   763 15/09/21   8:48 AM15/09/21   8:48 AM



764 Chapter 10  The Design of Feedback Control Systems

Therefore, we require that
4.04 4.04

1.2
3.37.ω = = =

T
n

s

Once ωn  is chosen, the complete closed-loop transfer function is known, having 
the form of Equation (10.81). When designing a system to obtain a deadbeat re-
sponse, the compensator is chosen, and the closed-loop transfer function is found. 
This compensated transfer function is then set equal to Equation (10.81), and the 
required compensator can be determined.

EXAMPLE 10.12 Design of a system with a deadbeat response

Consider a unity feedback system with a compensator G sc( ) and a prefilter .( )G sp  
The process is

1
,( )

( )
=

+
G s

K
s s

and the compensator is

.G s
s z
s p

c( ) =
+
+

Using the necessary prefilter yields

.G s
z

s z
p( ) =

+

The closed-loop transfer function is

1
.

3 2( ) ( )
( ) =

+ + + + +
T s

Kz
s p s K p s Kz

We use Table 10.2 to determine the required coefficients, 1.90α =  and 2.20.β =  
If we select a settling time (with a 2% criterion) of 2=Ts  s, then 4.04,ω =Tn s  and 
thus 2.02.ω =n  The required closed-loop system has the characteristic equation

q s s s s s s sn n n 3.84 8.98 8.24.3 2 2 3 3 2αω βω ω( ) = + + + = + + +

Then, we determine that 2.84,   1.34,= =p z  and 6.14.=K  The response of this 
system will have 2 s,=Ts  and 1.72 s.=Tr  ■

10.12 DESIGN EXAMPLES

In this section we present two illustrative examples. The first example is a rotor 
winder control system where both a lead and lag compensator are designed using 
root locus methods. In the second example, precise control of a milling machine 
used in manufacturing is employed to illustrate the design process. A lag compen-
sator is designed using root locus methods to meet steady-state tracking error and 
percent overshoot specifications.
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Section 10.12 Design Examples 765

EXAMPLE 10.13 Rotor winder control system

Our goal is to replace a manual operation using a machine to wind copper wire 
onto the rotors of small motors. Each motor has three separate windings of sev-
eral hundred turns of wire. It is important that the windings be consistent and that 
the throughput of the process be high. The operator simply inserts an unwound 
rotor, pushes a start button, and then removes the completely wound rotor. The DC 
motor is used to achieve accurate rapid windings. Thus, the goal is to achieve high 
steady-state accuracy for both position and velocity. The control system is shown 
in Figure 10.21(a) and the block diagram in Figure 10.21(b). This system has zero 
steady-state error for a step input, and the steady-state error for a ramp input is

,e A Kss = υ

where

lim
50

.
0

K
G s

s

c( )
=υ

→

When ,G s Kc( ) =  we have 50.K K=υ  If we select 500,=K  we will have 10,K =υ  
but the percent overshoot to a step is . . 70%=P O , and the settling time is 8 s=Ts .

We first try a lead compensator so that

 .1

1
G s

K s z
s p

c( )
( )

=
+

+
 (10.84)

-

+
R(s) Y(s)

Input
command

(b)

(a)

1
s (s + 5)(s + 10)

Gc(s)

Controller

Air supply
Stepper
motor

Winding
loop

Air chuck

Rotor

Armature wire

DC motor

FIGURE 10.21
(a) Rotor winder 
control system. 
(b) Block diagram.
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766 Chapter 10  The Design of Feedback Control Systems

Selecting 41 =z  and the pole 1p  so that the complex roots have a 0.6ζ = , we have 
(see Figure 10.22)

 
191.2 4

7.3
.G s

s
s

c( )
( )

=
+

+
 (10.85)

We find the response to a step input has a . . 3%=P O  and a settling time of 
1.5 s=Ts . However, the velocity constant is

191.2 4
7.3 50

2.1,K
( )

( )
= =υ

which is inadequate.
If we use a phase-lag compensator, we select

2

2
G s

K s z
s p

c( )
( )

=
+

+

in order to achieve 38.K =υ  Thus, the velocity constant of the phase-lag compen-
sated system is

50
.2

2
K

Kz
p

=υ

Using a root locus, we select 105=K  in order to achieve a reasonable uncompen-
sated step response with a percent overshoot of . . 10%≤P O . We select α = z p to 
achieve the desired K .υ  We then have

50 50 38
105

18.1.
K

K
α

( )
= = =υ

-10 -7.3 -5 -4

z = 0.6

K = 191.2

jv

s

FIGURE 10.22
Root locus for lead 
compensator.
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Section 10.12 Design Examples 767

Selecting 0.12 =z  to avoid affecting the uncompensated root locus, we have 
0.0055.2 =p  We then obtain a step response with a . . 12%=P O  and a settling time 

of 2.5 s=Ts . The results for the simple gain, the lead network, and the lag network 
are summarized in Table 10.3.

Let us return to the phase-lead compensator system and add a cascade phase-
lag compensator, so that the lead-lag compensator is

 .1 2

1 2
G s

K s z s z
s p s p

c ( )( )
( )

( )( )
=

+ +
+ +

 (10.86)

The lead compensator of Equation (10.86) requires 191.2,   4,1= =K z  and 
7.3.1 =p  The root locus for the system is shown in Figure 10.22. We recall that this 

lead compensator resulted in 2.1K =υ  (see Table 10.3). To obtain 21,K =υ  we 
use 10α =  and select 0.12 =z  and 0.01.2 =p  Then the compensated loop transfer 
function is

 
191.2 4 0.1

5 10 7.28 0.01
.L s G s G s

s s
s s s s s

c( ) ( ) ( )
( )( )

( )( )( )( )
= =

+ +
+ + + +

 (10.87)

The step response and ramp response of this system are shown in Figure 10.23 in 
parts (a) and (b), respectively, and are summarized in Table 10.3. Clearly, the lead-
lag design is suitable for satisfaction of the design goals. ■

Table 10.3 Design Example Results

Controller Gain, K
Lead 
Compensator

Lag 
Compensator

Lead-Lag 
Compensator

Step overshoot 70% 3% 12% 5%
Settling time (seconds) 8 1.5 2.5 2.0
Steady-state error for ramp 10% 48% 2.6% 4.8%
K

v

10 2.1 38 21

1.2

1.0

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5

Time (s) Time (s)

0 2 4 6 8 101 3 5 7 9

y(
t)

10
9
8
7
6
5
4
3
2
1
0

(a)

y(t)

(b)

FIGURE 10.23 (a) Step response and (b) ramp response for rotor winder system.
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768 Chapter 10  The Design of Feedback Control Systems

EXAMPLE 10.14 Milling machine control system

Smaller, lighter, less costly sensors are being developed by engineers for machin-
ing and other manufacturing processes. A milling machine table is depicted in 
Figure 10.24. This particular machine table has a new sensor that obtains informa-
tion about the cutting process (that is, the depth-of-cut) from the acoustic emission 
(AE) signals. Acoustic emissions are low-amplitude, high-frequency stress waves 
that originate from the rapid release of strain energy in a continuous medium. 
The AE sensors are commonly piezoelectric amplitude sensitive in the 100 kHz to  
1 MHz range; they are cost effective and can be mounted on most machine tools.

There is a relationship between the sensitivity of the AE power signal and small 
depth-of-cut changes [15, 18, 19]. This relationship can be exploited to obtain a 
feedback signal or measurement of the depth-of-cut. A simplified block diagram of 
the feedback system is shown in Figure 10.25. The elements of the design process 
emphasized in this example are highlighted in Figure 10.26.

Since the acoustic emissions are sensitive to material, tool geometry, tool 
wear, and cutting parameters such as cutter rotational speed, the measurement 
of the depth-of-cut is modeled as being corrupted by noise, denoted by ( )N s  in 
Figure  10.25. Also disturbances to the process, denoted by ,( )T sd  are modeled. 
These could represent external disturbances resulting in unwanted motion of the 
cutter, fluctuations in the cutter rotation speed, and so forth.

AE signal

Cutter

AE sensor Workpiece

Milling machine table

v

FIGURE 10.24
A depiction of the 
milling machine.

+

-

+
+

Controller

Gc(s)

+

+

N(s)
Measurement

noise

R(s)
Desired

depth-of-cut

Y(s)
Actual

depth-of-cut

Plant

G(s)

Td(s)

FIGURE 10.25
A simplified block 
diagram of the 
 milling machine 
feedback system.
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The process model ( )G s  is given by

 
2

1 5
,( )

( )( )
=

+ +
G s

s s s
 (10.88)

and represents the model of the cutter apparatus and the AE sensor dynamics. The 
input to ( )G s  is a control signal to actuate an electromechanical device, which then 
applies downward pressure on the cutter.

There are a variety of methods available to obtain the model represented by 
Equation (10.88). One approach would be to use basic principles to obtain a math-
ematical model in the form of a nonlinear differential equation, which can then be 
linearized about an operating point leading to a linear model (or equivalently, a 
transfer function). The basic principles include Newton’s laws, the various conser-
vation laws, and Kirchhoff’s laws. Another approach would be to assume a form of 
the model (such as a second-order system) with unknown parameters (such as ωn  
and ζ ), and then experimentally obtain good values of the unknown parameters.

See Figures 10.24  and 10.25.

Design specifications:
     DS1: Track a ramp input with
 zero steady-state error.
     DS2: P.O. 6 20%

Control the depth-of-cut
to the desired value.

See Equation (10.89).

Use control design
software.

Depth-of-cut.

See Equation (10.88).

Establish the system configuration

Obtain a model of the process, the
actuator, and the sensor

If the performance meets the specifications,
then finalize the design.

If the performance does not meet the
specifications, then iterate the configuration. 

Identify the variables to be controlled

Establish the control goals

Topics emphasized in this example.

Write the specifications

Optimize the parameters and
analyze the performance

Describe a controller and select key
parameters to be adjusted

FIGURE 10.26 Elements of the control system design process emphasized in this milling machine 
control system design example.
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770 Chapter 10  The Design of Feedback Control Systems

A third approach is to conduct a laboratory experiment to obtain the step or 
impulse response of the system. In other words we can apply an input (in this case, 
a voltage) to the system and measure the output—the depth-of-cut into the desired 
workpiece. Suppose, for example, we have the impulse response data shown in 
Figure 10.27 (the small circles on the graph represent the data). If we had access to 
the function imp ( )C t —the impulse response function of the milling machine—we 
could take the Laplace transform to obtain the transfer function model. There are 
many methods available for curve fitting the data to obtain the function .imp ( )C t  
We will not cover curve fitting here, but we can say a few words regarding the basic 
structure of the function.

From Figure 10.27 we see that the response approaches a steady-state value:

2
5

  as t .imp imp,( ) → ≈ → ∞C t C ss

So we expect that

C t( ) = +
2
5

imp ∆ C t( )imp ,

where ∆ C t( )imp  is a function that goes to zero as t gets large. This leads us to con-
sider ∆ C t( )imp  as a sum of stable exponentials. Since the response does not oscil-
late, we might expect that the exponentials are, in fact, real exponentials,

∆  ∑( ) = τ− ,impC t k e
i

i
ti

0 1 2 3 4 5

0

0.05

-0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (s)

C
im

p 
(t

)

Curve fit
Measured data

FIGURE 10.27
Hypothetical 
 impulse response 
of the milling 
machine.
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where τi are positive real numbers. The data in Figure 10.27 can be fitted by the 
function

2
5

1
10

 
1
2

  ,imp
5( ) = + −− −C t e et t

for which the Laplace transform is

{ }( ) ( )
( )( )

= = +
+

−
+

=
+ +

2
5

 
1 1

10
 

1
5

1
2

 
1

1
2

1 5
.impG s C t

s s s s s s
+

Thus we can obtain the transfer function model of the milling machine.
The control goal is to develop a feedback system to track a desired step input. In 

this case the reference input is the desired depth-of-cut. The control goal is stated as

Control Goal
Control the depth-of-cut to the desired value.

The variable to be controlled is the depth-of-cut, or

Variable to Be Controlled
Depth-of-cut y t( ).

Since we are focusing on lead and lag controllers in this chapter, the key tuning param-
eters are the parameters associated with the compensator given in Equation (10.89).

Select Key Tuning Parameters
Compensator variables: p, z, and K.

The control design specifications are

Control Design Specifications

DS1  Track a ramp input, ( ) = ,2R s a s  with a steady-state tracking error less than 
a/8, where a is the ramp velocity.

DS2 Percent overshoot to a step input of . . ≤P O  20%.

The phase-lag compensator is given by

 
1

1
G s K

s z
s p

K
s
s

c α
τ

ατ
( )

( )
( )

=
+
+

=
+

+
, (10.89)

where 1  and  1 .α τ= > =z p z  The tracking error is

1 ,( )( ) ( ) ( ) ( ) ( )= − = −E s R s Y s T s R s

where

1
.T s

G s G s

G s G s
c

c
( )

( ) ( )
( ) ( )

=
+

Therefore,
1

1
  .E s

G s G s
R s

c
( )

( ) ( )
( )=

+
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772 Chapter 10  The Design of Feedback Control Systems

With 2( ) =R s a s  and using the final value theorem, we find that

lim lim lim
1

1
  ,

0 0 2
e e t sE s s

G s G s
a
s

ss
t s s c

( ) ( )
( ) ( )

= = =
+→∞ → →

or equivalently,

lim
lim

.
0

0

sE s
a

sG s G ss
s

c
( )

( ) ( )
=

→
→

According to DS1, we require that

lim 8
,

0

a
sG s G s

a

s
c( ) ( )

<

→

or

lim 8.
0

sG s G s
s

c( ) ( ) >
→

Substituting for ( )G s  and G sc( ) from Equations (10.88) and (10.89), respectively, 
we obtain the compensated velocity constant

2
5

  8.,comp = >υK K
z
p

The compensated velocity constant is the velocity constant of the system when the 
phase-lag compensator is in the loop.

The loop transfer function is

 
2

( 1) ( 5)
.L s G s G s

s z
s p

K
s s s

c( ) ( ) ( )= =
+
+ + +

We separate the phase-lag compensator from the process and obtain the uncom-
pensated root locus by considering the feedback loop with the gain K, but not the 
phase-lag compensator zero and pole factors. The uncompensated root locus for the 
characteristic equation

1
2

1 5
0

( )( )
+

+ +
=K

s s s

is shown in Figure 10.28.
From DS2 we determine that the target damping ratio of the dominant roots 

is 0.45.ζ >  We find that 2.09≤K  at 0.45.ζ ≥  Then with 2.0=K  the uncompen-
sated velocity constant is

lim
2
1 5

2
5

0.8.,unc
0 ( )( )

=
+ +

= =υ
→

K s
K

s s s
K

s
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The compensated velocity constant is

lim  
2
1 5

  .,comp
0

,unc( )( )
=

+
+ + +

=υ υ
→

K s
s z
s p

K
s s s

z
p

K
s

Therefore with ,α = z p  we obtain the relationship

.,comp

,unc
α = υ

υ

K

K

We require 8.,comp >υK  A possible choice is 10,comp =υK  as the desired velocity 
constant. Then

10
0.8

12.5.,comp

,unc
α = = =υ

υ

K

K

But ,α = z p  thus our phase-lag compensator should have 0.08 .=p z  If we select 
0.01=z  then 0.0008.=p
The compensated loop transfer function is given by

2
( 1)( 5)

.L s G s G s K
s z
s p s s s

c( ) ( ) ( )= =
+
+ + +

The phase-lag compensator with z and p as above is determined to be

 2.0
0.01

0.0008
.G s

s
s

c( ) =
+

+
 (10.90)

The step response is shown in Figure 10.29. The percent overshoot is . . 22%=P O . 
The velocity error constant is 10=υK , which satisfies DS1.

0-2-4-6-8-10
-10

-8

-6

-4

-2

2 4

0

2

4

6

8

10

Real axis

Im
ag

in
ar

y 
ax

is K = 2.09
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FIGURE 10.28
Root locus for the 
uncompensated 
system.
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774 Chapter 10  The Design of Feedback Control Systems

10.13 SYSTEM DESIGN USING CONTROL DESIGN SOFTWARE

We want to use computers, when appropriate, to assist the designer in the selection of 
the parameters of a compensator. The development of algorithms for  computer-aided 
design is an important alternative approach to the trial-and-error methods consid-
ered in earlier sections. Computer programs have been developed for the selection 
of suitable parameter values for compensators based on satisfaction of frequency re-
sponse criteria such as the phase margin [3, 4].

In this section, the compensation of control systems is illustrated using fre-
quency response and s-plane methods. We will consider again the rotor winder 
design. To illustrate the use of m-file scripts in designing and developing control 
systems with good performance characteristics. We examine both the phase-lead 
and phase-lag compensators for this design example and obtain the system response 
using computer-based analysis tools.

EXAMPLE 10.15 Rotor winder control system

Consider again the rotor winder control system shown in Figure 10.21. The design 
objective is to achieve high steady-state accuracy to a ramp input. The steady-state 
error to a unit ramp input 1 2( ) =R s s  is

1
,sse

K
=

υ

where

lim
50

.
0

K
G s

s

c( )
=υ

→

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

y(t)

FIGURE 10.29
Step response for 
the compensated 
system.  ■
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Section 10.13 System Design Using Control Design Software 775

The performance specification of percent overshoot and settling time must be 
 considered, as must the steady-state tracking error. In all likelihood, a simple gain 
will not be satisfactory, so we will also consider compensation utilizing phase-lead and 
phase-lag compensators, using both Bode plot and root locus plot design methods. 
Our approach is to develop a series of m-file scripts to aid in the compensator designs.

Consider a simple gain controller

.G s Kc( ) =

Then the steady-state error is
50

.=e
K

ss

The larger we make K, the smaller is the steady-state error .ess  However, we must 
consider the effect that increasing K has on the transient response, as shown in 
Figure 10.30. When 500,=K  our steady-state error for a ramp is 10%, but the 
 percent overshoot is . . 70%=P O , and the settling time is approximately 8=Ts  s 
for a step input. We consider this to be unacceptable performance and thus turn 

K=[50 100 200 500];
%
numg=[1]; deng=[1 15 50 0];
sysg=tf(numg,deng);
t=[0:0.1:5];
%
for i=1:4
sys=feedback(K(i)*sysg,[1]);
y=step(sys,t);
Ys(:,i)=y;
end
%
plot(t,Ys(:,1),t,Ys(:,2),t,Ys(:,3),t,Ys(:,4))
xlabel('Time (s)'), ylabel('y(t)')

Compute response
for four gains.

Closed-loop
transfer function.

Store response for
ith gain in Ys.

(b)

(a)

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

y(
t)

K = 500

K = 50

FIGURE 10.30
(a) Transient 
 response for  simple 
gain controller. 
(b) m-file script.
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776 Chapter 10  The Design of Feedback Control Systems

to compensation. The two important compensator types that we consider are 
phase-lead and phase-lag compensators.

First, we try a phase-lead compensator

,G s
K s z

s p
c( ) ( )

=
+

+

where z p< . The phase-lead compensator will give us the capability to  improve 
the transient response. We will use a frequency-domain approach to design the 
phase-lead compensator.

We want a steady-state error of ess ≤ 10% to a ramp input and 10.K =υ  In 
 addition to the steady-state specifications, we want to meet certain performance 
specifications: (1) settling time (with a 2% criterion) 3 s,≤Ts  and (2) percent 
 overshoot for a step input . . 10%.≤P O  Solving for ζ  and ωn  using

ζω
= = = =ζπ ζ− −. . 100 exp 10 and

4
31 2

P O Ts
n

yields 0.59ζ =  and 2.26.ω =n  We thus obtain the phase margin requirement:

0.01
60°.pmφ

ζ
= ≈

The steps leading to the final design are as follows:

1. Obtain the uncompensated system Bode plot with K = 500,  and compute the phase 
margin.

2. Determine the amount of necessary phase lead mφ .

3. Evaluate α  from mφ α α( ) ( )= − +sin  1 1 .

4. Compute 10 log α  and find the frequency mω  on the uncompensated Bode plot 
where the magnitude curve is equal to α−10 log  .

5. In the neighborhood of mω  on the uncompensated Bode plot draw a line through 
the 0-dB point at mω  with slope equal to the current slope plus 20 dB/decade. 
Locate the intersection of the line with the uncompensated Bode plot to determine 
the phase-lead compensation zero location. Then calculate the phase-lead compen-
sator pole location as p zα= .

6. Obtain the compensated Bode plot and check the phase margin. Repeat any steps if 
necessary.

7. Raise the gain to account for the attenuation α1 .

8. Verify the final design with simulation using step function inputs, and repeat any 
 design steps if necessary.

We use three scripts in the design. The design scripts are shown in Figures 10.31–10.33. 
The script in Figure 10.31 is for the Bode plot of the uncompensated system. The script 
in Figure 10.32 is for the detailed Bode plot of the compensated system. The script in 
Figure 10.33 is for the step response analysis. The final phase-lead compensator design is

1800 3.5
25

,G s
s

s
c( ) ( )

=
+

+

where = 1800K  was selected after iteratively using the m-file script.
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Section 10.13 System Design Using Control Design Software 777

The settling time and percent overshoot specifications are satisfied, but 5,K =υ  
resulting in a 20% steady-state error to a ramp input. It is possible to continue the 
design iteration and refine the compensator somewhat, although it should be clear 
that the phase-lead compensator has added phase margin and improved the tran-
sient response as anticipated.

To reduce the steady-state error, we can consider the phase-lag compensator, 
which has the form

,G s
K s z

s p
c( ) ( )

=
+

+

where p z< . We will use a root locus approach to design the phase-lag compen-
sator, although it can be done using a Bode plot as well. The desired root location 
region of the dominant roots is specified by

0.59 and 2.26.ζ ω= =n

(b)

(a)

Frequency (rad/s)
M

ag
ni

tu
de

 (
dB

)

Compute
phase margin.

Additional phase lead.

10-1 100 101 102

-60

-40

-20

0

20

40

-10 log a Uncompensated

Compensated—drawn
manually

Compute a.

Plot -10 log(a) line to
aid in locating vm.

FIGURE 10.31
(a) Bode plot. 
(b) m-file script.
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778 Chapter 10  The Design of Feedback Control Systems

(b)

-40
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Gain margin = 15.51 Phase margin = 59.2

Frequency (rad/s)

10-1 100 101 102

10-1 100 101 102
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Increase K to account
for attenuation of 1/a.

Lead compensator.

-250
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FIGURE 10.32
Phase-lead 
 compensator: 
(a) compensated 
Bode plot, (b) m-file 
script.
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FIGURE 10.33
Phase-lead 
 compensator: 
(a) step response, 
(b) m-file script.
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Section 10.13 System Design Using Control Design Software 779

The steps in the design are as follows:

1. Obtain the root locus of the uncompensated system.

2. Locate suitable root locations on the uncompensated system that lie in the region 
 defined by ζ = 0.59  and nω = 2.26.

3. Calculate the loop gain at the desired root location and the system error constant, 
Kυ .,unc

4. Compute K Kα = υ υ ,,comp ,unc  where 10., compK =υ

5. With α  known, determine suitable locations of the compensator pole and zero so 
that the compensated root locus still passes through the desired location.

6. Verify with simulation and repeat any steps if necessary.

The design methodology is illustrated in Figures 10.34–10.36. Using the rlocfind 
function, we can compute the gain K associated with the roots of our choice on the 
uncompensated root locus that lie in the performance region. We then compute α 
to ensure that we achieve the desired K .υ  We place the lag compensator pole and 
zero to avoid affecting the uncompensated root locus. In Figure 10.35, the phase-lag 
compensator pole and zero are very near the origin, at 0.1= −z  and 0.01.= −p

(b)

numg=[1]; deng=[1 15 50 0];
sysg=tf(numg,deng);
clf; rlocus(sysg); hold on
%
zeta=0.5912; wn=2.2555;
%
x=[-10:0.1:-zeta*wn]; y=-(sqrt(1-zeta^2)/zeta)*x;
xc=[-10:0.1:-zeta*wn]; c=sqrt(wn^2-xc.^2);
%
plot(x,y,':',x,-y,':',xc,c,':',xc,-c,':')
axis([-15,1,-10,10]);

Plot performance
regions on locus.

(a)
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K = 100

FIGURE 10.34
Phase-lag 
 compensator: 
(a) uncompensated 
root locus, (b) m-file 
script.
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780 Chapter 10  The Design of Feedback Control Systems

The settling time and percent overshoot specifications are not satisfied, but 
10,K =υ  as desired. It is possible to continue the design iteration and refine the 

compensator somewhat, although it should be clear that the phase-lag compensator 
has improved the steady-state errors to a ramp input relative to the phase-lead com-
pensator design. The final phase-lag compensator design is

100 0.1
0.01

.G s
s

s
c( ) ( )

=
+

+

The resulting performance is summarized in Table 10.4. ■

(b)

(a)

numg=[1]; deng=[1 15 50 0]; sysg=tf(numg,deng);
numgc=[1 0.1]; dengc=[1 0.01]; sysgc=tf(numgc,dengc);
sys=series(sysgc,sysg);
clf; rlocus(sys); hold on
%
zeta=0.5912; wn=2.2555;
x=[-10:0.1:-zeta*wn]; y=-(sqrt(1-zeta^2)/zeta)*x;
xc=[-10:0.1:-zeta*wn];c=sqrt(wn^2-xc.^2);
plot(x,y,':',x,-y,':',xc,c,':',xc,-c,':')
axis([-15,1,-10,10]);
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Compensated root locus
remains almost unchanged.

Phase-lag
compensator

FIGURE 10.35
Phase-lag 
 compensator: 
(a) compensated 
root locus, (b) m-file 
script.

Table 10.4 Compensator Design Results

Controller Gain, K = 500 Lead Lag

Step overshoot 70% 8% 13%
Settling time (seconds) 8 1 9
Steady-state error for ramp 10% 20% 10%
K

v
 10 5 10
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(b)

(a)

0 2 4 6 8 10 12 14 16 18 20
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Settling time M 9 seconds.

FIGURE 10.36
Phase-lag 
 compensator: 
(a) step response, 
(b) m-file response.

10.14 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

In this chapter, we design a PD controller to achieve the specified response to a 
unit step input. The specifications are given in Table 10.5. The closed-loop system is 
shown in Figure 10.37. A prefilter is used to eliminate any undesired effects of the 
term +s z introduced in the closed-loop transfer function. We will use the deadbeat 
system, where the desired closed-loop transfer function is

 
ω

αω ω
( ) =

+ +
.

2

2 2
T s

s s
n

n n
 (10.91)

Table 10.5  Disk Drive Control System Specifications  
and Actual Performance

Performance Measure Desired Value Actual Response

Percent overshoot Less than 5% 0.1%
Settling time Less than 250 ms 40 ms
Maximum response  
 to a unit disturbance

Less than × −5 10 3 × −6.9 10 5
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782 Chapter 10  The Design of Feedback Control Systems

For the second-order model shown in Figure 10.37, we require 1.82α =  (see 
Table 10.2). Then the settling time is

4.82.ω =Tn s

Since we want a settling time 50 ms,≤Ts  we will use 120.ω =n  Then we expect 
40 ms.=Ts  Therefore, the denominator of Equation (10.91) is

 218.4 14400.2 + +s s  (10.92)

The characteristic equation of the closed-loop system of Figure 10.37 is

 20 5 5 0.2s K s KD P( )+ + + =  (10.93)

Equating Equations (10.92) and (10.93), we have

218.4 20 5KD= +

and

14400 5 .KP=

Therefore, 2880KP =  and 39.68.KD =  Then we note that

39.68 72.58 .G s sc( ) ( )= +

The prefilter will then be

72.58
72.58

.G s
s

p( ) =
+

The model neglected the motor field. Nevertheless, this design will be very accu-
rate. The actual response is given in Table 10.5. All the specifications are satisfied.

-

+ +

+
R(s)

Motor gain

G1(s) = 5

Load

Td(s)

Y(s)

Prefilter

Gp(s)

PD controller

Gc(s) = KP + KDs G2(s) = 
1

s (s + 20)

FIGURE 10.37 Disk drive control system with PD controller (second-order model).

M10_DORF2374_14_GE_C10.indd   782M10_DORF2374_14_GE_C10.indd   782 15/09/21   8:49 AM15/09/21   8:49 AM



Section 10.15 Summary 783

10.15 SUMMARY

In this chapter, we have considered several alternative approaches to the design of 
feedback control systems. In the first two sections, we discussed the concepts of de-
sign and compensation and noted the several design cases. Then we examined the 
possibility of introducing cascade compensators within the feedback loops of control 
systems. The cascade compensators are useful for altering the shape of the root locus 
or frequency response of a system. The phase-lead compensator and the phase-lag 
compensator were considered in detail as candidates for system compensators. Then 
system compensation was studied by using a phase-lead compensator on the Bode 
plot and the root locus. We noted that the phase-lead compensator increases the 
phase margin of the system and thus provides additional stability. When the design 
specifications include an error constant, the design of a phase-lead compensator is 
more readily accomplished on the Bode plot. Alternatively, when an error constant is 
not specified but the settling time and percent overshoot for a step input are specified, 
the design of a phase-lead compensator is more readily carried out on the s-plane. 
When large error constants are specified for a feedback system, it is usually easier 
to compensate the system by using integration (phase-lag) compensators. We also 
noted that the phase-lead compensation increases the system bandwidth, whereas 
the phase-lag compensation decreases the system bandwidth. The bandwidth may 
often be an important factor when noise is present at the input and generated within 
the system. Also, we noted that a satisfactory system is obtained when the asymptotic 
course for magnitude of the compensated system crosses the 0-dB line with a slope 
of −20  dB decade. The characteristics of the phase-lead and phase-lag compensa-
tors are summarized in Table 10.6. Operational amplifier circuits for phase-lead and 
phase-lag and for PI and PD compensators are summarized in Table 10.7 [1].

Table 10.6  A Summary of the Characteristics of Phase-Lead and Phase-Lag 
Compensators

Compensation

Phase-Lead Phase-Lag

Approach Addition of phase-lead angle near cross-
over frequency on Bode plot. Add lead 
compensator to yield desired dominant 
roots in s-plane.

Addition of phase-lag to yield an increased 
error constant while maintaining desired 
dominant roots in s-plane or phase margin 
on Bode plot

Results 1. Increases system bandwidth
2. Increases gain at higher frequencies

1. Decreases system bandwidth

Advantages 1. Yields desired response
2. Improves dynamic response

1. Suppresses high-frequency noise
2. Reduces steady-state error

Disadvantages 1. Requires additional amplifier gain
2. Increases bandwidth and thus  

susceptibility to noise

1. Slows down transient response

Applications 1. When fast transient response is desired 1. When error constants are specified
Situations not 

applicable
1. When phase decreases rapidly near 

crossover frequency
1. When no low-frequency range exists where 

phase is equal to desired phase margin
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784 Chapter 10  The Design of Feedback Control Systems

Table 10.7 Operational Amplifier Circuits for Compensators

Type of  
Controller

 G s
V s
V sc

0

1
( )

( )
( )

=

PD
G

R R
R R

R C sc ( )= +  14 2

3 1
1 1

v0

v1

R1

R2

R3

C1

+

-

+

-

R4

+

-

+

-

PI
G

R R R C s
R R R C sc

( )
( )

=
+ 14 2 2 2

3 1 2 2

v0

v1

R1

R2

R3

C2

+

-

+

-

R4

+

-

+

-

Lead or lag
Lead if 
R C R C>1 1 2 2
Lag if 
R C R C<1 1 2 2

G
R R R C s
R R R C sc

( )
( )

=
+
+

1
1

4 2 1 1

3 1 2 2

v0

v1

R1

R2 R3

C2

+

-

+

-

R4

+

-

+

-

C1

SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or False, 
Multiple Choice, and Word Match. To obtain direct feedback, check your answers with 
the answer key provided at the conclusion of the end-of-chapter problems. Use the block 
 diagram in Figure 10.38 as specified in the various problem statements.

Gc(s) G(s)

Controller

+

-
R(s) Y(s)

Process

FIGURE 10.38 Block diagram for the Skills Check.
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Skills Check 785

In the following True or False and Multiple Choice problems, circle the correct answer.

1. A cascade compensator is a compensator that is placed 
in parallel with the system process. True or False

2. Generally, a phase-lag compensator speeds up the transient response. True or False
3. The arrangement of the system and the selection of suitable components  

and parameters is part of the process of control system design. True or False
4. A deadbeat response of a system is a rapid response with minimal  

percent overshoot and zero steady-state error to a step input. True or False
5. A phase-lead compensator can be used to increase the system bandwidth. True or False
6. Consider the feedback system in Figure 10.38, where

1000
400 20

.( )
( )( )

=
+ +

G s
s s s

A phase-lag compensator is designed for the system:

1 0.25
1 2

.G s
s

sc( ) =
+

+

When compared with the uncompensated system (that is, 1G sc( ) = ), the compensated 
system utilizing the phase-lag compensator:

a. Increases the phase lag near the cross-over frequency.

b. Increases the phase margin.

c. Provides additional attenuation at higher frequencies.

d. All of the above.

7. A position control system can be analyzed using the feedback system in Figure 10.38, 
where the process transfer function is

5
1 0.4 1

.( )
( )( )

=
+ +

G s
s s s

A phase-lag compensator that provides a phase margin of . . 30°≈P M  is:

a. 1
1 106

G s
s

sc( ) =
+

+

b. 1 26
1 115

G s
s
sc( ) =

+
+

c. 1 106
1 118

G s
s
sc( ) =

+
+

d. None of the above

8. Consider a unity feedback system in Figure 10.38, where
1450
3 25

.( )
( )( )

=
+ +

G s
s s s

A phase-lead compensator is introduced into the feedback loop, where
1 0.3
1 0.03

.G s
s
sc( ) =

+
+

The peak magnitude and the bandwidth of the closed-loop frequency response are:

a. 1.9Mp =
ω

 dB; 12.1ω =b  rad/s

b. 12.8Mp =
ω

 dB; 14.9ω =b  rad/s

c. 5.3Mp =
ω

 dB; 4.7ω =b  rad/s

d. 4.3Mp =
ω

 dB; 24.2ω =b  rad/s
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786 Chapter 10  The Design of Feedback Control Systems

9. Consider the feedback system in Figure 10.38, where the plant model is

500
50

( )
( )

=
+

G s
s s

and the controller is a proportional-plus-integral (PI) controller given by

.G s K
K
sc P
I( ) = +

Selecting 1KI = , determine a suitable value of KP for a percent overshoot of  
P.O = 20%.

a. 0.5KP =

b. 1.5KP =

c. 2.5KP =

d. 5.0KP =

10. Consider the feedback system in Figure 10.38, where

1
1 8 1 20

.
( )( )

( ) =
+ +

G s
s s s

The design specifications are: 100K ≥υ , . . 10≥G M  dB, . . 45°≥P M , and the crossover 
frequency, 10ω ≥c  rad/s. Which of the following controllers meets these specifications?

a. 1 1 20
1 0.01 1 50

G s
s s

s sc ( )( )
( )

( )( )
=

+ +
+ +

b. 
100 1 1 5

1 0.1 1 50
G s

s s

s sc
( )

( )( )
( )

( )
=

+ +
+ +

c. 1 100
1 120

G s
s
sc( ) =

+
+

d. 100G sc( ) =

11. Consider a feedback system in which a phase-lead compensator

1 0.4
1 0.04

G s
s
sc( ) =

+
+

is placed in series with the plant

500
1 5 10

.( )
( )( )( )

=
+ + +

G s
s s s

The feedback system is a negative unity feedback control system shown in Figure 10.38. 
Compute the gain and phase margin.

a. . . = ∞G M  dB, . . 60°=P M

b. . . 20.5=G M  dB, . . 47.8°=P M

c. . . 8.6=G M  dB, =P M. . 33.7°

d. Closed-loop system is unstable.

12. Consider the feedback system in Figure 10.38, where

1
10 15

.( )
( )( )

=
+ +

G s
s s s
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Skills Check 787

Which of the following represents a suitable phase-lag compensator that achieves a 
steady-state ≤ess 0.1  for a unit ramp input and a damping ratio of the closed-loop sys-
tem dominant roots of ζ ≈ 0.707.

a. 2850 1
10 1

G s
s

sc( )
( )

( )
=

+
+

b. 100 1 5
10 50

G s
s s

s sc( )
( )( )

( )( )
=

+ +
+ +

c. 10
1

G s
sc( ) =

+
d. Closed-loop system cannot track a ramp input for any ( )G sc .

13. A viable phase-lag compensator for a unity negative feedback system with plant trans-
fer function

1000
8 14 20

( )
( )( )( )

=
+ + +

G s
s s s

that satisfies the design specifications: (i) no percent overshoot; (ii) rise time Tr < 5 s, 
and (iii) position error constant 6Kp > , is which of the following:

a. 1
0.074

G s
s

sc( ) =
+

+

b. 0.074
1

G s
s

sc( ) =
+

+

c. 20 1
100 1

G s
s
sc( ) =
+
+

d. 20G sc( ) =

14. Consider the feedback system depicted in Figure 10.38, where

1

4
.2( )

( )
=

+
G s

s s

A suitable compensator for Gc (s) this system that satisfies the specifications:  
(i)  . . 20%≤P O , and (ii) velocity error constant 10K ≥υ , is which of the following:

a. 4
1

G s
s
sc( )

( )
=

+
+

b. 160 10 1
200 1

G s
s

sc( )
( )

=
+

+

c. 24 1
4

G s
s

sc( )
( )

=
+

+
d. None of the above

15. Using a Nichols chart, determine the gain and phase margin of the system in Figure 
10.38 with loop gain transfer function

8 1
2 4

.
2

L s G s G s
s

s s s
c ( )

( ) ( ) ( )= =
+

+ +

a. . . 20.4=G M  dB, . . 58.1°=P M

b. . . = ∞G M  dB, . . 47°=P M

c. . . 6=G M  dB, . . 45°=P M

d. . . = ∞G M  dB, . . 23°=P M
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788 Chapter 10  The Design of Feedback Control Systems

In the following Word Match problems, match the term with the definition by writ-
ing the correct letter in the space provided.

a. Deadbeat response A system with a rapid response, minimal overshoot, and 
zero steady-state error for a step input.

b.  Phase lead 
compensation

A network that provides a positive phase angle over the 
frequency range of interest.

c. PI controller A compensator hat acts, in part, like an integrator.
d.  Lead-lag 

compensator
A compensator with the characteristics of both a lead  
compensator and a lag compensator.

e.  Design of a control 
system

A compensator that provides a negative phase angle 
and a significant attenuation over the frequency range 
of interest.

f.  Phase lag 
compensation

An additional component or circuit that is inserted into 
the system to compensate for a performance deficiency.

g. Integration network A compensator placed in cascade or series with the sys-
tem process.

h. Compensator Controller with a proportional term and an integral 
term.

i. Compensation A transfer function, G sP( ), that filters the input signal 
R s( ) prior to calculating the error signal.

j. Phase-lag network The arrangement or the plan of the system struc-
ture and the selection of suitable components and 
parameters.

k.  Cascade 
 compensation 
network

The alteration or adjustment of a control system in 
order to provide a suitable performance.

l. Phase-lead network A widely-used compensator that possesses one zero 
and one pole with the pole closer to the origin of the 
s-plane.

m. Prefilter A widely-used compensator that possesses one zero 
and one pole with the zero closer to the origin of the 
s-plane.

E10.1 A negative feedback control system has a transfer 
function

5
.G s G s

K
sc( ) ( ) =

+

We select a compensator

,G s
s a

sc( ) =
+

in order to achieve zero steady-state error for a step 
input. Select a and K to target a percent overshoot 
to a step of P O ≤. . 10% and the settling time (with a 
2% criterion) of Ts ≤ 1 s. Does the actual P.O. and Ts 
match the targeted values? If not, explain why not.

Answer: = =K a3,   15.27

E10.2 A control system with negative unity feedback has 
a process

400
40

,( )
( )

=
+

G s
s s

and we select a proportional plus integral compensa-
tion, where

.G s K
K
sc P
I( ) = +

Note that the steady-state error of this system for a 
ramp input is zero. (a) Set 1KI =  and find a suit-
able value of KP  so the step response will have a 
percent overshoot of . . 20%≤P O . (b) What is the 

EXERCISES
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Exercises 789

expected settling time (with a 2% criterion) of the 
compensated system?

Answer: 0.5KP =

E10.3 A unity feedback control system in a manufactur-
ing system has a process transfer function

1
,

2
G s

e
s

s
( ) =

+

−

and it is proposed to use a compensator to achieve 
a percent overshoot . . 5%≤P O  to a step input. The 
compensator is [4]

1
1

,G s K
sc τ

( ) = +








which provides proportional plus integral control.  
Show that one solution is K = 0.44 and τ = 1.5.

E10.4 Consider a unity feedback system with

5 10
,( )

( )( )
=

+ +
G s

K
s s s

where K is set equal to 100 in order to achieve a spec-
ified 2.K =υ  We wish to add a lead-lag compensator

0.15 0.7
0.015 7

.G s
s s
s sc( )

( )( )
( )( )

=
+ +
+ +

Show that the gain margin of the compensated sys-
tem is . . 28.6 dB=G M  and that the phase margin is 

. . 75.4°=P M .

E10.5 Consider a unity feedback system with the transfer 
function

G s
K

s s s3 5
.( )

( )( )
=

+ +

We desire to obtain the dominant roots with 
ω ζ= =2 and 0.55.n  The compensator is

7
13

.G s
s
sc( ) =

+
+

Determine the value of K that should be selected.

Answer: 42=K

E10.6 Consider the system with the loop transfer functions

4
0.2 15 150

.
2

L s G s G s
K s

s s s s
c ( )

( ) ( ) ( )
( )

( )
= =

+
+ + +

When 10,=K  find ( )T s  and estimate the expected per-
cent overshoot and settling time (with a 2% criterion). 
Compare your estimates with the actual percent over-
shoot of . . 47.5%=P O  and a settling time of 32.1 s=Ts .

E10.7 NASA astronauts retrieved a satellite and brought 
it into the cargo bay of the space shuttle, as shown in 
Figure E10.7(a). A model of the feedback control sys-
tem is shown in Figure E10.7(b). Determine the value 
of K that will result in a phase margin of . . 40°=P M  
when 0.6 s.=T

Answer: 34.15=K

(a)

Visual feedback

-

+
R(s)

Y(s)
Robot arm

position
K e-sT

s(s + 25)

(b)

FIGURE E10.7
Retrieval of a 
 satellite. (Photo 
courtesy of NASA.)
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790 Chapter 10  The Design of Feedback Control Systems

-

+
R(s) Y(s)

Process

2
s + 2

Controller

KI
sKP +

FIGURE E10.9
Design of a PI 
controller.

-

+
R(s) Y(s)

1
(s + 1)(s + 3)

KI
sKP +

FIGURE E10.10
Design of a PI 
controller.

E10.8 A unity feedback system has a plant

2257
1

,
τ

( )
( )

=
+

G s
s s

where 2.8 ms.τ =  Select a compensator

,G s K K sc P I( ) = +

so that the dominant roots of the characteristic equa-
tion have damping ratio equal to 1 2 .ζ =  Plot y(t) 
for a step input.

E10.9 A control system with a controller is shown in 
Figure E10.9. Select KP  and KI  so that the percent 
overshoot to a step input is P O =. . 4%, and the 
 velocity constant Kυ  is equal to 10. Verify the results 
of your design.

E10.10 A control system with a controller is shown in 
Figure E10.10. Select 2KI =  in order to provide a 
reasonable steady-state error to a step [8]. Find KP   
to obtain a phase margin of . . 60°=P M . Find the 
peak time and percent overshoot of this system.

E10.11 A unity feedback system has

1350
1 25

.( )
( )( )

=
+ +

G s
s s s

A lead network is selected so that

1 0.5
1 0.05

.G s
s
sc( ) =

+
+

Determine the peak magnitude, Mpω, and the band-
width, ωb, of the closed-loop frequency response.
From Mpω, estimate the percent overshoot, P.O., to a 
unit step. Compare with the actual P.O. and comment.

E10.12 The control of an automobile ignition system 
has unity feedback and a loop transfer function

,L s G s G sc( ) ( ) ( )=  where

G s
K

s s
G s K K sc P I( )

( )
( )=

+
= +

6
and .

Let K KI P = 1 and determine KKP  so that the com-
plex roots have a damping ratio of 1 2 .ζ =

E10.13 The design of Example 10.3 determined a lead 
network in order to obtain desirable dominant root 
locations using a cascade compensator ( )G sc  in the 
system configuration shown in Figure 10.1(a). The 
same lead network would be obtained if we used 
the feedback compensation configuration of Figure 
10.1(b). Determine the closed-loop transfer function 

( ) ( ) ( )=T s Y s R s  of both the cascade and feedback 
configurations, and show how the transfer function of 
each configuration differs. Explain how the response 
to a step ( )R s  will be different for each system.

E10.14 A robot will be operated by NASA to build a 
permanent lunar station. The unity feedback position 
control system for the gripper tool has the process 
transfer function

6
1 0.5 1 0.166

.
( )

( )
( )

=
+ +

G s
s s s

Determine a phase-lag compensator G sc( ) that will 
provide a phase margin of P M =. . 40°.

Answer: 1 7.69
1 28.92

G s
s( )

( )
( )

=
+

+
E10.15 A unity feedback control system has a plant 

transfer function

G s
s s

( )
( )

=
+

100
8

.

We desire to attain a steady-state error to a ramp 
( ) =r t At  of less than 0.16A and a phase margin of 

P M =. . 35°. We desire to have a crossover frequency 
cω = 20  rad s. Determine whether a phase-lead or a 

phase-lag compensator is required.
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Exercises 791

+

-
R(s) Y(s)Gc(s)

Controller

Gp(s)

Prefilter

G(s)

H(s)

Plant

FIGURE E10.18
Nonunity feedback 
system with a 
prefilter.

R(s) Y(s)
+

-

Ea(s)
KP + KDs

Controller Process

1

s(s - 2)

FIGURE E10.20
Unity feedback 
system with PD 
controller.

+

-

+

+

Controller Process

Td(s)

R(s) Y(s)K
1

s(s + 5.6)FIGURE E10.21
Closed-loop  
feedback system 
with a disturbance 
input.

E10.16 Consider again the system and specifications 
of Exercise E10.15 when the required crossover 
 frequency is cω = 3  rad s.

E10.17 Consider again the system of Exercise 10.9. Select 
KP and KI  so that the step response is deadbeat and 
the settling time (with a 2% criterion) is 2 s≤Ts .

E10.18 The nonunity feedback control system shown in 
Figure E10.18 has the transfer functions

1
20

and 10.( ) ( )=
−

=G s
s

H s

Design a compensator ( )G sc  and prefilter ( )G sp  so that 
the closed-loop system is stable and meets the following 
specifications: (i) a percent overshoot to a unit step input 
of . . 10%≤P O , (ii) a settling time of 2 s,≤Ts  and (iii) 
zero steady-state tracking error to a unit step.

E10.19 A unity feedback control system has the plant 
transfer function

G s
s s

( )
( )

=
−
1

2
.

Design a PID controller of the form

,G s K K s
K
sc p D
I( ) = + +

so that the closed-loop system has a settling time of 
Ts ≤ 0.5 s to a unit step input.

E10.20 Consider the system shown in Figure E10.20. 
Design the proportional-derivative controller 

( )G sc  such that the system has a phase margin of 
40°  . . 60°.≤ ≤P M

E10.21 Consider the unity feedback system shown in 
Figure E10.21. Design the controller gain, K, such that 
the maximum value of the output y(t) in response to a 
unit step disturbance 1( ) =T s sd  is less than 0.1.
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792 Chapter 10  The Design of Feedback Control Systems

P10.1 The design of a lunar excursion module is an inter-
esting control problem. The attitude control system for 
the lunar vehicle is shown in Figure P10.1. The vehicle 
damping is negligible, and the attitude is controlled 
by gas jets. The torque, as a first approximation, will 
be considered to be proportional to the signal  V(s) so 
that .2( ) ( )=T s K V s  The loop gain may be selected by 
the designer in order to provide a suitable damping. 
A damping ratio of 0.6ζ =  with a settling time (with 
a 2% criterion) of less than 2.5 seconds is required. 
Using a lead network compensation, select the nec-
essary compensator G sc( ) by using (a) frequency re-
sponse techniques and (b) root locus methods.

P10.2 A magnetic tape recorder transport for modern 
computers requires a high-accuracy, rapid- response 
control system. The requirements for a specific trans-
port are as follows: (1) The tape must stop or start 
in 10 ms, and (2) it must be possible to read 45,000 

characters per second. This system is illustrated in 
Figure P10.2. We will use a tachometer in this case and 
set = 50000Ka  and 1.2 =K  To provide a suitable 
performance, a compensator ( )G sc  is inserted immedi-
ately following the photocell transducer. Select a com-
pensator ( )G sc  so that the percent overshoot of the 
system for a step input is . 25%≤P O . We assume that 
τ τ= = = = =

= = =
K R L K

r K LJ K
a b

T p

0.1 ms, 0.1 ms, 2, 0.5 ms,

0.4,   0.2,   2.0,  and 1.
1 1

P10.3 A simplified version of the attitude rate control for a 
supersonic aircraft is shown in Figure P10.3. When the ve-
hicle is flying at four times the speed of sound (Mach 4) at 
an altitude of 100,000 ft, the parameters are [26]

1.1,     1.25,1τ = =Ka

1.0, and 4.ζω ω= =a a

PROBLEMS

Actuator

-

+ V (s) T(s)
Reference Attitude

1

Js2

Vehicle

K1

Compensation

Gc(s) K2

FIGURE P10.1
Attitude control 
system for a lunar 
excursion module.

-

Photocell
transducer

Controller

Gc(s)

Motor
Reel

Kp

Kb

Motor
back emf

Y(s)
Tape

position

K2

Amplifier

Tachometer

+R(s)
Desired
position -

+

-

+0.5 K1
t1s + 1

Ka
tas + 1

KT /L

s + R/L

1

Js

r

s

FIGURE P10.2 Block diagram of a tape control system.

-

Compensation

Gc(s) du
dt

R(s)

1

Aircraft

1
s

Hydraulic
actuator

Rate gyro

K1v
2(tas + 1)

s2 + 2zvas + v2
a

a

+

FIGURE P10.3
Aircraft attitude 
control.

M10_DORF2374_14_GE_C10.indd   792M10_DORF2374_14_GE_C10.indd   792 15/09/21   8:49 AM15/09/21   8:49 AM



Problems 793

R(s)
Y(s)
Rod

position-

+
Amplifier

Ka

Clutches

KT

ts + 1

Gears

n

Load

1

Js2
Gc(s)

Compensation

FIGURE P10.4
Nuclear reactor rod 
control.

R(s)
Y(s)

Speed
-

+
Motor and load

Gc(s)

Amplifier

Ka (s + 0.2)(0.2s + 1)
5

FIGURE P10.5
Stabilized rate 
table.

-

+
R(s)

Catalyst
input Y(s)

Production
output

Ke-sT

(ts + 1)2
G(s) =Gc(s)

FIGURE P10.7
Chemical reactor 
control.

KR

0.2s + 1
1

s(Js + b)
-

+
Input

Silicon-controlled
rectifiers

Gears
Tool
slide

n

Motor

Gc(s)

FIGURE P10.8 Path-controlled turret lathe.

Design a compensator G sc( ) so that the response to 
a step input has a percent overshoot of . 10%≤P O .

P10.4 Magnetic particle clutches are useful actuator de-
vices for high power requirements because they can 
typically provide a 200-W mechanical power output. 
The particle clutches provide a high torque-to- inertia 
ratio and fast time-constant response. A particle 
clutch positioning system for nuclear reactor rods is 
shown in Figure P10.4. The motor drives two counter- 
rotating clutch housings. The clutch housings are 
geared through parallel gear trains, and the direction 
of the servo output is dependent on the clutch that 
is energized. The time constant of a 200-W clutch is 

  1 10τ =  s. The constants are such that 1.=K n JT  
We want the percent overshoot for a step input to be 

. . 20%≤P O . Design a compensator so that the system 
is adequately stabilized. The settling time (with a 2% 
criterion) of the system should be 7 s≤Ts .

P10.5 A stabilized precision rate table uses a precision 
tachometer and a DC direct-drive torque motor, as 
shown in Figure P10.5. We want to maintain a high 
steady-state accuracy for the speed control. To obtain 

a zero steady-state error for a step command design, 
select a proportional plus integral compensator. Select 
the appropriate gain constants so that the system has a 
percent overshoot of P O =. . 15% and a settling time 
(with a 2% criterion) of Ts ≤ 2s.

P10.6 Repeat Problem P10.5 by using a phase-lead com-
pensator and compare the results.

P10.7 A chemical reactor process whose production rate 
is a function of catalyst addition is shown in block 
diagram form in Figure P10.7 [10]. The time delay is 

50 s,=T  and the time constant τ  is approximately 40 
s. The gain of the process is 1.=K  Design a compen-
sator using Bode plot methods in order to provide a 
suitable system response. We want to have a steady-
state error less than 0.10A for a step input ( ) =R s A s .  
For the system with the compensation added, estimate 
the settling time of the system.

P10.8 A numerical path-controlled machine turret lathe 
is an interesting problem in attaining sufficient ac-
curacy [2, 23]. A block diagram of a turret lathe con-
trol system is shown in Figure P10.8. The gear ratio is 

0.2,   10 ,3= = −n J  and 2.0 10 .2= × −b  It is necessary 
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794 Chapter 10  The Design of Feedback Control Systems

to attain an accuracy of 5 10  in.,4× −  and therefore 
a steady-state position accuracy of 2.5% is specified 
for a ramp input. Design a cascade compensator to 
be inserted before the silicon-controlled rectifiers in 
order to provide a response to a step command with 
a percent overshoot of . . 5%≤P O . A suitable damp-
ing ratio for this system is 0.7ζ = . The gain of the 
 silicon-controlled rectifiers is 5.KR =  Design a suit-
able phase-lag compensator.

P10.9 The Avemar ferry, shown in Figure P10.9(a), is a 
large 670-ton ferry hydrofoil built for Mediterranean 
ferry service. It is capable of 45 knots (52 mph) [29]. 
The boat’s appearance, like its performance, derives 
from the innovative design of the narrow “wavepierc-
ing” hulls which move through the water like racing 
shells. Between the hulls is a third quasihull which 
gives additional buoyancy in rough seas. Loaded with 
900 passengers and crew, and a mix of cars, buses, and 
freight cars trucks, one of the boats can carry almost 
its own weight. The Avemar is capable of operating 
in seas with waves up to 8 ft in amplitude at a speed 
of 40 knots as a result of an automatic stabilization 
control system. Stabilization is achieved by means of 
flaps on the main foils and the adjustment of the aft 
foil. The stabilization control system maintains a level 
flight through rough seas. Thus, a system that mini-
mizes deviations from a constant lift force or, equiv-
alently, that minimizes the pitch angle θ( )t  has been 
designed. A block diagram of the lift control system 
is shown in Figure P10.9(b). The desired response of 
the system to wave disturbance is a constant-level 

travel of the craft. Establish a set of reasonable spec-
ifications and design a compensator G sc( ) so that the 
performance of the system is suitable. Assume that 
the disturbance is due to waves with a frequency 

6  rad .ω = s

P10.10 A unity feedback system has the loop transfer 
function

5
5 12

.
2

L s G s G s G s
s s s

c c ( )
( ) ( ) ( ) ( )= =

+ +

(a) Determine the step response when 1,( ) =G sc  and 
calculate the settling time and steady state for a ramp 
input ,   0.( ) = >r t t t  (b) Design a phase-lag compen-
sator using the root locus method so that the veloc-
ity constant is increased to 10. Determine the settling 
time (with a 2% criterion) of the compensated system.

P10.11 A unity feedback control system has the loop 
transfer function

 
160

.
2

L s G s G s G s
sc c( ) ( ) ( ) ( )= =

Select a lead-lag compensator so that the percent 
overshoot for a step input is . . 5%≤P O  and the set-
tling time (with a 2% criterion) is 1≤Ts  s. It also is 
desired that the acceleration constant Ka  be greater 
than 7500.

P10.12 A unity feedback control system has a plant

G s
s s s

( )
( )( )

=
+ +

25
1 0.2 1 0.1

.

+

+

Td(s)

-

+
R(s) 1

s
50

s2 + 80s + 2500

Compensator Amplifier Actuator
Foil and vehicle

dynamics

Gc(s) K
u(s)

Pitch
angle

(a)

(b)

FIGURE P10.9
(a) The Avemar 
ferry built for ferry 
service between 
Barcelona and the 
Balearic Islands. 
(b) A block diagram 
of the lift control 
system.
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-

+R(s)
Reference

Process

8
s (s + 2)(s + 4)

Y(s)
Load

waveform

Controller

Gc(s)

FIGURE P10.13
Materials testing 
machine system.

-

+ +

+
R(s)

Td(s) = 1/s
Disturbance

Gc(s)
100

s2 + 25s + 100
Y(s)

Position

FIGURE P10.15
Robot control.

-
R(s) Gc(s) Y(s)

Speed
Gp(s) 1

s
+

FIGURE P10.16
Speed control of an 
automobile.

Select a compensator G sc( ) so that the phase margin 
is P M ≥. . 80° . Use a two-stage lead compensator

1 1

1 1
.

1 3

2 4

ω ω

ω ω

( )
( )( )

( )
( ) =

+ +

+ +
G s

K s s

s s
c

It is required that the error for a ramp input be 1% of 
the magnitude of the ramp input 100 .K( )=υ

P10.13 Materials testing requires the design of control 
systems that can faithfully reproduce normal speci-
men operating environments over a range of speci-
men parameters [23]. From the control system design 
viewpoint, a materials-testing machine system can 
be considered a servomechanism in which we want 
to have the load waveform track the reference signal. 
The system is shown in Figure P10.13.

(a) With ,G s Kc( ) =  choose K so that a phase mar-
gin of P M. . 45°=  is achieved. Determine the 
system bandwidth for this design.

(b) The additional requirement introduced is that 
the velocity constant Kυ  be equal to 1. Design 
a lag compensator so that the phase margin is 
P M. . 45°=  and 1.K =υ

P10.14 For the system described in Problem P10.13, the 
goal is to achieve a phase margin of P M. . 45°=  with 
the additional requirement that the time to settle (to 
within 2% of the final value) is Ts 10≤  s. Design a 

phase-lead compensator to meet the specifications. 
As before, we require 1.K =υ

P10.15 A robot with an extended arm has a heavy load, 
whose effect is a disturbance, as shown in Figure 
P10.15 [22]. Let 0( ) =R s  and design ( )G sc  so that 
the maximum value of the disturbance response is 
less than 0.25 and the steady-state error to a unit step 
disturbarce is zero.

P10.16 A driver and car may be represented by the sim-
plified model shown in Figure P10.16 [17]. The goal is 
to have the speed adjust to a step input with a percent 
overshoot of . . 10%≤P O  and a settling time (with a 
2% criterion) of 1=Ts  s. Select a proportional plus 
integral (PI) controller to yield these specifications. 
For the selected controller, determine the actual 
response (a) for 1G sp( ) =  and (b) with a prefilter  
G sp( ) that removes the zero from the closed-loop 
transfer function ( )T s .

P10.17 A unity feedback control system for a robot subma-
rine has a plant with a third-order transfer function [20]:

10 50
.( )

( )( )
=

+ +
G s

K
s s s

We want the percent overshoot to be . . 7.5%=P O  
for a step input and the settling time (with a 2% 
criterion) of the system be 400=Ts  ms. Find a 
suitable lead compensator by using root locus 
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796 Chapter 10  The Design of Feedback Control Systems

methods. Let the zero of the compensator be located 
at 15,= −s  and determine the compensator pole. 
Determine the  resulting system K .υ

P10.18 NASA is developing remote manipulators that 
can be used to extend the hand and the power of hu-
mankind through space by means of radio. A concept 
of a remote manipulator is shown in Figure P10.18(a) 
[11, 22]. The closed-loop control is shown schemati-
cally in Figure P10.18(b). Assuming an average dis-
tance of 238,855 miles from Earth to the Moon, the 
time delay T in transmission of a communication sig-
nal is 1.28 s. The operator uses a control stick to con-
trol remotely the manipulator placed on the Moon to 
assist in geological experiments, and the TV display 
to access the response of the manipulator. The time 
constant of the manipulator is 1 4 second.

(a) Set the gain 1K  so that the system has a phase 
margin of . . 30°=P M . Evaluate the percentage 
steady-state error for this system for a step input. (b) 
To reduce the steady-state error for a position com-
mand input to 5%, add a lag compensation network 
in cascade with .1K  Plot the step response.

P10.19 There have been significant developments in 
the application of robotics technology to nuclear 

power plant maintenance problems. Thus far, robot-
ics technology in the nuclear industry has been used 
primarily on spent-fuel reprocessing and waste man-
agement. The industry is applying the technology to 
such areas as primary containment inspection, reac-
tor maintenance, facility decontamination, and acci-
dent recovery activities. These developments suggest 
that the application of remotely operated devices can 
significantly reduce radiation exposure to personnel 
and improve maintenance-program performance.
 Currently, an operational robotic system is 
under development to address particular operational 
problems within a nuclear power plant. This device, 
IRIS (Industrial Remote Inspection System), is a 
 general-purpose surveillance system that conducts 
particular inspection and handling tasks with the 
goal of significantly reducing personnel exposure 
to high radiation fields [12]. The device is shown in 
Figure P10.19. The open-loop transfer function is

1 3
.( )

( )( )
=

+ +

−
G s

Ke
s s

sT

(a) Determine a suitable gain K for the system when 
0.5 s,=T  so that the percent overshoot to a step 

(a)

(b)

Man’s
desired
action

Position of
manipulator

Remote
manipulator

Receiving
antenna

Control to signal-
transmitting antenna

Transmitted
signal

Moon’s
surface

Video return signal

K1 e-sT

e-sT

+

-

1
ts  + 1

TV camera
TV display

Control stick

Remote
manipulator

FIGURE P10.18
(a) Conceptual di-
agram of a remote 
manipulator on the 
Moon controlled 
by a person on the 
Earth. (b) Feedback 
diagram of the re-
mote manipulator 
control system with 

transmissionτ =  
time delay of the 
video signal.
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3-D
driving
camera

Manipulator/arm Surveillance
camera

Communication

FIGURE P10.19
Remotely controlled 
robot for nuclear 
plants.

Actual
position

-

+
Controller

Gc(s)Desired
position

Arm

80

s(s2/4900 + s/70 + 1)
FIGURE P10.24
Robot position 
control.

input is . . 30%≤P O . Determine the steady-state 
error. (b) Design a compensator

2
G s

s
s bc( ) =

+
+

to improve the step response for the system in part 
(a) so that the steady-state error is less than 12%. 
Assume a unity feedback control system.

P10.20 An uncompensated control system with unity 
feedback has a plant transfer function

2 1 6 1
.

( )( )
( ) =

+ +
G s

K
s s s

We want to have a velocity error constant of 20.K =υ  
We also want to have a phase margin of . . 45°=P M  
and a closed-loop bandwidth 4  rad s.ω ≥B  Use two 
identical cascaded phase-lead compensators to com-
pensate the system.

P10.21 For the system of Problem P10.20, design a phase-
lag compensator to yield the desired specifications, 
with the exception that a bandwidth 2  rad sω ≥B  
will be acceptable.

P10.22 For the system of Problem P10.20, we wish 
to achieve the same phase margin and ,υK  but 
in addition, we wish to limit the bandwidth to 
2  rad s 10  rad sω≤ ≤B . Use a lead-lag compen-
sation to compensate the system. The compensator 
could be of the form

1 10 1

1 1 10
,G s

s a s b

s a s bc
( )( )
( )( )

( ) =
+ +
+ +

where a is to be selected for the phase-lag portion 
of the compensator, and b is to be selected for the 
phase-lead portion of the compensator. The ratio α 
is chosen to be 10 for both the lead and lag portions.

P10.23 A system the loop transfer function with unity 
feedback has

4
.2( ) ( ) ( )

( )
= =

+
L s G s G s

K

s
c

We desire the steady-state error to a step input to 
be approximately 4% and the phase margin to be 
P M =. . 60°. Design a phase-lag compensator to 
meet these specifications.

P10.24 The stability and performance of the rotation of 
a robot (similar to waist rotation) presents a challeng-
ing control problem. The system requires high gains in 
order to achieve high resolution; yet a large percent 
overshoot of the transient response cannot be toler-
ated. The block diagram of an electrohydraulic system 
for rotation control is shown in Figure P10.24 [15].
 We want to have 20K =υ  for the compensated 
system. Design a compensator that results in a per-
cent overshoot to a step input of . . 10%≤P O .

P10.25 The possibility of overcoming wheel friction, 
wear, and vibration by contactless suspension for 
 passenger-carrying mass-transit vehicles is being in-
vestigated throughout the world. One design uses 
a magnetic suspension with an attraction force be-
tween the vehicle and the guideway with an accu-
rately controlled airgap. A system is shown in Figure 
P10.25, which incorporates feedback compensation. 
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798 Chapter 10  The Design of Feedback Control Systems

Using root locus methods, select a suitable value for 
1K  and b so the system has a damping ratio for the 

underdamped roots of 0.50.ζ =

P10.26 A computer uses a printer as a fast output  device. 
We desire to maintain accurate position control 
while moving the paper rapidly through the printer. 
Consider a system with unity feedback and a transfer 
function for the motor and amplifier of

0.2
1 6 1

.( )
( )( )

=
+ +

G s
s s s

Design a phase-lead compensator so that the system 
bandwidth is 0.8  rad sω =B  and the phase margin 
is . . 30°≥P M .

P10.27 An engineering design team is attempting to 
control a process shown in Figure P10.27. It is agreed 
that a system with a phase margin of . . 50°=P M  is 
acceptable. Determine .G sc( )
 First, let G s Kc( ) =  and find (a) a value of K 
that yields a phase margin of . . 50°=P M  and the sys-
tem step response for this value of K. (b) Determine 
the settling time, percent overshoot, and the peak 
time. (c) Obtain the system closed-loop frequency 
response, and determine Mpω  and the bandwidth.
 The team has decided to let

12
20

G s
K s

sc( )
( )

( )
=

+
+

and to repeat parts (a), (b), and (c). Determine the 
gain K that results in a phase margin of . . 50°=P M  
and then proceed to evaluate the time response and 
the closed-loop frequency response. Prepare a table 

contrasting the results of the two selected control-
lers for G sc( ) by comparing settling time (with a 2% 
criterion), percent overshoot, peak time, Mp ,ω  and 
bandwidth.

P10.28 An adaptive suspension vehicle uses a legged 
locomotion principle. The control of the leg can be 
represented by a unity feedback system with [12]

10 14
.( )

( )( )
=

+ +
G s

K
s s s

We desire to achieve a steady-state error for a ramp 
input of 10% and a damping ratio of the dominant 
roots of 0.707ζ = . Determine a suitable lag compen-
sator, and determine the actual overshoot and the 
time to settle (to within 2% of the final value).

P10.29 A liquid-level control system has a loop transfer 
function

,L s G s G sc( ) ( ) ( )=

where G sc( )  is a compensator, and the plant is

10
10

,
2( )

( )
=

+

−
G s

e
s s

sT

where 50 ms.=T  Design a compensator so that 
Mpω  does not exceed 3.5 dB and ωr  is approxi-
mately 1.4 rad/s. Predict the percent overshoot and 
settling time (with a 2% criterion) of the compen-
sated system when the input is a step. Plot the actual 
response.

P10.30 An automated guided vehicle (AGV) can be con-
sidered as an automated mobile conveyor designed 

- -

+R(s)
Reference

Y(s)
Actual
air gap

1
s

1
s

K(s + 20)
s

K2(s + b)

s + 200

K1

FIGURE P10.25
Airgap control of 
train.

-

+
R(s) Y(s)

Controller

Gc(s) 10
s(s + 10)

Process

FIGURE P10.27
Controller design.
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to transport materials. Most AGVs require some type 
of guide path. The steering stability of the guidance 
control system has not been fully solved. The slight 
“snaking” of the AGV about the track generally has 
been acceptable, although it indicates instability of 
the steering guidance control system [9].
 Most AGVs have a specification of maximum 
speed of about 1 m/s, although in practice they are 
usually operated at half that speed. In a fully auto-
mated manufacturing environment, there should be 
few personnel in the production area; therefore, the 
AGV should be able to be run at full speed. As the 
speed of the AGV increases, so does the difficulty in 
designing stable and smooth tracking controls.
 A steering system for an AGV is shown in 
Figure P10.30, where 40 ms1τ =  and 1 ms.2τ =  We 
require that the velocity constant Kυ  be 100 so that 
the steady-state error for a ramp input will be 1% of 
the slope of the ramp. Neglect 2τ  and design a lead 
compensator so that the phase margin is

45° . . 65°.≤ ≤P M

Attempt to obtain the two limiting cases for phase 
margin, and compare your results for the two designs 
by determining the actual percent overshoot and set-
tling time for a step input.

P10.31 For the system of Problem P10.30, use a phase-lag 
compensator and attempt to achieve a phase margin 
of . . 50°=P M . Determine the actual percent over-
shoot and peak time for the compensated system.

P10.32 When a motor drives a flexible structure, the 
structure’s natural frequencies, as compared to the 
bandwidth of the servodrive, determine the contribu-
tion of the structural flexibility to the errors of the 
resulting motion. In current industrial robots, the 
drives are often relatively slow, and the structures 
are relatively rigid, so that overshoots and other er-
rors are caused mainly by the servodrive. However, 
depending on the accuracy required, the structural 
deflections of the driven members can become sig-
nificant. Structural flexibility must be considered the 
major source of motion errors in space structures 
and manipulators. Because of weight restrictions in 
space, large arm lengths result in flexible structures. 
Furthermore, future industrial robots should require 
lighter and more flexible manipulators.

 To investigate the effects of structural flexibil-
ity and how different control schemes can reduce 
unwanted oscillations, an experimental apparatus 
was constructed consisting of a DC motor driving 
a slender aluminum beam. The purpose of the ex-
periments was to identify simple and effective con-
trol strategies to deal with the motion errors that 
occur when a servomotor is driving a very flexible 
 structure [13].
 The experimental apparatus is shown in Figure 
P10.32(a), and the control system is shown in Figure 
P10.32(b). The goal is that the system will have a Kυ  
of 100. (a) When ,G s Kc( ) =  determine K and ob-
tain the Bode plot. Find the phase margin and gain 
margin. (b) Using the Nichols chart, find Mr p,   ,ω ω   
and .ωB  (c) Select a compensator so that the phase 
margin is . . 35°≥P M  and find Mr p,   ,ω ω  and ωB  for 
the compensated system.

P10.33 Consider the block diagram of the extender 
robot system shown in Figure P10.33 [14]. The goal is 
that the compensated system will have a velocity con-
stant υK  equal to 80, so that the settling time (with a 
2% criterion) will be 1.6=Ts  s, and that the percent 
overshoot will be . . 16%=P O , so that the dominant 
roots have a 0.5.ζ =  Determine a lead-lag compen-
sator using root locus methods.

P10.34 A magnetically levitated train operated in Berlin, 
Germany from 1989–1991. Fully automated trains can 
run at short intervals and operate with excellent en-
ergy efficiency. The control system for the levitation 
of the car is shown in Figure P10.34. Select a com-
pensator so that the phase margin of the system is 
45° . . 55°.≤ ≤P M  Predict the response of the system 
to a step command, and determine the actual step re-
sponse for comparison.

P10.35 A unity feedback system has the loop transfer 
function

0.54
1.76

  ,L s G s G s
Ks
s s

ec
Ts( ) ( ) ( )

( )
= =

+
+

−

where T is a time delay and K is the controller propor-
tional gain. The block diagram is illustrated in Figure 
P10.35. The nominal value of 2.=K  Plot the phase 
margin of the system for 0 2≤ ≤T  s when 2.=K  
What happens to the phase margin as the time delay 

-

+
R(s)

Vehicle

1
s (t1s + 1)(t2s + 1) Y(s)

Controller

Gc(s)

Deviation
from

guide path

FIGURE P10.30
Steering control for 
vehicle.
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800 Chapter 10  The Design of Feedback Control Systems

increases? What is the maximum time delay allowed 
before the system becomes unstable?

P10.36 A system transfer function is a pure time delay of 
0.5 s, so that ./2( ) = −G s e s  Select a compensator ( )G sc  
so that the steady-state error for a step input is less 
than 2% of the magnitude of the step and the phase 
margin is . . 30°.≥P M  Determine the bandwidth of 

the compensated system and plot the step response. 
Assume a unity feedback system.

P10.37 A unity feedback system has the loop transfer 
function

 
1

2 8
.L s G s G s G s

s sc c( ) ( ) ( ) ( )
( )( )

= =
+ +

(b)

(a)

-

+
R(s) Y(s)Gc(s)

s(s + 0.0325)(s2 + 2.57s + 6667)

s + 500

Accelerometer Arm

Strain gauge

Potentiometer

Load mass

Motor

Motor frame

FIGURE P10.32
Flexible arm 
control.
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+ 1
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R(s) Y(s)

Controller

e-Ts

Time Delay Process

0.54
sK +FIGURE P10.35

Unity feedback 
system with a 
time delay and PI 
controller.
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FIGURE P10.33
Extender robot 
control.
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FIGURE P10.34
Magnetically levi-
tated train control.
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Design a compensator G sc( ) so that the percent 
overshoot for a step input ( )R s  is . . 5%≤P O  and 
the steady-state error is less than 1%. Determine the 
bandwidth of the system.

P10.38 A unity feedback system has a plant

G s
s s

( )
( )

=
+

30
3

.

We desire to have a phase margin of P M =. . 35° and 
a relatively large bandwidth. Select the crossover 
frequency 10  rad s,cω =  and design a phase-lead 
 compensator. Verify the results.

P10.39 A unity feedback system has a plant

40
2

.( )
( )

=
+

G s
s s

We desire that the phase margin be . . 30°=P M . For 
a ramp input ,( ) =r t t  we want the steady-state error 
to be equal to 0.05. Design a phase-lag compensator 
to satisfy the requirements. Verify the results.

P10.40 For the system and requirements of Problem P10.39, 
determine the required compensator when the steady-
state error for the ramp input must be equal to 0.02.

P10.41 Repeat Example 10.12 when we want the rise 
time to be 1 s.Tr =  

P10.42 Consider the system shown in Figure P10.42 and 
let 0( ) =R s  and 0.( ) =T sd  Design the compensa-
tor G s Kc( ) =  such that, in the steady-state, the re-
sponse of the system is less than 40 dB−  when the 
noise ( )N s  is a sinusoidal input at a frequency of 

100  rad .ω ≥ s

P10.43 A unity feedback system has a loop transfer function

2 20

2 2 1
.

2

2
L s G s G s

K s s

s s s s
c

( )
( )

( ) ( ) ( )
( )

= =
+ +

+ + +

Plot the percent overshoot of the closed-loop sys-
tem response to a unit step input for K in the range 
0 100.< ≤K  Explain the behavior of the system re-
sponse for K in the range 0.129 69.872.< ≤K

+

-

+

+

Controller

K

+
+

N(s)

R(s) Y(s)

Process

Td(s)

1
s(s + 10)FIGURE P10.42

Unity feedback 
system with pro-
portional controller 
and measurement 
noise.

AP10.1 A three-axis pick-and-place application re-
quires the precise movement of a robotic arm in 
three- dimensional space, as shown in Figure AP10.1 
for joint 2. The arm has specific linear paths it must 
follow to avoid other pieces of machinery. The over-
shoot for a step input should be less than 13%.
 (a) Let ,G s Kc( ) =  and determine the gain K 
that satisfies the requirement. Determine the re-
sulting settling time (with a 2% criterion). (b) Use 
pole-zero cancellation to reduce the settling time to  

≤Ts  5 s.

AP10.2 The system of Advanced Problem AP10.1 is to 
have a percent overshoot of . . 13%≤P O . In addition, 
we desire that the steady-state error for a unit ramp 
input will be less than 0.125 ( 8)K =υ  [24]. Design 
a lag compensator to meet the specifications. Check 
the resulting percent overshoot and settling time 
(with a 2% criterion) for the design.

AP10.3 The system of Advanced Problem AP10.1 is re-
quired to have a percent overshoot of . . 13%≤P O  
with a steady-state error for a unit ramp input less 
than 0.125 ( 8).K =υ  Design a proportional plus in-
tegral (PI) controller to meet the specifications.

AP10.4 A DC motor control system with unity feedback 
has the form shown in Figure AP10.4. Select 1K  and 

2K  so that the system response has a settling time 
(with a 2% criterion) 0.5≤Ts  s and a percent over-
shoot of . . 10%≤P O  for a step input.

AP10.5 A unity feedback system is shown in Figure 
AP10.5. We want the step response of the system to 
have a percent overshoot of . . 10%≤P O  and a set-
tling time (with a 2% criterion) of 4≤Ts  s.
 (a) Design a phase-lead compensator G sc( ) to 
achieve the dominant roots desired. (b) Determine the 
step response of the system when 1.G sp( ) =  (c) Select 

ADVANCED PROBLEMS
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(b)

(a)
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FIGURE AP10.1
Pick-and-place 
robot.
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Motor control 
system.
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FIGURE AP10.5
Unity feedback with 
a prefilter.
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Advanced Problems 803

a prefilter ,G sp( )  and determine the step response of  
the system with the prefilter.

AP10.6 Consider a unity feedback system with loop 
transfer function

 
1

.L s G s G s
s z
s p

K
s sc( ) ( ) ( )
( )

= =
+
+ +

We wish to minimize the settling time of the system 
while requiring that 52.<K  Determine the appro-
priate compensator parameters p and z that will mini-
mize the settling time. Plot the system response.

AP10.7 A unity feedback system has

1
1 5

,
( )

( )
( )

=
+ +

G s
s s s

with a phase-lead compensator

G s
K s

sc( )
( )

=
+

+
2

15
.

Determine K so that the complex roots have 
  1 2 .ζ =  Consider the prefilter

.G s
p

s pp( ) =
+

(a) Determine the percent overshoot and rise time 
for 1G sp( ) =  and for p = 1. (b) Select an appropriate 
value for p that will give an overshoot of . . 1%≤P O , 
and compare the results.

AP10.8 The Manutec robot has large inertia and arm 
length resulting in a challenging control problem, as 
shown in Figure AP10.8(a). The block diagram model 
of the system is shown in Figure AP10.8(b).
 The percentage overshoot for a step input should 
be . . 20%≤P O  with a rise time of ≤Tr 0.5 s and a set-
tling time (with a 2% criterion) of 1.2 s.≤Ts  Also, we 
desire that for a ramp input ≥υK 10. Determine a suit-
able phase-lead compensator.

AP10.9 The plant dynamics of a chemical process are 
represented by

100
5 10

.( )
( )( )

=
+ +

G s
s s s

We desire that the unity feedback system have a small 
steady-state error for a ramp input so that =υK 100.  
For stability purposes, we desire a gain margin of 

. . 10 dB≥G M  and a phase margin of . . 40°≥P M . 
Determine a lead-lag compensator that meets these 
specifications.

(b)

(a)

250
s(s + 2)(s + 40)(s + 45)

-

+
R(s) Y(s)Gc(s)

Arm dynamics

Arm

Joint

FIGURE AP10.8
(a) Manutec robot. 
(b) Block diagram.
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804 Chapter 10  The Design of Feedback Control Systems

FIGURE DP10.1 Two robots cooperate to insert 
a shaft.

CDP10.1 The capstan-slide system of Figure CDP4.1 
uses a PD controller. Determine the necessary val-
ues of the gain constants of the PD controller so that 
the deadbeat response is achieved. Also, we want the 
settling time (with a 2% criterion) to be 250 ms.≤Ts  
Verify the results.

DP10.1 In Figure DP10.1, two robots are shown coop-
erating with each other to manipulate a long shaft to 
insert it into the hole in the block resting on the table. 
Long part insertion is a good example of a task that 
can benefit from cooperative control. The unity feed-
back control system of one robot joint has the process 
transfer function

G s
s s

( )
( )

=
+

15
3

.

The specifications require a steady-state error for a 
unit ramp input of 0.01, and the step response has an 
overshoot of P O ≤. . 5% with a settling time (with a 
2% criterion) of 1 s≤Ts . Determine a lead-lag com-
pensator that will meet the specifications, and plot the 
compensated responses for the ramp and step inputs.

a unit step disturbance 1( ) =T s sd  is less than or 
equal to 5% of the unit step 0.05 .( )( )∞ =y

(b) Determine whether the system using the gain of 
part (a) is stable.

(c) Design a compensator using one stage of lead 
compensation, so that the phase margin is 

. .  30°=P M .
(d) Design a two-stage lead compensator so that the 

phase margin is . . 55°=P M .
(e) Compare the bandwidth of the systems of parts 

(c) and (d).
(f) Plot the step response y(t) for the systems of parts 

(c) and (d) and compare percent overshoot set-
tling time (with a 2% criterion), and peak time.

DP10.3 NASA has identified the need for large deploy-
able space structures, which will be constructed of 
lightweight materials and will contain large numbers 
of joints or structural connections. This need is ev-
ident for programs such as the space station. These 
deployable space structures may have precision shape 
requirements and a need for vibration suppression 
during in-orbit operations [16].
 One such structure is the mast flight system, 
which is shown in Figure DP10.3(a). The intent of 
the system is to provide an experimental test bed for 
controls and dynamics. The basic element in the mast 
flight system is a 60.7-m-long truss beam structure, 
which is attached to the shuttle orbiter. Included at 
the tip of the truss structure are the primary actuators 
and collocated sensors. A deployment/retraction sub-
system, which also secures the stowed beam package 
during launch and landing, is provided.
 The system uses a large motor to move the structure 
and has the block diagram shown in Figure DP10.3(b). 
The goal is a percent overshoot to a step response of 

. . 20%≤P O ; thus, we estimate the system 0.5ζ =  and 
the required phase margin as . . 50°=P M . Design for 
0.75 2.0< <K  and record the percent overshoot, rise 
time, and phase margin for selected gains.

DP10.4 A high-speed train is under development in Texas 
[21] with a design based on the French Train à Grande 
Vitesse (TGV). Train speeds of 186 miles per hour 
are foreseen. To achieve these speeds on tight curves, 
the train may use independent axles combined with 
the  ability to tilt the train. Hydraulic cylinders con-
necting the passenger compartments to their wheeled 
bogies allow the train to lean into curves like a motor-
cycle. A pendulum like device on the leading bogie of 
each car senses when it is entering a curve and feeds 
this information to the hydraulic system. Tilting does 
not make the train safer, but it does make passengers 
more comfortable.

DESIGN PROBLEMS

DP10.2 The heading control of the traditional bi-wing 
aircraft, shown in Figure DP10.2(a), is represented by 
the block diagram of Figure DP10.2(b).

(a) Determine the minimum value of the gain K 
when ,G s Kc( ) =  so that the steady-state effect of 
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(b)

(a)

-

+ -+
R(s) Y(s)Gc(s)

100
(s + 10)

40
s (s + 20)

Controller Engine
Aircraft

dynamics

Wind
disturbance

Td(s)

FIGURE DP10.2
(a) Bi-wing aircraft.
(Source: The 
 Illustrated London 
News, October 9, 
1920.) (b) Control 
system.

(b)

(a)

-

+
R(s) Y(s)K

5
s(s + 1.75)(s + 4.2)

Deployer/retractor

Shuttle

Mast

FIGURE DP10.3
Mast flight system.
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806 Chapter 10  The Design of Feedback Control Systems

 Consider the tilt control shown in Figure DP10.4. 
Design a compensator G sc( ) for a step-input command 
so that the percent overshoot is . . 10%≤P O  and the 
settling time (with a 2% criterion) 1≤Ts  s. We also 
desire that the steady-state error for a velocity (ramp) 
input be less than 0.2A, where ,   0.( ) = >r t At t  Verify 
the results for the design.

DP10.5 High-performance tape transport systems are de-
signed with a small capstan to pull the tape past the 
read/write heads and with take-up reels turned by DC 
motors. The tape is to be controlled at speeds up to 
200 inches per second, with start-up as fast as possi-
ble, while preventing permanent distortion of the tape. 
Since we wish to control the speed and the tension of 
the tape, we will use a DC tachometer for the speed 
sensor and a potentiometer for the position sensor. We 
will use a DC motor for the actuator. Then the linear 
model for the system is a unity feedback system with

( )
( )

( )= =
Y s
E s

G s

( )
( )

( )( )
+

+ + + +
4000

1000 3000 4000 8,000,000
,

2

K s
s s s s s

where ( )Y s  is position.
 The specifications for the system are (1) settling 
time of 12≤Ts  ms, (2) a percent overshoot to a step 
position command of . . 10%≤P O , and (3) a steady-
state velocity error of less than 0.5%. Determine a 
compensator to achieve these specifications.

DP10.6 The past years have witnessed a significant  engine 
model-building activity in the automotive  industry in a 
category referred to as “control-oriented” or “control 
design” models. These models contain representations 
of the throttle body, engine pumping phenomena, in-
duction process dynamics, fuel system,  engine torque 
generation, and rotating inertia.

 The control of the fuel-to-air ratio in an  automobile 
carburetor became of prime importance as automakers 
worked to reduce exhaust-pollution  emissions. Thus, 
auto engine  designers turned to the feedback control of 
the fuel-to-air ratio. Operation of an engine at or near 
a particular air-to-fuel ratio requires management of 
both air and fuel flow into the manifold system. The fuel 
command is considered the input and the engine speed 
is considered the output [9, 10].
 The block diagram of the system is shown in 
Figure DP10.6, where 0.066 s.=T  A compensator 
is required to yield zero steady-state error for a step 
input and a percent overshoot of . . 10%≤P O . We 
also desire that the settling time (with a 2% criterion) 
of 10≤Ts  s.

DP10.7 A high-performance jet airplane is shown in Figure 
DP10.7(a), and the roll-angle control system is shown 
in Figure DP10.7(b). Design a controller ( )G sc  so that 
the step response is well behaved and the steady-state 
error is zero. That is, P.O. ≤ 10% and Ts ≤ 2 s .

DP10.8 A simple closed-loop control system has been 
proposed to demonstrate proportional-integral (PI) 
control of a windmill radiometer [27]. The windmill ra-
diometer is shown in Figure DP10.8(a) and the control 
system is shown in Figure DP10.8(b). The variable to 
be controlled is the angular velocity ω  of the windmill 
radiometer whose vanes turn when exposed to infra-
red radiation. An experimental setup using a reflex-
ive photoelectric sensor and basic electronic circuitry 
makes possible the design and implementation of a 
high performance control system.
 Assume 20 s.τ =  Design a PI controller so that 
the system achieves a deadbeat response with a set-
tling time of 25 s≤Ts .

DP10.9 Consider the feedback control system shown 
in Figure DP10.9. Design a PID compensator 1G sc ( )  
and a lead-lag compensator 2G sc ( ) such that, in each 

-

+R(s)
Desired

tilt

Y(s)
Tilt

Gc(s)
10

s(s + 8)(s + 80)FIGURE DP10.4
High-speed train 
feedback control 
system.

-

-+

+
R(s)

Y(s)
Engine
speed

2e-sT

(0.21s + 1)(4s + 1)
Gc(s)

Controller

Td(s)

FIGURE DP10.6
Engine control 
system.
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Gc(s)

-

+

(b)

(a)

R(s)
Y(s)
Roll
angle

20

(s + 10)(s2 + 2.75s + 24.6)

Roll
angle

FIGURE DP10.7
Roll-angle control 
of a jet airplane.

Infrared
radiation

(a) (b)

v

Gc(s)
R(s) Y(s)

+

-

Controller Plant
t

ts + 1
FIGURE DP10.8
(a) Radiometric 
windmill. (b) Control 
system.

+

-
R(s) Y(s)Gc(s)

Controller Plant

e-sT

Time delay

60

(s2 + 4s + 6)(s + 10)

FIGURE DP10.9
Feedback control 
system with a 
time-delay.

case, the closed-loop system is stable in the presence 
of a time-delay 0.1 s.T =  Discuss the capability of 
each compensator to insure stability in the presence 
of an increase in the time-delay uncertainty of up to 
0.2 second.

DP10.10 A unity feedback system has the process trans-
fer function

1.59
3.7 2.4 0.43

.
2( )

( )
( )

=
+

+ + +
G s

s
s s s s
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808 Chapter 10  The Design of Feedback Control Systems

Design the controller ( )G sc  such that the Bode mag-
nitude plot of the loop transfer function ( ) ( ) ( )=L s G s G sc    

( ) ( ) ( )=L s G s G sc   is greater than 20 dB for ω ≤ 0.01  rad s  
and less than 20 dB−  for 10  rad s.ω ≤  The desired 
shape of the loop transfer function Bode plot magni-
tude is illustrated in Figure DP10.10. Explain why we 
would want the gain to be high at low-frequency and 
the gain to be low at high-frequency.

DP10.11 Modern microanalytical systems used for poly-
merase chain reaction (PCR) requires fast, damped 
tracking response [30]. The control of the temperature of 
the PCR reactor can be represented as shown in Figure 
DP10.11. The controller is chosen to be PID controller, 
denoted by ( )G sc , with a prefilter, denoted by ( )G sp .
 It is required that the percent overshoot 

. .  1%<P O  and the settling time 3<Ts  s to a unit 
step input. Design a controller ( )G sc  and prefilter 

( )G sp  to achieve the control specifications.

10210010-110-210-3 101
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loop gain
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loop gain
requirement

FIGURE DP10.10
Bode plot 
loop shaping 
requirements.

Actual
temperature

Y(s)

Desired
temperature

R(s)

45

(s + 2.9)(s + 0.14)
-

+
Controller, Gc(s)

Gp(s)
Ea(s)

Reactor, G(s)

KI
s

KP + KDs +

Prefilter

FIGURE DP10.11 Polymerase chain reaction control system.

CP10.1 Consider the control system in Figure CP10.1, 
where

( ) ( )=
+

=G s
s

G s
sc

1
9.5

and
99

.

Develop an m-file to show that the phase margin is ap-
proximately . . 50°=P M  and that the percent overshoot 
to a unit step input is approximately . . 18%=P O .

COMPUTER PROBLEMS

-

+
R(s) Y(s)G(s)Gc(s)

FIGURE CP10.1 A feedback control system with 
compensation.
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CP10.2 A unity feedback control system is shown in 
Figure CP10.2. Design the proportional controller 

( ) =G s Kc  so that the system has a phase margin of 
P M =. . 55°. Develop an m-file to obtain a Bode plot, 
and verify that the design specification is satisfied.

CP10.3 Consider the system in Figure CP10.1, where

G s
s s

( )
( )

=
+
1

3
.

Design a compensator ( )G sc  so that the steady-state 
tracking error to a ramp input is zero and the set-
tling time (with a 2% criterion) is Ts ≤ 5  s. Obtain 
the response of the closed-loop system to the input 

1 2( ) =R s s , and verify that the settling time require-
ment has been satisfied and that the steady-state error 
is zero.

CP10.4 Consider the aircraft unity feedback control 
system in Figure CP10.4, where θ( )t�  is the pitch rate 
(rad/s) and δ( )t  is the elevator deflection (rad). The 
four poles represent the phugoid and short-period 
modes. The phugoid mode has a natural frequency of 
0.1 rad/s, and the short period mode is 1.4 rad/s.
 (a) Using Bode plot methods, design a phase-
lead compensator to meet the following specifications: 
(1) settling time (with a 2% criterion) to a unit step of 

≤Ts  2 s, and (2) percent overshoot of . . 10%≤P O . 
(b) Simulate the closed-loop system with a step input 
of 10°/s, and show the time history of .θ( )t�

CP10.5 The pitch attitude motion of a rigid spacecraft is 
described by

,θ( ) ( )=J t u t��

where J is the principal moment of inertia, and is 
the input torque on the vehicle [7]. Consider the PD 
controller

( ) = +G s K K sc P D .

(a) Design a unity feedback control system to meet 
the following specifications: (1) closed-loop system 
bandwidth about 10ω =B  rad/s, and (2) percent over-
shoot of . . 20%≤P O  to a 10° step input. Complete the 
design by developing and using an interactive m-file 
script. (b) Verify the design by simulating the response 
to a 10° step input. (c) Include a closed-loop transfer 
function Bode plot to verify that the bandwidth re-
quirement is satisfied.

CP10.6 Consider the control system shown in Figure 
CP10.6. Design a lag compensator using root locus 
methods to meet the following specifications: (1) steady-
state error less than 10% for a step input, (2)  phase 
margin of . . 45°≥P M , and (3) settling time (with a 2% 
 criterion) of 5≤Ts  s for a unit step input.
 (a) Design a phase-lag compensator utilizing 
root locus methods to meet the design specifications. 
Develop a set of m-file scripts to assist in the design 
process. (b) Test the controller developed in part (a) by 
simulating the closed-loop system response to unit step 
input. Provide the time histories of the output y(t). (c) 
Compute the phase margin using the margin function.

CP10.7 A lateral beam guidance system has an inner loop 
as shown in Figure CP10.7 [26]. 
 (a) Design a control system to meet the following 
specifications: (1) settling time (with a 2% criterion) 
to a unit step input of 1≤Ts  s, and (2) steady-state 
tracking error for a unit ramp input of less than 0.1.  
(b) Verify the design by simulation.

-

+
R(s)

Process

Y(s)

Proportional
controller

K
s2 + 12s + 18.75

18.75FIGURE CP10.2
Single-loop feed-
back system 
with proportional 
controller.

-

+ d(s) -10(s + 1)(s + 0.01)

(s2 + 2s + 2)(s2 + 0.02s + 0.0101)

Aircraft

-10
s + 10

Lead
compensator

Gc(s)

Actuator

ud(s) u(s)
FIGURE 
CP10.4 An 
aircraft pitch rate 
feedback control 
system.
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810 Chapter 10  The Design of Feedback Control Systems

Word Match (in order, top to bottom): a, l, g, d, j, h, k, 
c, m, e, i, f, b

True or False: (1) False; (2) False; (3) True; (4) True;  
(5) True

Multiple Choice: (6) d; (7) b; (8) d; (9) a; (10) b; (11) c; 
(12) a; (13) a; (14) b; (15) b

CP10.8 Consider a unity feedback system with the loop 
transfer function

 
12.2

,
2

L s G s G s
s z
s p sc( ) ( ) ( )= =

+
+

where z = 2 and p = 5. The actual percent overshoot 
of the compensated system will be P O =. . 59.1%. We 
want to reduce the percent overshoot to P O =. .  35%.  
Using an m-file script, determine an appropriate value 
for the zero of .G sc( )

CP10.9 Consider a circuit with the transfer function

1
1

,2 2

1 1
( )

( )
( )

= =
+
+

G s
V s

V s
R C s
R C s

o

i

where 1 mF,   0.1  F, 10  ,1 2 1C C Rµ= = = Ω  and 
= ΩR 10 k2 . Plot the frequency response of the circuit.

CP10.10 Consider the feedback control system shown in 
Figure CP10.10. The time delay is T = 0.7 s. Plot the 
phase margin for the system versus the gain in the range 
0.1  10.≤ ≤K  Determine the gain K that maximizes 
the phase margin. What is the stability limit for K?

-

+
R(s) Y(s)Gc(s)

Lag
compensator

s + 10

s2 + 2s + 20

Process

FIGURE CP10.6
A unity feedback 
control system.

-

+

Coordinated
aircraft

PI
compensator

20

s + 20Desired
rate

f(d)
KI
sKP +

f(s)
Actual

rate

FIGURE CP10.7
A lateral beam 
guidance system 
inner loop.

+

-
R(s) Y(s)e-sT

Time delay Process

k(s + 0.1)
s3 + 5s2 

FIGURE CP10.10
Feedback control 
system with a time 
delay.

ANSWERS TO SKILLS CHECK
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Cascade compensator A compensator placed in cascade 
or series with the system process.

Compensation The alteration or adjustment of a control 
system in order to provide a suitable performance.

Compensator An additional component or circuit that is 
inserted into the system to compensate for a perfor-
mance deficiency.

Deadbeat response A system with a rapid response, minimal 
overshoot, and zero steady-state error for a step input.

Design of a control system The arrangement or the plan 
of the system structure and the selection of suitable 
components and parameters.

Integration compensator A compensator that acts, in 
part, like an integrator.

Lag network See Phase-lag compensator.

Lead-lag compensator A compensator with the char-
acteristics of both a phase-lead compensator and a 
phase-lag compensator.

Lead compensator See Phase-lead compensator.

Phase lag compensation A widely-used compensator that 
possesses one zero and one pole with the pole closer 

to the origin of the s-plane. This compensator reduces 
the steady-state tracking errors.

Phase lead compensation A widely-used compensator 
that possesses one zero and one pole with the zero 
closer to the origin of the s-plane. This compensator 
increases the system bandwidth and improves the dy-
namic response.

Phase-lag compensator A compensator that provides 
a negative phase angle and a significant attenuation 
over the frequency range of interest.

Phase-lead compensator A widely-used compensator 
that provides a positive phase angle over the fre-
quency range of interest. Thus, phase lead can be 
used to cause a system to have an adequate phase 
margin.

PD controller Controller with a proportional term and a 
derivative term (Proportional-Derivation).

PI controller Controller with a proportional term and an 
integral term (Proportional-Integral).

Prefilter A transfer function ( )G sp  that filters the input 
signal ( )R s  prior to calculating the error signal.

TERMS AND CONCEPTS
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PREVIEW

The design of controllers utilizing state feedback is the subject of this chapter. We 
first present a system test for controllability and observability. Using the  powerful 
notion of state variable feedback, we introduce the pole placement design tech-
nique. Ackermann’s formula can be used to determine the state variable feedback 
gain matrix to place the system poles at the desired locations. The closed-loop sys-
tem pole locations can be arbitrarily placed if and only if the system is controllable. 
When the full state is not available for feedback, we introduce an observer. The 
observer design process is described and the applicability of Ackermann’s formula 
is established. The state variable compensator is obtained by connecting the full-
state feedback law to the observer. We consider optimal control system design and 
then describe the use of internal model design to achieve prescribed steady-state 
response to selected input commands. The chapter concludes by revisiting the 
Sequential Design Example: Disk Drive Read System.

DESIRED OUTCOMES

Upon completion of Chapter 11, students should be able to:

	❏ Describe the concepts of controllability and observability.

	❏ Design full-state feedback controllers and observers.

	❏ Explain pole-placement methods and Ackermann’s formula.

	❏ Explain the separation principle and construct state variable compensators.

	❏ Identify reference inputs, optimal control, and describe internal model design.
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Section 11.2 Controllability and Observability 813

11.1 INTRODUCTION

The time-domain method, employing state variables, can be used to design a suit-
able compensation scheme for a control system. Typically, we are interested in 
 controlling the system with a control signal ( )tu  that is a function of several mea-
surable state variables. Then we develop a state variable controller that operates on 
the information available in measured form. This type of system compensation is 
quite useful for system optimization and will be considered in this chapter.

State variable design typically comprises three steps. In the first step, 
we assume that all the state variables are measurable and utilize them in a  
full-state feedback control law. Full-state feedback is usually not practical 
because it is not possible (in general) to measure all the states. In practice, 
only certain states (or linear combinations thereof) are measured and provided 
as system outputs. The second step in state variable design is to construct an 
observer to estimate the states that are not directly measured and available as 
outputs. Observers can either be full-state  observers or reduced-order observ-
ers. Reduced-order observers account for the fact that certain states are already 
available as system outputs; hence they do not need to be estimated [26]. In this 
chapter, we consider only full-state observers. The final step in the design process 
is to appropriately connect the observer to the full-state feedback control law. 
It is common to refer to the state-variable controller (full-state control law plus 
observer) as a compensator. The state variable design yields a compensator of 
the form depicted in Figure 11.1. Additionally, it is possible to consider non-zero 
reference inputs to the state variable compensator to complete the design. All 
three steps in the design process are discussed in the  subsequent sections, as well 
as how to incorporate the reference inputs.

11.2 CONTROLLABILITY AND OBSERVABILITY

A key question that arises in the design of state variable compensators is whether 
or not all the poles of the closed-loop system can be arbitrarily placed in the com-
plex plane. Recall that the poles of the closed-loop system are equivalent to the 

x(t)u(t)
y(t)

Compensator

System model

Control law

C

C

Observer

^-K
+

-

x(t)^
x = Ax + Bu + LyªN +

y(t) = y(t) - Cx(t)+ ^

x = Ax + Buª

FIGURE 11.1
State variable 
 compensator 
 employing full-state 
feedback in series 
with a full-state 
observer.
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814 Chapter 11  The Design of State Variable Feedback Systems

eigenvalues of the system matrix in state variable format. As we shall see, if the 
system is controllable and observable, then we can accomplish the design objec-
tive of placing the poles precisely at the desired locations to meet the performance 
specifications. Full-state feedback design commonly relies on pole-placement tech-
niques [2, 27]. Pole placement is discussed more fully in Section 11.3. It is important 
to note that a system must be completely controllable and completely observable 
to allow the flexibility to place all the closed-loop system poles arbitrarily. The con-
cepts of controllability and observability (discussed in this section) were introduced 
by Kalman in the 1960s [28–30]. Rudolph Kalman was a central figure in the devel-
opment of mathematical systems theory upon which much of the subject of state 
variable methods rests. Kalman is well known for his role in the development of 
the so-called Kalman filter, which was instrumental in the successful Apollo moon 
landings [31, 32].

A system is completely controllable if there exists an unconstrained   
control ( )u t  that can transfer any initial state ( )tx 0  to any other desired 

 location ( )x t  in a finite time, ≤ ≤t t T .0

For the system

x Ax B ,� t t u t( ) ( ) ( )= +

we can determine whether the system is controllable by examining the algebraic 
condition

 B AB A B A Brank   .2 1 nn…



 =−  (11.1)

The matrix A is an n n×  matrix and B is an n 1×  matrix. For multi-input systems, B 
can be n m,×  where m is the number of inputs.

For a single-input, single-output system, the controllability matrix Pc is de-
scribed in terms of A and B as

 P B AB A B A B  ,2 1
c

n= …





−  (11.2)

which is an n n×  matrix. Therefore, if the determinant of Pc is nonzero, the system 
is controllable [11].

Advanced state variable design techniques can handle situations wherein the 
system is not completely controllable, but where the states (or linear combinations 
thereof) that cannot be controlled are inherently stable. These systems are clas-
sified as stabilizable. If a system is completely controllable, it is also stabilizable. 
The Kalman state-space decomposition provides a mechanism for partitioning the 
state-space so that it becomes apparent which states (or state combinations) are 
controllable and which are not [12, 18]. The controllable subspace is thus exposed, 
and if the system is stabilizable, the control system design can, in theory, proceed. In 
this chapter, we consider only completely controllable systems.
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Section 11.2 Controllability and Observability 815

EXAMPLE 11.1 Controllability of a system

Let us consider the system

( ) ( ) ( )=
− − −



















+



















�x x
0 1 0
0 0 1

0
0
1

,

0 1 2

t
a a a

t u t

 [ ]( ) ( ) [ ] ( )= +x1 0 0 0 .y t t u t

The signal-flow graph and block diagram model are illustrated in Figure 11.2. Then 
we have

A B AB A B
0 1 0
0 0 1 ,

0
0
1

,
0
1 , and

1
.

0 1 2 2

2
2

2
2

1
a a a a

a

a a

=
− − −



















=



















=
−



















= −

−





















Therefore, we obtain

P B AB A B
0 0 1
0 1

1

.2
2

2 2
2

1

a

a a a
c = 



 = −

− −





















The determinant of P 1 0,c = − ≠  hence this system is controllable. ■

1 1

X1(s)X2(s)X3(s)

1
s

1
s

1
s

U(s) Y(s)

-a2

-a1

-a0

(a)

(b)

Y(s)
X3(s)

a2

a1

s
1

s
1

s
1X2(s)

a0

X1(s)

- -
-

+
U(s)

FIGURE 11.2
Third-order  system. 
(a) Signal-flow 
graph model.  
(b) Block diagram 
model.
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816 Chapter 11  The Design of State Variable Feedback Systems

EXAMPLE 11.2 Controllability of a two-state system

Let us consider a system represented by the two state equations

x t x t u t x t x t dx t2 , and 31 1 2 2 1( ) ( ) ( ) ( ) ( ) ( )= − + = − +� �

where d is a constant and determine the condition for controllability. Also, we have 
y t x t ,2( ) ( )=  as shown in Figure 11.3. The system state variable model is

x x2 0
3

1
0

, � t
d

t u t( ) ( ) ( )= −
−











 +













 x0 1 0 .y t t u t[ ]( ) ( ) [ ] ( )= +

We can determine the requirement on the parameter d by generating the matrix cP . 
So, with

B AB1
0

and 2 0
3

1
0

2 ,
d d

=










 = −

−






















 = −











we have

= −









P 1 2

0
.

dc

The determinant of Pc is equal to d, which is nonzero whenever d is nonzero. ■

All the poles of the closed-loop system can be placed arbitrarily in the complex 
plane if and only if the system is observable and controllable. Observability refers 
to the ability to estimate a state variable.

X1(s) X2(s)

1
s

1
s 11

-2 -3

d
U(s) Y(s)

(a)

(b)

X1(s)+

-

+

-
U(s) Y(s)s

1

2

X2(s)

s
1d

3

FIGURE 11.3
(a) Flow graph 
model for Example 
11.2. (b) Block 
 diagram model.

A system is completely observable if and only if there exists a finite time T such 
that the initial state x 0( ) can be determined from the observation history given 

y t( ) the control u t( ), 0 .t T≤ ≤
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Section 11.2 Controllability and Observability 817

Consider the single-input, single-output system

x Ax B Cxand ,� t t u t y t t( ) ( ) ( ) ( ) ( )= + =

where C is a n1×  row vector, and x is an n 1×  column vector. This system is com-
pletely observable when the determinant of the observability matrix oP  is nonzero, 
where

 =





















−

�
P

C
CA

CA

,

1

o

n

 (11.3)

which is an n n×  matrix.
As discussed in this section, advanced state variable design techniques can han-

dle situations wherein the system is not completely controllable, as long as the sys-
tem is stabilizable. These same techniques can handle cases wherein the system is 
not completely observable, but where the states (or linear combinations thereof) 
that cannot be observed are inherently stable. These systems are classified as 
detectable. If a system is completely observable, it is also detectable. The Kalman 
state-space decomposition provides a mechanism for partitioning the state-space so 
that it becomes apparent which states (or state combinations) are observable and 
which are not [12, 18]. The unobservable subspace is thus exposed, and if the system 
is detectable, the control system design can, in theory, proceed. In this chapter, we 
consider only completely observable systems. The approach to state-variable design 
involves first verifying that the system under consideration is completely control-
lable and completely observable. If so, the pole placement design technique consid-
ered here can provide acceptable closed-loop system performance.

EXAMPLE 11.3 Observability of a system

Consider again the system of Example 11.1. The model is shown in Figure 11.2. To 
construct P ,o  we use

A C
0 1 0
0 0 1 and 1 0 0 .

0 1 2a a a
[ ]=

− − −



















=

Therefore,

CA CA0 1 0 and 0 0 1 .2[ ] [ ]= =

Thus, we obtain

P
1 0 0
0 1 0
0 0 1

.o =



















The Pdet  1,o =  and the system is completely observable. ■
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818 Chapter 11  The Design of State Variable Feedback Systems

EXAMPLE 11.4 Observability of a two-state system

Consider the system given by

x x x2 0
1 1

1
1

and 1 1 .� t t u t y t t( ) ( ) ( ) ( ) ( )=
−











 +

−











 = 





The system is illustrated in Figure 11.4. We can check the system controllability and 
observability using the Pc and Po matrices.

From the system definition, we obtain

B AB1
1

and 2
2

.=
−











 =

−













Therefore, the controllability matrix is determined to be

P B AB 1 2
1 2

,c = 



 =

− −













and det P 0.c =  Thus, the system is not controllable.

(a)

U(s)

1
s

1 1

1

2
Y(s)U(s)

X1(s)

X2(s)

1
s-1

-1

+1

(b)

Y(s)

X1(s)

X2(s)

+

+

--

+

+

+

s
1

2

s
1

1

1

FIGURE 11.4
Two state system 
model for Example 
11.4. (a) Signal-flow  
graph model.  
(b) Block diagram 
model.
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Section 11.3 Full-State Feedback Control Design 819

From the system definition, we have

C CA1 1 and 1 1 .= 



 = 





Therefore, computing the observability matrix yields

P C
CA

1 1
1 1

,o =










 =













and det P 0.o =  Hence, the system is not observable.
If we look again at the state model, we note that

y t x t x t .1 2( ) ( ) ( )= +

However,

x t x t x t x t x t u t u t x t x t2 .1 2 1 2 1 1 2( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )+ = + − + − = +� �

Thus, the system state variables do not depend on u, and the system is not control-
lable. Similarly, the output x t x t1 2( ) ( )+  depends on x 01( ) plus x 02 ( ) and does not 
allow us to determine x 01( ) and x 02 ( ) independently. Consequently, the system is 
not observable. ■

11.3 FULL-STATE FEEDBACK CONTROL DESIGN

In this section, we consider full-state variable feedback to achieve the desired pole lo-
cations of the closed-loop system. The first step in the state variable design process 
requires us to assume that all the states are available for feedback—that is, we have 
access to the complete state x t( ) for all t. Suppose the system input u t( ) is given by

 Kx .u t t( ) ( )= −  (11.4)

Determining the gain matrix K is the objective of the full-state feedback design pro-
cedure. The beauty of the state variable design process is that the problem naturally 
separates into a full-state feedback component and an observer design component. 
These two design procedures can occur independently, and in fact, the separation 
principle provides the proof that this approach is optimal. We will show later that the 
stability of the closed-loop system is guaranteed if the full-state feedback control law 
stabilizes the system (under the assumption of access to the complete state) and the 
observer is stable (the tracking error is asymptotically stable). Observers are discussed 
in Section 11.4. The full-state feedback block diagram is illustrated in Figure 11.5.  
With the system defined by the state variable model

x Ax B� t t u t( ) ( ) ( )= +

and the control feedback given by

Kx ,u t t( ) ( )= −

M11_DORF2374_14_GE_C11.indd   819M11_DORF2374_14_GE_C11.indd   819 31/08/21   7:56 AM31/08/21   7:56 AM



820 Chapter 11  The Design of State Variable Feedback Systems

we find the closed-loop system to be

 x Ax B Ax BKx A BK x .� t t u t t t t( ) ( ) ( ) ( ) ( ) ( ) ( )= + = − = −  (11.5)

The characteristic equation associated with Equation (11.5) is

I A BKdet 0.λ( )( )− − =

If all the roots of the characteristic equation lie in the left half-plane, then the closed-
loop system is stable. In other words, for any initial condition x ,0t( )  it follows that

tx x 0 as  .A BK
0t e tt( ) ( )= − → → ∞( )

Given the pair (A, B), we can always determine K to place all the system closed-loop 
poles in the left half-plane if and only if the system is completely controllable—that 
is, if and only if the controllability matrix Pc is full rank (for a single-input, single- 
output system, full rank implies that Pc is invertible).

The addition of a reference input can be written as

Kx ,u t t Nr t( ) ( ) ( )= − +

where r t( ) is the reference input. The question of reference inputs is addressed in 
Section 11.6. When r t 0( ) =  for all t t ,0>  the control design problem is known 
as the regulator problem. That is, we want to compute K so that all initial con-
ditions are driven to zero in a specified fashion (as determined by the design 
specifications).

When using this state variable feedback, the roots of the characteristic equation 
are placed where the transient performance meets the desired response.

EXAMPLE 11.5 Design of a third-order system

Let us consider the third-order system with the differential equation

d y t
dt

d y t
dt

dy t
dt

y t u t5 3 2 .
3

3

2

2
( ) ( ) ( ) ( ) ( )+ + + =

System Model

Control Law

Full-state feedback

x = Ax + Bu·

-K

x(t)u(t)

FIGURE 11.5
Full-state feedback 
block diagram (with 
no reference input).
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Section 11.3 Full-State Feedback Control Design 821

We can select the state variables as the phase variables so that x1(t) = y(t), 
x t dy t dt x t d y t dt,   ,2 3

2 2( ) ( ) ( ) ( )= =  and then

x x Ax B
0 1 0
0 0 1
2 3 5

0
0
1

� t t u t t u t( ) ( ) ( ) ( ) ( )=
− − −



















+



















= +

and

x1 0 0 .y t t( ) ( )= 





If the state variable feedback matrix is

K 1 2 3k k k= 





and

Kx ,u t t( ) ( )= −

then the closed-loop system is

x Ax BKx A BK x .� t t t t( ) ( ) ( ) ( ) ( )= − = −

The state feedback matrix is

A BK
0 1 0
0 0 1

2 3 5
,

1 2 3k k k
− =

− − − − − −



















and the characteristic equation is

 I A BKdet 5 3 2 0.3
3

2
2 1k k kλ λ λ λ λ( )( ) ( ) ( ) ( ) ( )∆ = − − = + + + + + + =  

 (11.6)

If we seek a rapid response with a low overshoot, we choose a desired characteristic 
equation such as

λ λ ζω λ ω λ ζω( )( ) ( )∆ = + + +2 .2 2
n n n

We choose 0.8ζ =  for minimal overshoot and nω  to meet the settling time require-
ment. If we want a settling time (with a 2% criterion) equal to 1 second, then

Ts
n n

4 4
0.8

1.
ζω ω( )

= = ≈

If we choose n 6,ω =  the desired characteristic equation is

 9.6 36 4.8 14.4 82.1 172.8.2 3 2λ λ λ λ λ λ( )( )+ + + = + + +  (11.7)
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822 Chapter 11  The Design of State Variable Feedback Systems

Comparing Equations (11.6) and (11.7) yields the three equations

k5 14.43+ =
k3 82.12+ =
k2 172.8.1+ =

Therefore, we require that k k9.4,   79.1,3 2= =  and k 170.8.1 =  The step response 
has no overshoot and a settling time of 1 second, as desired. ■

EXAMPLE 11.6 Inverted pendulum control

Consider the control of an unstable inverted pendulum balanced on a moving cart. 
We measure and utilize the state variables of the system in order to control the 
pendulum. Thus, if we want to measure the angle from vertical, t ,θ( )  we could use 
a potentiometer connected to the shaft of the pendulum hinge. Similarly, we could 
measure the rate of change of the angle tθ( )�  by using a tachometer generator. If 
the state variables are all measured, then they can be used in a feedback control-
ler so  that Kx ,u t t( ) ( )= −  where K is the feedback matrix. The state vector tx( ) 
represents the state of the system; therefore, knowledge of tx( ) and the equations 
 describing the system dynamics provide sufficient information for control and stabi-
lization of a system [4, 5, 7].

To illustrate the use of state variable feedback, consider the unstable inverted 
pendulum and design a suitable state variable feedback control system. If we  assume 
that the control input, u(t), is an acceleration signal, we can focus on the unstable 
dynamics of the pendulum. The equation of motion describing the angle, tθ( )� , from 
the vertical, is

t
g
l

t
l

u t
1

.θ θ( ) ( ) ( )= −��

Let the state vector be x t x t t t,   ,   .1 2 θ θ( )( )( ) ( ) ( ) ( )= �  The state vector differential 
equation is

  
0 1

0
0
1

.
1

2

1

2

d
dt

x t

x t g l
x t

x t l
u t

( )

( )

( )

( )
( )












=




























+

−

















 (11.8)

The A matrix of Equation (11.8) has the characteristic equation g l 02λ − =  with 
one root in the right-hand s-plane. To stabilize the system, we generate a control 
signal that is a function of the two state variables, x t1( ) and x t .2 ( )  Then we have

Kx .1 2
1

2
1 1 2 2u t t k k

x t

x t
k x t k x t[ ]( ) ( )

( )

( )
( ) ( )= − = −












= − −

M11_DORF2374_14_GE_C11.indd   822M11_DORF2374_14_GE_C11.indd   822 31/08/21   7:56 AM31/08/21   7:56 AM



Section 11.3 Full-State Feedback Control Design 823

Substituting this control signal relationship into Equation (11.8), we have

x t

x t g l
x t

x t l k x k x
0 1

0
0

1
.

1

2

1

2 1 1 2 2( )
( )

( )

( )

( ) ( )












=




























+

+

















�

�

Combining the two additive terms on the right side of the equation, we find that

x t

x t g k l k l

x t

x t

0 1
.

1

2 1 2

1

2( )
( )

( )

( )

( )












=

+





























�

�

Obtaining the characteristic equation, we have

g k l k l
k
l

g k
l

1

1 2

2 1λ
λ

λ λ( )
−

− + −

















= −






 −

+

 
k
l

g k
l

.2 2 1λ λ= −






 +

+
 (11.9)

Thus, for the system to be stable, we require that k l 02 <  and k g.1 > −  Hence, 
we have stabilized an unstable system by measuring the state variables x1  and x2 
and using the control function Kxu t t( ) ( )= −  to obtain a stable system. If we wish 
to achieve a rapid response with modest overshoot, we select n 10ω =  and 0.8.ζ =  
Then we require

k
l

k g
l

16 and 100.2 1= −
+

=

The step response would have a percent overshoot of P.O. = 1.5% and a settling 
time of Ts = 0.5 s. ■

Thus far, we have established an approach for the design of a feedback control 
system by using the state variables as the feedback variables in order to increase 
the stability of the system and obtain the desired system response. Now we face the 
task of computing the gain matrix K to place the poles at desired locations. For a 
single-input, single-output system, Ackermann’s formula is useful for determining 
the state variable feedback matrix

K   ,1 2k k kn[ ]= …

where

Kx .u t t( ) ( )= −

Given the desired characteristic equation

q n
n

n
o,1

1λ λ α λ α( ) = + + +−
− �

the state feedback gain matrix is

 qc[ ] ( )= … −K P A0 0  0 1 ,1
 (11.10)
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824 Chapter 11  The Design of State Variable Feedback Systems

where

A A A A I,1
1

1 0�q n
n

nα α α( ) = + + +−
−

and Pc is the controllability matrix of Equation (11.2).

EXAMPLE 11.7 Second-order system

Consider the system
Y s
U s

G s
s
1
2

( )
( )

( )= =

and determine the feedback gain to place the closed-loop poles at s j1 .= − ±  
Therefore, we require that

q 2 2,2λ λ λ( ) = + +

and 2.1 2α α= =  With x t y t1( ) ( )=  and x t y t ,2 ( ) ( )= �  the matrix equation for the 
system G s( ) is

x x0 1
0 0

0
1

.� t t u t( ) ( ) ( )=










 +













The controllability matrix is

P B AB 0 1
1 0

.c = 



 =













Thus, we obtain

K P A0 1 ,1qc[ ] ( )= −

where

P
1
1

0 1
1 0

0 1
1 0

1
c =

−
−

−











 =













−

and

A 0 1
0 0

2 0 1
0 0

2 1 0
0 1

2 2
0 2

.
2

q( ) =










 +











 +











 =













Then we have

K 0 1 0 1
1 0

2 2
0 2

0 1 0 2
2 2

2 2 .[ ] [ ] [ ]=





















 =











 =  ■

Note that computing the gain matrix K using Ackermann’s formula requires the 
use of P .1

c
−  We see that complete controllability is essential because only then can  

we guarantee that the controllability matrix Pc has full rank and hence that P 1
c
−  exists.
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Section 11.4 Observer Design 825

11.4 OBSERVER DESIGN

In the full-state feedback design procedure discussed in Section 11.3, it was assumed 
that all the states were available for feedback at all times. This is a good assumption 
for the control law design process. Only a subset of the states are typically measur-
able and available for feedback. Having all the states available for feedback implies 
that these states are measured with a sensor or sensor combinations. The cost and 
complexity of the control system increases as the number of required sensors in-
creases. So, even in situations where extra sensors are available, it may not be cost 
effective to employ these extra sensors, if indeed, the control system design goals 
can be accomplished without them. Fortunately, if the system is completely observ-
able with a given set of outputs, then it is possible to determine (or to estimate) the 
states that are not directly measured (or observed).

According to Luenberger [26], the full-state observer for the system

x Ax B� t t u t( ) ( ) ( )= +

 Cxy t t( ) ( )=

is given by

 � t t u t y t tx Ax B L Cxˆ ˆ ˆ( )( ) ( ) ( ) ( ) ( )= + + −  (11.11)

where x̂ t( ) denotes the estimate of the state x t( ). The matrix L is the observer gain 
matrix and is to be determined as part of the observer design procedure. The observer is 
depicted in Figure 11.6. The observer has two inputs, u(t) and y(t), and one output, x̂ .t( )

The goal of the observer is to provide an estimate x̂ t( ) so that x xˆ t t( ) ( )→  as 
t .→ ∞  Remember that we do not know x 0t( ) precisely; therefore we must provide 
an initial estimate x̂ 0t( ) to the observer. Define the observer estimation error as

 e x x̂ .t t t( ) ( ) ( )= −  (11.12)

The observer design should produce an observer with the property that e 0t( ) →  as 
t .→ ∞  One of the main results of systems theory is that if the system is completely 
observable, we can always find L so that the tracking error is asymptotically stable, 
as desired.

Taking the time-derivative of the estimation error in Equation (11.12) yields

� � �t t te x x̂( ) ( ) ( )= −

y(t) = y(t) - Cx(t)N
+

x(t)N

C

Observer

N

–
Nx = Ax + Bu + Ly+

+

-

u(t) y(t)

FIGURE 11.6
The full-state 
observer.
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826 Chapter 11  The Design of State Variable Feedback Systems

and using the system model and the observer in Equation (11.11), we obtain

e Ax B Ax B L Cxˆ ˆ� t t u t t u t y t t( )( ) ( ) ( ) ( ) ( ) ( ) ( )= + − − − −

or

 e A LC e .� t t( ) ( ) ( )= −  (11.13)

We can guarantee that ( ) →e 0t  as t → ∞ for any initial tracking error ( )e 0t  if the 
characteristic equation

 I A LCdet 0λ( )( )− − =  (11.14)

has all its roots in the left half-plane. Therefore, the observer design process reduces 
to finding the matrix L such that the roots of the characteristic equation in Equation 
(11.14) lie in the left half-plane. This can always be accomplished if the system is 
completely observable; that is, if the observability matrix Po has full rank (for a 
 single-input, single-output system, full rank implies that Po is invertible).

EXAMPLE 11.8 Second-order system observer design

Consider the second-order system

�x x2 3
1 4

0
1

t t u t( ) ( ) ( )=
−











 +













 x1 0 .y t t( ) ( )= 





In this example, we can only directly observe the state y t x t .1( ) ( )=  The observer 
will provide estimates of the second state x t .2 ( )

We only consider full-state observers, which implies that the observer will 
provide estimates of all the states. We might be inclined to suppose that since 
some states are directly measured, it may be possible to design an observer that 
provides just the estimates of the states not directly measured. This is, in fact, 
possible, and the resulting observers are known as reduced-order observers [12, 
18]. However, since sensors are not noise free, even states that are directly mea-
sured are generally estimated in an effort to reduce the effect of sensor noise on 
the state estimate. The Kalman filter (which is a time-varying optimal observer) 
solves the observer problem in the presence of measurement noise (and process 
noise as well) [33, 34].

The observer design begins by checking the system observability to verify that 
an observer can be constructed to guarantee the stability of the estimation error. 
From the system model, we find that

A C2 3
1 4

and 1 0 .=
−











 = 





The corresponding observability matrix is

P C
CA

1 0
2 3

.o =










 =
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Section 11.4 Observer Design 827

Since det P 3 0,o = ≠  the system is completely observable. Suppose that the desired 
characteristic equation is given by

 λ λ ζω λ ω( )∆ = + +d n n2 .2 2  (11.15)

We can select 0.8ζ =  and n 10,ω =  resulting in an expected settling time of less 
than 0.5 second. Computing the actual characteristic equation yields

 I A LCdet 6 4 2 3 1 ,2
1 1 2L L Lλ λ λ( )( ) ( ) ( ) ( )− − = + − − − + +  (11.16)

where L = [L1  L2]T. Equating the coefficients in Equation (11.15) to those in 
Equation (11.16) yields the two equations

 L 6 161 − =

L L4 2 3 1 1001 2( ) ( )− − + + =

which, when solved, produces

L 22
59

.1

2

L

L
=

















=












The observer is thus given by

� t t u t y t x tx xˆ 2 3
1 4

ˆ 0
1

22
59

ˆ .1( )( ) ( ) ( ) ( ) ( )=
−











 +











 +











 −

The response of the estimation error to an initial error of

( ) =
−











e 1

20t

is shown in Figure 11.7. ■
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FIGURE 11.7
Second-order 
 observer response 
to initial estimation 
errors.
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828 Chapter 11  The Design of State Variable Feedback Systems

Ackermann’s formula can also be employed to place the roots of the observer 
 characteristic equation at the desired locations. Consider the observer gain matrix

L 1 2 �L L Ln
T

= 





and the desired observer characteristic equation

p n
n

n .1
1

1 0λ λ β λ β λ β( ) = + + + +−
− �

The 'sβ  are selected to meet given performance specifications for the observer. The 
observer gain matrix is then computed via

 L A P 0  0 1 ,1 �p o
T[ ]( )= −  (11.17)

where Po is the observability matrix given in Equation (11.3) and

A A A A I  .1
1

1 0�p n
n

nβ β β( ) = + + + +−
−

EXAMPLE 11.9 Second-order system observer design using Ackermann’s formula

Consider the second-order system in Example 11.8. The desired characteristic equa-
tion was given as

λ λ ζω λ ω( ) = + +2 ,2 2p n n

where 0.8ζ =  and n 10;ω =  hence, 161β =  and 100.2β =  Computing p(A) yields

A( ) 2 3
1 4

16 2 3
1 4

100 1 0
0 1

133 66
22 177

,
2

p =
−
















+

−











 +











 =

−













and from Example 11.8, we have the observability matrix

P 1 0
2 3o =













which implies that

P
1 0
2 3 1 3

.1
o =

−

















−

Using Ackermann’s formula in Equation (11.17) yields the observer gain matrix

L A P 0 0 1 133 66
22 177

1 0
2 3 1 3

0
1

22
59

.1 �p o
T

( )= 



 =

−











 −



























 =













−

This is the identical result obtained in Example 11.8 using other methods. ■
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Section 11.5 Integrated Full-State Feedback and Observer 829

11.5 INTEGRATED FULL-STATE FEEDBACK AND OBSERVER

The state variable compensator is constructed by appropriately connecting the full-
state feedback control law (see Section 11.3) to the observer (see Section 11.4). The 
compensator is shown in Figure 11.1 (as discussed in Section 11.1). Our strategy 
was to design the state feedback control law as Kx ,u t t( ) ( )= −  where we assumed 
that we had access to the complete state x t( ). Then we designed an observer to 
provide an estimate of the state x̂ .t( )  It seems reasonable that we can employ the 
state  estimate in the feedback control law in place of x t( ). In other words, we can 
consider the feedback law

 Kx̂ .u t t( ) ( )= −  (11.18)

But is this a good strategy? The feedback gain matrix K was designed to guarantee 
stability of the closed-loop system; that is, the roots of the characteristic equation

I A BKdet 0λ( )( )− − =

are in the left half-plane. Under the assumption that the complete state x t( ) is avail-
able for feedback, the feedback control law (with properly designed gain  matrix K) 
leads to the desired result that x 0t( ) →  as t → ∞ for any initial  condition x .0t( )  
We need to verify that, when using the feedback control law in Equation (11.18), we 
retain the stability of the closed-loop system.

Consider the observer (from Section 11.4)

�x Ax B L Cxˆ ˆ ˆ .t t u t y t t( )( ) ( ) ( ) ( ) ( )= + + −

Substituting the feedback law in Equation (11.18) and rearranging terms in the 
 observer yields the compensator system

�x A BK LC x Lˆ ˆt t y t( ) ( ) ( ) ( )= − − +

 Kx̂ .u t t( ) ( )= −  (11.19)

Notice that the system in Equation (11.19) has the form of a state variable model 
with input y t( ) and output u t( ), as illustrated in Figure 11.8.

x(t)N

y(t)u(t)

Control gain Observer gain

-K L

A - BK - LC

++L
FIGURE 11.8
State variable 
 compensator with 
integrated full-state  
feedback and 
observer.
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830 Chapter 11  The Design of State Variable Feedback Systems

Computing the estimation error using the compensator in Equation (11.19) yields

� � �e x x Ax B Ax B L LCxˆ ˆ ˆ ,t t t t u t t u t y t t( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= − = + − − − +

or

 ( ) ( ) ( )= −�e A LC e .t t  (11.20)

This is the same result as we obtained for the estimation error in Section 11.4. The 
estimation error does not depend on the input as seen in Equation (11.20), where 
the input terms cancel. Recall that the underlying system model is given by

x Ax B� t t u t( ) ( ) ( )= +
 Cx .y t t( ) ( )=

Substituting the feedback law Kx̂u t t( ) ( )= −  into the system model yields

x Ax B Ax BKx̂ ,� t t u t t t( ) ( ) ( ) ( ) ( )= + = −

and with x x eˆ ,t t t( ) ( ) ( )= −  we obtain

 x A BK BKe .� t t tx( ) ( ) ( ) ( )= − +  (11.21)

Writing Equations (11.20) and (11.21) in matrix form, we have

 
e

A BK BK
0 A LC

x

e
.

( )

( )

( )

( )












= −

−

























�

�

x t

t

t

t
 (11.22)

Recall that our goal is to verify that, with Kx̂ ,u t t( ) ( )= −  we retain stability of the 
closed-loop system and the observer. The characteristic equation associated with 
Equation (11.22) is

I A BK I A LCdet   det .λ λ λ( ) ( )( ) ( ) ( )∆ = − − − −

So if the roots of I A BKdet 0λ( )( )− − =  lie in the left half-plane (which they do 
by design of the full-state feedback law), and if the roots of I A LCdet 0λ( )( )− − =  
lie in the left half-plane (which they do by design of the observer), then the overall 
system is stable. Therefore, employing the strategy of using the state estimates for 
the feedback is in fact a good strategy.

In other words, when we use Kx̂u t t( ) ( )= −  where K is designed using the methods 
proposed in Section 11.3 and x̂ t( ) is derived from the observer discussed in Section 11.4, 
then x 0t( ) →  as t → ∞ for any initial condition x 0t( ) and e 0t( ) →  as t → ∞ for 
any  initial estimation error e .0t( )  The fact that the full-state feedback law and the ob-
server can be designed independently is an illustration of the separation principle.

The design procedure is summarized as follows:

1. Determine K such that I A BKdet 0λ( )( )− − =  has roots in the left half-plane and 
place the poles appropriately to meet the control system design specifications. The 
ability to place the poles arbitrarily in the complex plane is guaranteed if the system is 
completely controllable.
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Section 11.5 Integrated Full-State Feedback and Observer 831

2. Determine L such that I A LCdet 0λ( )( )− − =  has roots in the left half-plane and 
place the poles to achieve acceptable observer performance. The ability to place the 
observer poles arbitrarily in the complex plane is guaranteed if the system is completely 
observable.

3. Connect the observer to the full-state feedback law using

Kx̂ .u t t( ) ( )= −

Compensator Transfer Function. The compensator given in Equation (11.19) can 
be given equivalently in transfer function form with input Y s( ) and output U s( ). 
Taking the Laplace transform (with zero initial conditions) of the compensator yields

X A BK LC X Lˆ ˆs s s Y s( ) ( ) ( ) ( )= − − +

 KX̂ ,  U s s( ) ( )= −

and rearranging and solving for U s( ), we obtain the transfer function

 U s s Y s( )( ) ( ) ( )= − − − −





−K I A BK LC L .1
 (11.23)

Note that the compensator transfer function itself (when viewed as a system) may 
or may not be stable. Even though A BK−  is stable and A LC−  is stable, it does 
not necessarily follow that A BK LC− −  is stable. However, the overall closed-
loop system is stable (as we proved in the previous discussions). The controller in 
Equation (11.23) is commonly referred to as a stabilizing controller.

EXAMPLE 11.10 Compensator design for the inverted pendulum

The state variable model representing the inverted pendulum atop a moving cart is

x x

0 1 0 0

0 0 0

0 0 0 1

0 0 0

0
1

0
1

,� t

mg
M

g
l

t M

Ml

u t( ) ( ) ( )=

−































+

−































where ( )( ) ( ) ( ) ( ) ( ) ( )=x ,   ,   ,   , 1 2 3 4 1t x t x t x t x t x tT  is the cart position, x t2 ( ) is the cart 
velocity, x t3( ) is the pendulum angular position (measured from the vertical), x t4 ( ) 
is the pendulum angular rate, and u t( ) is the input applied to the cart. Typically, 
we can measure the state variable x t3 θ( ) =  using a potentiometer attached to the 
shaft, or measure x t t4 θ( ) ( )= �  using a tachometer generator. However, suppose 
that we have a sensor available to measure the position of the cart. Is it possible 
to hold the angular position of the pendulum at the desired value t 0°θ( )( ) =  when 
only the output y t x t1( ) ( )=  (the cart position) is available? In this case, we have 
the output equation

x1 0 0 0 .y t t[ ]( ) ( )=
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832 Chapter 11  The Design of State Variable Feedback Systems

Let the system parameters be l 0.098 m= , g 9.8  m s2= , m 0.825 kg=  and 
M   8.085 kg.=  Therefore, using the parameter values, the system state and input 
 matrices are

A B

0 1 0 0
0 0 1 0
0 0 0 1
0 0 100 0

and

0
0.1237

0
1.2621

.= −























=

−























Checking controllability yields the controllability matrix

P

0 0.1237 0 1.2621
0.1237 0 1.2621 0

0 1.2621 0 126.21
1.2621 0 126.21 0

.c =
− −

− −























Computing det P 196.49 0;c = ≠  hence, the system is completely controllable. 
Likewise, computing the observability matrix yields

P

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

o =
−

−























and det P 1 0;o = ≠  hence, the system is completely observable. We can now pro-
ceed with the three-step design procedure knowing that we can determine a control 
gain matrix K and observer gain matrix L to place all the closed-loop system poles 
at desired locations.

Step 1: Design the Full-State Feedback Control Law
The open-loop system poles are located at 0,  0, 10,λ = −  and 10, hence the open-
loop system is unstable (there is a pole in the right half-plane). Suppose that the 
desired closed-loop system characteristic equation is given by

λ λ ζω λ ω λ λ( )( )( ) = + + + +2 ,2 2 2q a bn n

where we choose (1) the pair n,  ζ ω( ) so that these poles are the dominant 
poles, and (2) the pair (a, b) farther in the left half-plane so as not to domi-
nate the response. To obtain a settling time less than 10 seconds with low over-
shoot, we can select n,   0.8,  0.5 .ζ ω( ) ( )=  Then, we choose a separation factor 
of 20 between the dominant poles and the remaining poles, from which it fol-
lows that a b,   16,  100 .( ) ( )=  Figure 11.9 shows the pole zero map for the system 
design. The separation factor between the dominant and nondominant poles is a 
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Section 11.5 Integrated Full-State Feedback and Observer 833

parameter that can be varied as part of the design process. The larger the sepa-
ration selected, the further left in the left half-plane the nondominant poles will 
be placed, and hence the larger the required control law gains. The desired roots 
are then specified to be

I A BKdet 8 6 0.4 0.3 .j jλ λ λ( ) ( )( )( )− − = + ± + ±

The poles at j0.4 0.3λ = − ±  are the dominant poles. Using Ackermann’s formula 
yields the feedback gain matrix

= − − − −



K 2.2509 7.5631 169.0265 14.0523 .

Step 2: Observer Design
The observer needs to provide an estimate of the states that cannot be directly 
observed. The goal is to achieve an accurate estimate as fast as possible without 
resulting in too large a gain matrix L. How large is too large depends on the 
problem under consideration. In particular, if there are significant levels of mea-
surement noise (this is sensor dependent), then the magnitude of the observer 
matrix should be kept correspondingly low to avoid amplifying the measurement 
noise. The trade-off between the time required to obtain accurate observer per-
formance and the amount of noise amplification is a primary design issue. For 
design purposes, we will attempt to insure a separation of the desired closed-
loop system poles and the observer poles on the order of 2 to 10 (as illustrated 
in Figure 11.9). The desired observer characteristic equation is selected to be of 
the form

p c c ,2
1 2

2
λ λ λ( )( ) = + +

-20 -15 -10 -5 0 5 10
-30

-20

-10

0

10

20

30

Re(l)

Im
(l

)

Observer poles

Open-loop system poles

Desired poles of the closed-loop systemFIGURE 11.9
System pole map: 
open-loop poles, 
desired closed-loop 
poles, and observer 
poles.

M11_DORF2374_14_GE_C11.indd   833M11_DORF2374_14_GE_C11.indd   833 31/08/21   7:56 AM31/08/21   7:56 AM



834 Chapter 11  The Design of State Variable Feedback Systems

where the constants c1 and c2  are appropriately chosen. As a first attempt, 
we select c 321 =  and c 711.11.2 =  These values should produce a response 
to an initial state estimation error that settles in less than 0.5 second with mini-
mal percent overshoot. Using Ackermann’s formula from Section 11.3, we de-
termine that the observer gain that achieves the desired observer pole locations 

λ λ λ( )( ) ( )( )( )− − = + + + −j jI A LCdet 16 21.3 16 21.3 2  is

L

64.0
2546.22

5.1911E04
7.6030E05

.=
−
−























Step 3: Compensator Design
The final step in the design is to connect the observer to the full-state feedback con-
trol law via Kx̂ .u t t( ) ( )= −  As proved earlier, the closed-loop system will remain 
stable; however, we should not expect the closed-loop performance to be as good 
when using the state estimate from the observer. This makes sense, since it takes 
a finite amount of time for the observer to provide accurate state estimates. The 
response of the inverted pendulum design is shown in Figure 11.10. The pendulum 
is initially stationary at t 5.72°,0θ( ) =  and the cart is initially not moving. The initial 
state estimate in the observer is set to zero.

In Figure 11.10(a), we see that, indeed, the pendulum is balanced to the ver-
tical in under 4 seconds. The response of the compensator (with the observer) is 
more oscillatory than without the observer in the loop—but this difference in per-
formance is expected, since it takes about 0.4 second for the observer to converge to 
a minimal state tracking error, as seen in Figure 11.10(b). ■

0 1 2 3 4 5 6
-6

-4

-2

0

2

4

6

8

Time (s)

Pe
nd

ul
um

 a
ng

le
 (

de
gr

ee
)

Using the estimated state in
the feedback law u(t) = -Kx(t)N

Using the full-state feedback
law u(t) = -Kx(t)

(a) (b)

0 0.2 0.4 0.6 0.8
-4

-2

0

2

4

6

Time (s)

Pe
nd

ul
um

 a
ng

le
 tr

ac
ki

ng
 e

rr
or

 (
de

gr
ee

)

FIGURE 11.10  (a) Pendulum performance under full-state feedback control with the observer in the loop, (b) Observer 
performance.
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Section 11.6 Reference Inputs 835

11.6 REFERENCE INPUTS

The feedback strategies discussed in the previous sections (and illustrated in 
Figure  11.1) were constructed without consideration of reference inputs. We re-
ferred to the design of state variable feedback compensators without reference in-
puts (i.e., r t 0( ) = ) as regulators. Since command following is also an important 
aspect of feedback design, it is important to consider how we can introduce a refer-
ence signal into the state variable feedback compensator. There are, in fact, many 
different techniques that can be employed to permit the tracking of a reference 
input. Two of the more common methods are discussed in this section.

The general form of the state variable feedback compensator is
� � �x Ax B L Mˆ ˆt t u t y t r t( ) ( ) ( ) ( ) ( )= + + +

 Kx̂ ,�u t u t Nr t t Nr t( ) ( ) ( ) ( ) ( )= + = − +  (11.24)

where Cx̂�y y t t( ) ( )= −  and Kx̂ .�u t t( ) ( )= −  The state variable compensator with 
the reference input is illustrated in Figure 11.11. Notice that when M 0=  and 
N 0,=  the compensator in Equation (11.24) reduces to the regulator described in 
Section 11.5 and illustrated in Figure 11.1.

The compensator key design parameters required to implement the command 
tracking of the reference input are M and N. When the reference input is a scalar 
signal (i.e., a single input), the parameter M is a column vector of length n, where n 
is the length of the state vector, ( )x t  and N is a scalar. Here, we consider two pos-
sibilities for selecting M and N. In the first case, we select M and N so that the esti-
mation error e t( ) is independent of the reference input r t( ). In the second case, we 
select M and N so that the tracking error y t r t( ) ( )−  is used as an input to the com-
pensator. These two cases will result in implementations wherein the compensator 
is in the feedback loop in the first case and in the forward loop in the second case.

Employing the generalized compensator in Equation (11.24), the estimation 
error is found to be described by the differential equation

� � � � �e x x Ax B Ax B L Mˆ ˆ ,t t t t u t t u t y t r t( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= − = + − − − −

x(t)u(t)
y(t)

System model

Control law

x = Ax + Buª C

C

Observer

-K

+

+

+

-

Nr(t)

y(t) = y(t) - Cx(t)N

+

x = Ax + Bu + Ly + MrN N

+ +ª
x(t)N

u(t)+

FIGURE 
11.11
State variable 
compensator 
with a reference 
input.
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836 Chapter 11  The Design of State Variable Feedback Systems

or

( ) ( ) ( ) ( ) ( )= − + −� Ne A LC e B M .t t r t

Suppose that we select

 M B .N=  (11.25)

Then the corresponding estimation error is given by

e A LC e .� t t( ) ( ) ( )= −

In this case, the estimation error is independent of the reference input r t( ). This is 
the identical result found in Section 11.4, where we considered the observer design 
assuming no reference inputs. The remaining task is to determine a suitable value 
of N, since the value of M follows from Equation (11.25). For example, we might 
choose N to obtain a zero steady-state tracking error to a step input r t( ).

With M B ,N=  we find that the compensator is given by
� �x Ax B Lˆ ˆt t u t y t( ) ( ) ( ) ( )= + +

 Kx̂ .u t t Nr t( ) ( ) ( )= − +

This implementation of the state variable compensator is illustrated in Figure 11.12.
As an alternative approach, suppose that we select N 0=  and M L.= −  Then, 

the compensator in Equation (11.24) is given by

� �x Ax B L Lˆ ˆt t u t y t r t( ) ( ) ( ) ( ) ( )= + + −

 Kx̂ ,  u t t( ) ( )= −

which can be rewritten as

�x A BK LC x Lˆ ˆt t y t r t( )( ) ( ) ( ) ( ) ( )= − − + −
 Kx̂ .u t t( ) ( )= −

In this formulation, the observer is driven by the tracking error y t r t .( ) ( )−  The ref-
erence input tracking implementation is illustrated in Figure 11.13.

Notice that in the first implementation (with M BN= ) the compensator is in 
the feedback loop, whereas in the second implementation (N 0=  and = −M L ) 

u(t)
y(t)

System Model

Control Law

Compensator

x = Ax + Bu
y = Cx
ª

Observer

x = (A - LC)x + Bu + LyªN N-K

+

+
Nr(t)

FIGURE 11.12
State variable 
compensator with 
reference input and 

.NM B=
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Section 11.7 Optimal Control Systems 837

the compensator is in the forward path. These two implementations are representa-
tive of the possibilities open to control system designers when considering reference 
inputs.

Depending on the choice of N and M, other implementations are possible. For 
example, Section 11.8 presents a method of tracking reference inputs with guaran-
teed steady-state tracking errors using internal model design techniques.

11.7 OPTIMAL CONTROL SYSTEMS

The design of optimal control systems is an important function of control engineer-
ing. The purpose of design is to realize a system with practical components that will 
provide the desired performance. The desired performance can be readily stated in 
terms of time-domain performance indices, such as the integral performance mea-
sures. The design of a system can be based on minimizing a performance index, such 
as the integral of the squared error (ISE). Systems that are adjusted to provide a 
minimum performance index are called optimal control systems. In this section, we 
consider the design of an optimal control system that is described by a state variable 
formulation.

The performance of a control system, written in terms of the state variables of 
a system, can be expressed as

 ,   ,   ,
0

J g t dtx u∫ ( )=
∞

 (11.26)

where tx( ) is the state vector, and tu( ) is the control vector. In this section, we 
consider the design of optimal control systems using state variable feedback and 
error-squared performance indices [1–3].

Consider the system

 t t tx Ax Bu� .( ) ( ) ( )= +  (11.27)

We will select a feedback controller as

 ( ) ( )= −Kx ,u t t  (11.28)

where K is an n1×  matrix.
Substituting Equation (11.28) into Equation (11.27) yields

 t t t tx Ax BKx Hx� ,( ) ( ) ( ) ( )= − =  (11.29)

where H is the n n×  matrix resulting from the addition of the elements of A and 
BK.−

u(t)
y(t)

System ModelControl Law

x = Ax + Bu
y = Cx
ª

Observer

Compensator

x = (A - BK - LC)x + L(y - r)ªN N -K
+

-
r(t)

FIGURE 11.13
State variable 
compensator 
with reference 
input and 0N =  
and M L= − .
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838 Chapter 11  The Design of State Variable Feedback Systems

The error-squared performance index for a single state variable, x t ,1( )  is written as

 .1
2

0
J x t dt∫ ( )=

∞
 (11.30)

A performance index written in terms of two state variables would then be

 .1
2

2
2

0
J x t x t dt∫ ( )( ) ( )= +

∞
 (11.31)

Since we wish to define the performance index in terms of an integral of the sum of 
the state variables squared, we will use the matrix operation

 t t x t x t x t x t

x t

x t

x t

T
n

n

x x …
�

, , ,

,

1 2 3

1

2( )( ) ( ) ( ) ( ) ( ) ( )

( )

( )

( )

=













 

 … ,1
2

2
2

3
2 2x t x t x t x tn( ) ( ) ( ) ( )= + + + +  (11.32)

where tTx ( ) indicates the transpose of tx( ).† Then the specific form of the perfor-
mance index, in terms of the state vector, is

 ∫ ( ) ( )=
∞

x xJ t t dtT .
0

 (11.33)

The general form of the performance index (Equation 11.26) incorporates a term 
with u t( ) that we have not included at this point, but we will do so later in this section.

To obtain the minimum value of J, we postulate the existence of an exact dif-
ferential so that

 ( )( ) ( ) ( ) ( )= −x Px x x
d
dt

t t t tT T  ,  (11.34)

where P is to be determined. A symmetric P matrix will be used to simplify the 
algebra without any loss of generality. Then, for a symmetric P matrix, p pij ji .=  
Completing the differentiation indicated on the left-hand side of Equation (11.34), 
we have

 � �( )( ) ( ) ( ) ( ) ( ) ( )= +x Px x Px x Px
d
dt

t t t t t tT T T  .  (11.35)

Substituting Equation (11.29) into Equation (11.35), we obtain

 ( ) ( )( ) ( ) ( ) ( )= +x H P PH
d
dt

t t t tT T TPx x x  .  (11.36)

If we let

 + = −H P PH I,T  (11.37)

†Matrix operations are discussed on the MCS website.
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Section 11.7 Optimal Control Systems 839

then Equation (11.36) becomes

 ( )( ) ( ) ( ) ( )= −x Px x x
d
dt

t t t tT T  ,  (11.38)

which is the exact differential we are seeking. Substituting Equation (11.38) into 
Equation (11.33), we obtain

 ∫ ( )( ) ( ) ( ) ( ) ( ) ( )= − = − =
∞ ∞

x x Px x PxJ
d
dt

t t dt t tT T TPx    0 0 .
0 0

 (11.39)

In the evaluation of the limit at t ,= ∞  we have assumed that the system is stable, 
and hence x 0,( )∞ =  as desired. Therefore, to minimize the performance index J, 
we consider the two equations

 ∫ ( ) ( ) ( ) ( )= =
∞

x x x PxJ t t dtT T 0 0
0

 (11.40)

and

 TH P PH+ = −I.  (11.41)

The design steps are then as follows:

1. Determine the matrix P that satisfies Equation (11.41), where H is known.

2. Minimize J by determining the minimum of Equation (11.40) by adjusting one or more 
unspecified system parameters.

EXAMPLE 11.11 State variable feedback

Consider the open-loop control system shown in Figure 11.14. The state variables 
are identified as x t1( ) and x t .2 ( )  The performance of this system is quite unsatisfac-
tory because an undamped response results for a step input. The vector differential 
equation of this system is

 
d
dt

x t

x t

x t

x t
u t  0 1

0 0
0
1

.
1

2

1

2

( )

( )

( )

( )
( )












=
























+











  (11.42)

We choose a feedback control system so that

 u t k x t k x t ,1 1 2 2( ) ( ) ( )= − −  (11.43)

X2(s)
U(s) Y(s)s

1
s
1 X1(s)

FIGURE 11.14
Open-loop 
 control system of 
Example 11.11.

M11_DORF2374_14_GE_C11.indd   839M11_DORF2374_14_GE_C11.indd   839 31/08/21   7:56 AM31/08/21   7:56 AM



840 Chapter 11  The Design of State Variable Feedback Systems

and therefore the control signal is a linear function of the two state variables. Then 
Equation (11.42) becomes

 x t x t ,  1 2( ) ( )=�

 x t k x t k x t .2 1 1 2 2( ) ( ) ( )= − −�  (11.44)

In matrix form, we have

 t t
k k

tx Hx x� 0 1
.

1 2
( ) ( ) ( )= =

− −

















 (11.45)

Let k 11 =  and determine a suitable value for k2 so that the performance index is 
minimized. From Equation (11.41), it follows that

 
−

−
































+

















−
− −

















= −
−













0 1
1

   
0 1
1

1 0
0 1

.
2

11 12

12 22

11 12

12 22 2k
p p

p p

p p

p p k
 (11.46)

Completing the matrix multiplication and addition yields

 p p 1,12 12− − = −
 p k p p 0,11 2 12 22− − =

 p k p p k p 1.12 2 22 12 2 22− + − = −  (11.47)

Solving these simultaneous equations, we obtain

1
2

,
1

,
2

2
.12 22

2
11

2
2

2
p p

k
p

k

k
= = =

+

The integral performance index is then

 ( ) ( )= x PxJ T 0 0 ,  (11.48)

and we will consider the case where each state is initially displaced one unit from 
equilibrium so that Tx 0 1,  1 .( ) ( )=  Therefore Equation (11.48) becomes

 J
p p

p p
p p p1 1   1

1
2 .11 12

12 22
11 12 22[ ]=



























 = + +  (11.49)

Substituting the values of the elements of P, we have

 
2

2
1

1 2 4

2
.2

2

2 2

2
2

2

2
J

k

k k

k k

k
=

+
+ + =

+ +
 (11.50)

To minimize as a function of k ,2  we take the derivative with respect to k2 and set it 
equal to zero yielding

 
dJ

dk

k k k k

k

( )( )

( )
=

+ − + +
=

2 2 2 2 2 4

2
0.

2

2 2 2
2

2

2
2  (11.51)
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Section 11.7 Optimal Control Systems 841

Therefore, k = 4,2
2  and k 22 =  when J is a minimum. The minimum value of J is 

obtained by substituting k 22 =  into Equation (11.50). Thus, we obtain

J 3.min =

The system matrix H, obtained for the compensated system, is then

 H 0 1
1 2

.=
− −











  (11.52)

The characteristic equation of the compensated system is therefore

 I Hdet det 1
1 2

2 1.2λ λ
λ

λ λ[ ]− = −
+













= + +  (11.53)

Because this is a second-order system, we note that the characteristic equation is 
of the form ζω ω+ + =2 0,2 2s sn n  and therefore the damping ratio of the compen-
sated system is 1.0.ζ =  This compensated system is considered to be an  optimal 
system in that the compensated system results in a minimum value for the per-
formance index when k 11 =  is fixed. Of course, we recognize that this system 
is optimal only for the specific set of initial conditions that were assumed. The 
compensated system is shown in Figure 11.15. A curve of the performance index 
as a function of k2 is shown in Figure 11.16. It is clear that this system is not very 
sensitive to changes in k2 and will maintain a near-minimum performance index 
if the k2 is altered by some percentage. We define the sensitivity of an optimal 
system as

 =
∆ /
∆ /

S
J J
k k

k ,opt
 (11.54)

4

3

2

1

0 1 2 3 4

k2

J

FIGURE 11.16
Performance index versus 
the parameter .2k

X2(s)

k2

k1

+

- -
R(s) = 0

U(s)
Y(s)s

1
s
1 X1(s)

FIGURE 11.15 Compensated control system of 
Example 11.11.
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842 Chapter 11  The Design of State Variable Feedback Systems

where k is the design parameter. Then, for this example, we have k k ,2=  and con-
sidering k 2.5,2 =  for which J 3.05,=  we obtain

 ≈ =
0.05/3
0.5/2

0.07.opt
2

Sk  (11.55) ■

EXAMPLE 11.12 Determination of an optimal system

Now let us consider again the system of Example 11.11, where both the feed-
back gains, k1  and k ,2  are unspecified. To simplify the algebra without any loss 
in insight into the problem, let us set k k k.1 2= =  We can prove that if k1  and 
k2 are unspecified, then k k1 2=  when the minimum of the performance index 
(Equation 11.40) is obtained. Then, for the system of Example 11.11, Equation 
(11.45) becomes

 t t
k k

tx Hx x� 0 1 .( ) ( ) ( )= =
− −











  (11.56)

To determine the P matrix, we use Equation (11.41), yielding

 p
k

p
k

k
p

k
k

1
2

,
1

2
, and

1 2
2

.12 22 2 11= =
+

=
+

 (11.57)

Let us consider the case where the system is initially displaced one unit from equi-
librium so that Tx 0 1 0 .( )( ) =  Then the performance index becomes

 ∫ ( ) ( ) ( ) ( )= = =
∞

x x x PxJ t t dt pT T 0 0 .11
0

 (11.58)

Thus, the performance index to be minimized is

 J p
k

k k
1 2

2
1

1
2

.11= =
+

= +  (11.59)

The minimum value of J is obtained when k approaches infinity; the result is 
J 1.min =  A plot of J versus k, shown in Figure 11.17, illustrates that the perfor-
mance index approaches a minimum asymptotically as k approaches an infinite 
value. Now, we recognize that, in providing a very large gain k, we can cause the 
feedback signal

u t k x t x t1 2( )( ) ( ) ( )= − +

to be very large. However, we are restricted to realizable magnitudes of the control 
signal u t( ). Therefore, we should introduce a constraint on u t( ) so that the gain k is 
not too large. Then, for example, if we establish a constraint on u t( ) so that

 u t 50,( ) ≤  (11.60)
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Section 11.7 Optimal Control Systems 843

we require that the maximum acceptable value of k in this case be

 
( )

( )
= =k

u t

x 0
50.max

max

1
 (11.61)

Then the minimum value of J is

 J
k

1
1

2
1.01,min

max
= + =  (11.62)

which is sufficiently close to the absolute minimum of J to satisfy our requirements.
Upon examining the performance index, we recognize that the reason the mag-

nitude of the control signal is not accounted for in the original calculations is that 
u t( ) is not included within the expression for the performance index. However, in 
many cases, we have physical limits on the control magnitude. To account for the 
control magnitude, we can consider the performance index

 ∫ λ( ) ( ) ( ) ( )= +
∞

x Ix u uJ t t t t dtT T( ) ,
0  

(11.63)

where λ is a scalar weighting factor and I identity=  matrix. The weighting factor λ 
will be chosen so that the relative importance of the state variable performance is 
contrasted with the importance of the control energy represented by t tTu u .( ) ( )  We 
represent the state variable feedback via

 u t tKx ,( ) ( )= −  (11.64)

and the system with this state variable feedback as

 t t u t tx Ax B Hx� .( ) ( ) ( ) ( )= + =  (11.65)

Substituting Equation (11.64) into Equation (11.63) yields

 ∫ ∫λ( )( ) ( ) ( ) ( )= + =
∞ ∞

x I K K x x QxJ t t dt t t dtT T T ,
0 0

 (11.66)

3

4

2

1

0
k

J

1 2 3 4 5

FIGURE 11.17
Performance index 
versus the feed-
back gain k for 
Example 11.12.
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844 Chapter 11  The Design of State Variable Feedback Systems

where TQ I K Kλ= +  is an n n×  matrix. Following the development of Equations 
(11.33) through (11.39), we postulate the existence of an exact differential so that

 ( )( ) ( ) ( ) ( )= −x Px x Qx
d
dt

t t t tT T  .  (11.67)

Then, in this case, we require that

 TH P PH Q,+ = −  (11.68)

and thus, as before, we have

 ( ) ( )= x PxJ T 0 0 .  (11.69)

If 0,λ =  Equation (11.68) reduces to Equation (11.41). Now, let us consider again 
Example 11.11 when λ is other than zero and account for the expenditure of control 
signal energy. ■

EXAMPLE 11.13 Optimal system with control energy considerations

Consider again the system of Example 11.11, which is shown in Figure 11.14. For 
this system, we use a state variable feedback so that

 u t t k k
x t

x t
Kx .

1

2
[ ]( ) ( )

( )

( )
= − = − −












 (11.70)

Therefore, the matrix

 
k k

k k
TQ I K K

1

1
.

2 2

2 2
λ

λ λ

λ λ
= + =

+

+

















 (11.71)

As in Example 11.12, we will let ( )( ) =xT 0 1, 0  so that J p .11=  We evaluate p11 
from Equation (11.68), yielding

 J p k
k

k1 1
1

2
.11

2 2λ λ( )= = + +






 −  (11.72)

The minimum of J is found by taking the derivative of J, setting the result to zero, 
and solving for k, yielding

 
dJ
dk k

1
2

 
1

0.
2

λ= −






 =  (11.73)

Therefore, the minimum of the performance index occurs when k k 1 ,min λ= =  
where kmin  is the solution of Equation (11.73).

Let us complete this example for the case where the control energy and the 
state variables squared are equally important, so that 1.λ =  Then Equation (11.73) 
is satisfied when k 1 0,2 − =  and we find that k 1.0.min =  The plot of J versus k for 
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Section 11.8 Internal Model Design 845

this case is shown in Figure 11.18. The plot of J versus k for Example 11.12 is also 
shown for comparison in Figure 11.18. ■

The design of several parameters can be accomplished in a manner similar to 
that illustrated in the examples. Also, the design procedure can be carried out for 
higher-order systems. Consider the single-input, single-output system with

t t u tx Ax B� ( ) ( ) ( )= +

and feedback

u t t k k k tnKx x .1 2[ ]( ) ( ) ( )= − = − …

We can consider the performance index

 ∫ ( ) ( ) ( )= +
∞

x QxJ t t Ru t dtT( ) ,2
0

 (11.74)

where R 0>  is a scalar weighting factor. This index is minimized when

 R TK B P.1= −  (11.75)

The n n×  matrix P is determined from the solution of the equation

 RT TA P PA PB B P Q 0.1+ − + =−  (11.76)

Equation (11.76) is often called the algebraic Riccati equation. This optimal control 
problem is called the linear quadratic regulator (LQR) [12, 19].

11.8 INTERNAL MODEL DESIGN

In this section, we consider the problem of designing a compensator that provides 
asymptotic tracking of a reference input with zero steady-state error. The refer-
ence inputs considered can include steps, ramps, and other persistent signals, such 
as sinusoids. For a step input, we know that zero steady-state tracking errors can 
be achieved with a type-one system. This idea is formalized here by introducing an 
internal model of the reference input in the compensator [5, 18].

0 0.5 1 1.5 2 2.5
1

2

3

4

5

6

7

k

J

l = 1

l = 0
FIGURE 11.18
Performance 
index versus the 
 feedback gain k for 
Example 11.13.
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846 Chapter 11  The Design of State Variable Feedback Systems

Consider a state variable model given by

 t t u t y t tx Ax B Cx� , .( ) ( ) ( ) ( ) ( )= + =  (11.77)

We consider a reference input to be generated by a linear system of the form

 t t r t tr r r r rx A x d x� , ,( ) ( ) ( ) ( )= =  (11.78)

with unknown initial conditions.
We begin by considering a familiar design problem, namely, the design of a 

controller to enable the tracking of a step reference input with zero steady-state 
error. In this case, the reference input is generated by

 x t r t x tr r0,( ) ( ) ( )= =�  (11.79)

or equivalently

 r t 0,( ) =�  (11.80)

and the tracking error e t( ) is defined as

e t y t r t .( ) ( ) ( )= −

Taking the time derivative yields

e t y t tCx� � � .( ) ( ) ( )= =

If we define the two intermediate variables

t t w t u tz x� �and ,( ) ( ) ( ) ( )= =

we have

 
e t

t

e t

t
w t

z
C
A z B

�

�
0
0

0 .
( )

( )

( )

( )
( )












=
























+











  (11.81)

If the system in Equation (11.81) is controllable, we can find a feedback of the form

 w t K e t tK z1 2( ) ( ) ( )= − −  (11.82)

such that Equation (11.81) is stable. This implies that the tracking error e is stable; 
thus, we will have achieved the objective of asymptotic tracking with zero steady-
state error. The control input, found by integrating Equation (11.82), is

∫ τ τ( ) ( ) ( )= − − .1 2
0

K xu t K e d t
t

The corresponding block diagram is shown in Figure 11.19. We see that the compensa-
tor includes an internal model (that is, an integrator) of the reference step input.

-

+

-

+

X(s)

Process

K1

K2

1
s

E(s) U(s)
Y(s)R(s) G(s)

Controller

FIGURE 11.19
Internal model 
design for a step 
input.
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Section 11.8 Internal Model Design 847

EXAMPLE 11.14 Internal model design for a unit step input

Consider a process given by

 t t u t y t tx x x� 0 1
2 2

0
1

, 1 0 .( ) ( ) ( ) ( ) ( )=
− −











 +











 = 



  (11.83)

We want to design a controller for this system to track a reference step input with 
zero steady-state error. From Equation (11.81), we have

 
e t

t

e t

t
w t

z z

�

�

0 1 0
0 0 1
0 2 2

0
0
1

.
( )

( )

( )

( )
( )












=

− −






























+



















 (11.84)

A check of controllability shows that the system described by Equation (11.84) is 
completely controllable. We use

K K20, 20 10 ,1 2 [ ]= =

in order to locate the roots of the characteristic equation of Equation (11.84) at 
s j1 ,   10.= − ± −  With w t( ) given in Equation (11.82), Equation (11.84) is as-
ymptotically stable. So, for any initial tracking error e(0) we are guaranteed that 
e t 0( ) →  as t .→ ∞  ■

Consider a block diagram where the process is represented by G s( ) and the 
cascade controller is ( ) = .1G s K sc  The internal model principle states that if 
G s G sc( ) ( ) contains R s( ), then y t( ) will track r t( ) asymptotically. In this case 
R s s1 ,( ) =  which is contained in G s G sc ,( ) ( )  as we expect.

Consider the problem of designing a controller to provide asymptotic tracking 
of a ramp input with zero steady-state error r t Mt t,   0,( ) = ≥  where M is the ramp 
magnitude. In this case, the reference input model is

t t tr r r rx A x x� 0 1
0 0

( ) ( ) ( )= =












 r t t tr r rd x x1 0 .( ) ( ) ( )= = 



  (11.85)

In input–output form, the reference model in Equation (11.85) is given by

r t 0.( ) =��

Proceeding as before, we take the time-derivative of the tracking error twice yielding

e t y t tCx�� �� �� .( ) ( ) ( )= =

With the definitions

t t w t u tz x�� ��, ,( ) ( ) ( ) ( )= =

we have

 
e
e

e
e w

z
C
A z B

�
��
�

�
0 1 0
0 0
0 0

0
0 .












=






























+



















 (11.86)
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848 Chapter 11  The Design of State Variable Feedback Systems

So if the system of Equation (11.86) is controllable, then we can compute the gains 
K K,   ,1 2  and K3  such that with

 w t K K

e t

e t

t

K

z

� ,1 2 3( )

( )

( )

( )

= −

















 (11.87)

the system represented by Equation (11.86) is asymptotically stable; hence, the 
tracking error e t 0( ) →  as t ,→ ∞  as desired. The control, u t( ), is found by integrat-
ing Equation (11.87) twice. In Figure 11.20, we see that the resulting controller has a 
double integrator, which is the internal model of the reference ramp input.

The internal model approach can be extended to other reference inputs by 
 following the same general procedure outlined for the step and ramp inputs. In 
 addition, the internal model design can be used to reject persistent disturbances by 
including models of the disturbances in the compensator.

11.9 DESIGN EXAMPLES

In this section we present a control system designed to manage the speed of the 
electric motor shaft of a diesel electric locomotive. The design process focuses on 
the design of a full-state feedback control system using pole-placement methods.

EXAMPLE 11.15 Diesel electric locomotive control

The diesel electric locomotive is depicted in Figure 11.21. The efficiency of the  diesel 
engine is very sensitive to the speed of rotation of the motors. We want to design a 
control system that drives the electric motors of a diesel electric locomotive for use on 
railroad trains. The locomotive is driven by DC motors located on each of the axles. 
The throttle position is set by moving the input potentiometers. The  elements of the 
design process emphasized in this example are highlighted in Figure 11.22.

The control objective is to regulate the shaft rotation speed toω ( ) to the desired 
value tr .ω ( )

Control Goal
Regulate the shaft rotation speed to the desired value in the presence of 
 external load torque disturbances.

The corresponding variable to be controlled is the shaft rotation speed to .ω ( )

- +

+

-

-

X(s)

ProcessK1

K3K2

1
s

E(s) U(s)
Y(s)R(s)

Controller

1
sFIGURE 11.20  

Internal model 
design for a ramp 
input. Note that 

( ) ( )G s G sc  contains 
1 s ,2  the reference 
input R s( ).
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J, b

vr

vr

Throttle

Amplifier

K

Field circuit

Armature circuit

L f

La Ra

Rf
if

ia

vf

Generator

Motor

Tachometer Load

v0vd = constant

Diesel
engine

v0 = Tachometer voltage

+

+

-

+

-

-

vg

FIGURE 11.21
Diesel electric 
 locomotive system.

See Figure 11.21 and 11.23.

Design specifications:
     DS1: Steady-state tracking
 error less than 2%.
     DS2: P.O. 6 10%
 DS3: Ts 6 1 s

Regulate the shaft rotation speed
to the desired value in the

presence of external load torque
disturbances.

See Equation (11.89).

See analysis with m-files.

Shaft rotation speed, vo(t).

See Equation (11.88).

Establish the system configuration

Obtain a model of the process, the
actuator, and the sensor

If the performance meets the specifications,
then finalize the design.

If the performance does not meet the
specifications, then iterate the configuration. 

Identify the variables to be controlled

Establish the control goals

Topics emphasized in this example

Write the specifications

Optimize the parameters and
analyze the performance

Describe a controller and select key
parameters to be adjusted

FIGURE 11.22
Elements of the 
control system 
design process 
emphasized in 
this diesel elec-
tric locomotive 
example.
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850 Chapter 11  The Design of State Variable Feedback Systems

Variable to Be Controlled
Shaft rotation speed to .ω ( )

The controlled speed toω ( ) is sensed by a tachometer, which supplies a feedback 
voltage to .υ ( )  The electronic amplifier amplifies the error signal, t tr o ,υ υ( ) ( )−  
 between the reference and feedback voltage signals and provides a voltage tfυ ( ) 
that is supplied to the field winding of a DC generator.

The generator is run at a constant speed dω  by the diesel engine and generates 
a voltage gυ  that is supplied to the armature of a DC motor. The motor is armature 
controlled, with a fixed current supplied to its field. As a result, the motor produces 
a torque T and drives the load connected to its shaft so that the controlled speed 

toω ( ) tends to equal the command speed tr .ω ( )
A block diagram and signal flow graph of the system are shown in Figure 11.23. 

In Figure 11.23 we use Lt  and Rt, which are defined as

= +L L Lt a g,

= +R R Rt a g.

Values for the parameters of the diesel electric locomotive are given in Table 11.1.

(a)

(b)

If Vg IaKg Km

Td

-1VfK

Kpot

-Kb

-Kt

-K3

-K2

vr

1
Lf s + Rf

1
Lts + Rt

1
Js + b

v0

If Vg

Ia

Kg

Td(s)

Vf
Kpotvr

1
Lf s + Rf

1
Lt s + Rt

v0K

K3

K2

Kb

Kt

Km
1

Js + b
- -

-+ +

-

-+

FIGURE 11.23 Signal flow graph of the diesel electric locomotive. (a) Signal flow graph. (b) Block diagram controller 
feedback loops are shown in green.
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Section 11.9 Design Examples 851

Notice that the system has a feedback loop; we use the tachometer voltage toυ ( ) 
as a feedback signal to form an error signal t tr o .υ υ( ) ( )−  Without additional state 
feedback, the only tuning parameter is the amplifier gain K. As a first step, we can 
investigate the system performance with tachometer voltage feedback only.

The key tuning parameters are given by

Select Key Tuning Parameters
K and K

The matrix K is the state feedback gain matrix. The design specifications are

Design Specifications
DS1 Steady-state tracking ess ≤ 2% to a unit step input.

DS2 Percent overshoot of toω ( ) of P.O. ≤ 10% to a unit step input sr 1 s.ω ( ) =
DS3 Settling time of Ts ≤ 1 s to a unit step input.

The first step in the development of the vector differential equation that accurately 
describes the system is to choose a set of state variables. In practice the selection of 
state variables can be a difficult process, especially for complex systems. The state 
variables must be sufficient in number to determine the future behavior of the sys-
tem when the present state and all future inputs are known. The selection of state 
variables is related to the issue of complexity.

The diesel electric locomotive system has three major components: two elec-
trical circuits and one mechanical system. It seems logical that the state vector will 
include state variables from both electrical circuits and from the mechanical sys-
tem. One reasonable choice of state variables is x t t x t i to a,   ,1 2ω( ) ( ) ( ) ( )= =  and 
x t i tf .3( ) ( )=  This state variable selection is not unique. With the state variables 
defined above, the state variable model is

 x t
b
J

x t
K

J
x t

J
T tm

d   
1

  ,1 1 2( ) ( ) ( ) ( )= − + −�

x t
K
L

x t
R
L

x t
K

L
x tb

t

t

t

g

t
      ,  2 1 2 3( ) ( ) ( ) ( )= − − +�

 x t
R

L
x t

L
u tf

f f
 

1
  ,  3 3( ) ( ) ( )= − +�

where

u t KK tr .potω( ) ( )=

In matrix form (with T td 0)( ) = , we have

t t u tx Ax B� ,  ( ) ( ) ( )= +
 y t t u tCx D ,  ( ) ( ) ( )= +  (11.88)

Table 11.1 Parameter Values for the Diesel Electric Locomotive

Km Kg Kb J b La Ra Rf Lf Kt Kpot Lg Rg

10 100 0.62 1 1 0.2 1 1 0.1 1 1 0.1 1
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852 Chapter 11  The Design of State Variable Feedback Systems

where

b
J

K
J

K
L

R
L

K

L

R

L
L

m

b

t

t

t

g

t

f

f
f

A B

0

0 0

,
0
0
1

,  and=

−

− −

−



































=





























[ ] [ ]= =1 0 0 , 0 .C D

The corresponding transfer function is

G s s
K K

R L s R L s Js b K K
g m

f f t t m b
C I A B .1

( )[ ]
( ) ( )

( )( )
= − =

+ + + +
−

Assume the tachometer feedback is available, that is, that Kt  is in the loop. If we 
take advantage of the fact that

K Kt 1,pot = =

then (from an input–output perspective) the system has the feedback configuration 
shown in Figure 11.24.

Using the parameter values given in Table 11.1 and computing the steady-state 
tracking error for a unit step input yields

e
KG K
1

1 0
1

1 121.95
.ss ( )

=
+

=
+

Using the Routh–Hurwitz method, we also find that the closed-loop system is 
 stable for

K0.008 0.0468.− < <

The smallest steady-state tracking error is achieved for the largest value of K. At 
best we can obtain a 15% tracking error, which does not meet the design specifi-
cation DS1. Also, as K gets larger, the response becomes unacceptably oscillatory.

We now consider a full state feedback controller design. The feedback loops 
are shown in Figure 11.23, which shows that t i ta,   ,0ω ( ) ( )  and i tf ( ) are available for 
feedback. Without any loss of generality, we set K 1.=  Any value of K 0>  would 
work as well.

G(s)
+

-
vr(s) vo(s)

Diesel electric
locomotive

K

Amplifier
gain

FIGURE 11.24
Block diagram 
representation of 
the diesel electric 
locomotive.
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Section 11.9 Design Examples 853

The control input is

u t K t K x t K x t K x tr t .pot 1 2 2 3 3ω( ) ( ) ( ) ( ) ( )= − − −

The feedback gains to be determined are K Kt ,   ,2  and K .3  The tachometer gain, Kt , is now 
a key parameter of the design process. Also Kpot is a key variable for tuning. By adjusting the 
parameter K ,pot  we have the freedom to scale the input tr .ω ( )  When we define

K K KtK ,2 3[ ]=

then

 u t t K trKx .potω( ) ( ) ( )= − +  (11.89)

The closed-loop system with state feedback is

t t tx A BK x B� ,υ( ) ( ) ( ) ( )= − +
 y t tCx ,  ( ) ( )=

where

t K tr .potυ ω( ) ( )=

We will use pole-placement methods to determine K such that the eigenvalues of 
A BK−  are in the desired locations. First we make sure the system is controllable. 
When n 3=  the controllability matrix is

.2
cP B AB A B= 





Computing the determinant of cP  yields

= −det  .
2

3 2
P

K K

JL L
c

g m

f t

Since Kg 0≠  and Km 0≠  and 3 2JL Lf t  is nonzero, we determine that

cPdet  0.≠

Thus the system is controllable. We can place all the poles of the system appropri-
ately to satisfy DS2 and DS3.

The desired region to place the eigenvalues of A BK−  is illustrated in 
Figure 11.25. The specific pole locations are selected to be

 p 50,  1 = −
p j4 3 ,  2 = − +

 p j4 3 .3 = − −

Selecting p 501 = −  allows for a good second-order response governed by p2  and 
p .3  The gain matrix K that achieves the desired closed-loop poles is

[ ]= −0.0041 0.0035 4.0333 .K

To select the gain K ,pot  we first compute the DC gain of the closed-loop transfer 
function. With the state feedback in place, the closed-loop transfer function is

T s sC I A BK B.1( ) ( )= − + −
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854 Chapter 11  The Design of State Variable Feedback Systems

Then

K
T

1
0

.pot ( )
=

Using the gain Kpot  in this manner effectively scales the closed-loop transfer func-
tion so that the DC gain is equal to 1. We then expect that a unit step input repre-
senting a 1°/s step command results in a 1°/s steady-state output at o.ω

The step response of the system is shown in Figure 11.26. We can see that all the 
design specifications are satisfied. ■

Desired region for pole
placement to meet the
design specifications.

Real axis

Image axis

s = -4

u = sin-1 (0.59)

zvn

DS2: P.O. 6 10% implies z 7 0.59
DS3: Ts 6 1 s implies zvn 7 4FIGURE 11.25

Desired location 
of the closed-loop 
poles (that is, the 
eigenvalues of 

K)−A B .

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

St
at

e 
va

ri
ab

le
s

if

v0

ia

FIGURE 11.26
Closed-loop step 
response of the 
diesel electric 
locomotive.
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Section 11.10 State Variable Design Using Control Design Software 855

11.10 STATE VARIABLE DESIGN USING CONTROL DESIGN SOFTWARE

Controllability and observability of a system in state variable feedback form can 
be checked using the functions ctrb and obsv, respectively. The inputs to the ctrb 
function, shown in Figure 11.27, are the system matrix A and the input matrix B; 
the output of ctrb is the controllability matrix cP . Similarly, the input to the obsv 
function, shown in Figure 11.27, is the system matrix A and the output matrix C; the 
output of obsv is the observability matrix oP .

Notice that the controllability matrix cP  is a function only of A and B, while the 
observability matrix oP  is a function only of A and C.

EXAMPLE 11.16 Satellite trajectory control

Let us consider a satellite in a circular, equatorial orbit at an altitude of 250 nautical 
miles above the Earth, as illustrated in Figure 11.28 [14, 24]. The satellite motion (in 
the orbit plane) is described by the normalized state variable model

 t t u t u tr tx x�

0 1 0 0

3 0 0 2
0 0 0 1

0 2 0 0

0
1
0
0

0
0
0
1

,
2ω ω

ω

( ) ( ) ( ) ( )=

−

























+























+























 (11.90)

where the state vector ( )x t  represents normalized perturbations from the circular, 
equatorial orbit; u tr ( ) is the input from a radial thruster; u tt ( ) is the input from a 
tangential thruster; and 0.0011 rad/sω =  (approximately one orbit of 90 minutes) is 
the orbital rate for the satellite at the specific altitude. In the absence of perturba-
tions, the satellite will remain in the nominal circular equatorial orbit. However, dis-
turbances such as aerodynamic drag can cause the satellite to deviate from its nominal 
path. The problem is to design a controller that commands the satellite thrusters in 

Controllability
matrix

x = Ax + Bu
y = Cx + Du
ª

Observability
matrix

x = Ax + Bu
y = Cx + Du
ª

FIGURE 11.27 The ctrb 
and obsv functions.

z

y

ut

ur

x

Circular, equatorial orbit

FIGURE 11.28 The satellite in an equatorial circular orbit.
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856 Chapter 11  The Design of State Variable Feedback Systems

such a manner that the actual orbit remains near the desired circular orbit. Before 
commencing with the design, we check controllability. In this case, we investigate 
controllability using the radial and tangential thrusters independently.

Suppose the tangential thruster fails (i.e., u tt 0)( ) = , and only the radial thruster 
is operational. Is the satellite controllable from u tr ( ) only? We answer this question 
by using an m-file script to determine the controllability. Using the script shown in 
Figure 11.29, we find that the determinant cP  is zero; thus, the satellite is not com-
pletely controllable when the tangential thruster fails.

Suppose now that the radial thruster fails (i.e., u tr 0)( ) =  and that the tangen-
tial thruster is functioning properly. Is the satellite controllable from ut  only? Using 
the script in Figure 11.30, we find that the satellite is completely controllable using 
the tangential thruster only. ■

We conclude this section with a controller design for a third-order system using 
state variable models. The design approach utilizes root locus methods and incorpo-
rates m-file scripts to assist in the procedure.

EXAMPLE 11.17 Third-order system

Consider a system with the state-space representation

 t t u tx Ax B� ,( ) ( ) ( )= +  (11.91)

where

0 1 0
0 1 1
0 0 5

and
0
0 .
K

A B= −
−



















=



















(a)

(b)

Execute m-file script radial.m

radial.m output

Input matrix associated with radial thruster

Compute controllability matrix

n = determinant of controllability matrix

FIGURE 11.29
Controllability with 
radial thrusters 
only: (a) m-file 
script, (b) output.
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Section 11.10 State Variable Design Using Control Design Software 857

Our design specifications are a step response with (1) a settling time (with a 2% 
criterion) of Ts … 2 s and (2) a percent overshoot of P.O. … 4%. We assume that the 
state variables are available for feedback, so that the control is given by

 u t K K K t r t t r tx Kx .1 2 3( ) ( ) ( ) ( ) ( )= −



 + = − +  (11.92)

We must select the gains K, K1, K2, and K3 to meet the performance specifications. 
Using the design approximations

T P O es
n

4
2 and . . 100 4,/ 1 2

ζω
= < = <ζπ ζ− −

we find that

n0.72 and 2.8.ζ ω> >

This defines a region in the complex plane in which our dominant roots must 
lie, so that we expect to meet the design specifications, as shown in Figure 11.31. 
Substituting Equation (11.92) into Equation (11.91) yields

t
KK KK KK

t
K

r t t r tx x Hx B�
0 1 0
0 1 1

5

0
0 ,

1 2 3

( )
( )

( ) ( ) ( ) ( )= −
− − − +





















+



















= +  

(11.93)

(a)

(b)

Compute controllability matrix

n = determinant of controllability matrix

Execute MATLAB script tangent.m

Tangent.m output

Input matrix associated with tangential thruster

FIGURE 11.30
Controllability with 
tangential  thrusters 
only: (a) m-file 
script, (b) output.
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858 Chapter 11  The Design of State Variable Feedback Systems

where H A BK.= −  The characteristic equation associated with Equation (11.93) 
can be obtained by evaluating sI Hdet 0,( )− =  resulting in

 s s s KK s
K K

K
s

K
K

1 5   0.3
2 3 2

3

1

3
( )( )+ + + +

+
+









 =  (11.94)

If we view KK3 as a parameter and let K 1,1 =  then we can write Equation (11.94) as

KK
s

K K
K

s
K

s s s
1  

1

1 5
0.3

2 3 2

3 3

( )( )
+

+
+

+

+ +
=

We place the zeros at s j4 2= − ±  in order to pull the locus to the left in the s-plane. 
Thus, our desired numerator polynomial is s s8 20.2 + +  Comparing corresponding 
coefficients leads to

K K
K K

8 and
1

20.3 2

3 3

+
= =

(b)

(a)

-10 -8 -6 -4 -2 0

Real Axis

Im
ag

. A
xi

s

Hold plot to add
stability regions

-10

-8

-6

-4

-2

0

2

4

6

8

10

-zvn

vn

Valid region to meet
performance specifications
vn = 2.8 z = 0.72 

KK3 = 12

FIGURE 11.31
(a) Root locus. 
(b) m-file script.
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Section 11.10 State Variable Design Using Control Design Software 859

Therefore, K 0.352 =  and K 0.05.3 =  We can now plot a root locus with KK3 as the 
parameter, as shown in Figure 11.31.

The characteristic equation, Equation (11.94), is

KK
s s

s s s
1

8 20
1 5

0.3

2

( )( )
+

+ +
+ +

=

The roots for the selected gain, KK 12,3 =  lie in the performance region, as shown 
in Figure 11.31. The rlocfind function is used to determine the value of KK3 at 
the selected point. The final gains are K K K240.00,    1.00,    0.35,1 2= = =  and 
K 0.05.3 =  The controller design results in a settling time of about 1.8 seconds and 
an overshoot of 3%, as shown in Figure 11.32. ■

In Section 11.4, we discussed Ackermann’s formula to place the poles of the 
system at desired locations. The function acker calculates the gain matrix K to place 
the closed-loop poles at the desired locations. The acker function is illustrated in 
Figure 11.33.

EXAMPLE 11.18 Second-order system design using the acker function

Consider again the second-order system in Example 11.7. The system model is

t t u tx x� 0 1
0 0

0
1

.( ) ( ) ( )=










 +













1 2 30.5 2.5

0.8

0.6

1.2

1.0

0.4

0.2

0 1.5

Time (s)

y(
t)

FIGURE 11.32
Step response.

Feedback gain matrix K.
Vector containing desired

closed-loop poles.
x = Ax + Buª

FIGURE 11.33
The acker function.
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860 Chapter 11  The Design of State Variable Feedback Systems

The desired closed-loop pole locations are s j1 .1,2 = − ±  To apply Ackermann’s 
formula using the acker function, form the vector

j

j
P

1

1
=

− +

− −

















Then, with

A B0 1
0 0

and 0
1

,=










 =













the acker function, illustrated in Figure 11.34, determines that the gain matrix that 
achieves the desired pole locations is

K 2 2 .= 





This confirms the result in Example 11.7.

11.11 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

In this chapter, we will design a state variable feedback system that will achieve the 
desired system response. The specifications for the system are given in Table 11.2. 
The second-order open-loop model is shown in Figure 11.35. We will design the 
system for this second-order model and then test the system response for both the 
second-order and third-order models.

First, we select the two state variables as x t y t1( ) ( )=  and ( ) ( ) ( )= =x t dy t dt dx t dt,2 1
( ) ( ) ( )= =x t dy t dt dx t dt,2 1  as shown in Figure 11.36. It is practical to measure these variables as the 

position and velocity of the reader head. We then add the state variable feedback, 
as shown in Figure 11.36. We choose K 1,1 =  since our goal is for y t( ) to closely and 
accurately follow the command r t( ). The state variable differential equation for the 
open-loop system is

� ( ) ( ) ( )=
−











 +

















x xt t
K

r t
a

0 1
0 20

0
5

.

The closed-loop state variable differential equation obtained from Figure 11.36 is

� ( )
( )

( ) ( )=
− − +

















+
















x xt
K K K K

t
K

r t
a a a

0 1
5 20 5

0
5

.
1 2

The feedback
gain matrix.

FIGURE 11.34
Using acker to 
compute K to 
place the poles at 

[ ]= − + − −j j TP 1 1 .
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Amplifier

Ka

Motor gain

s
1 X1(s)X2(s)

R(s)
+

5
- -

+ + +

-

20

Y(s)

Td(s)

K2

s
1

FIGURE 11.36
Closed-loop 
 system with feed-
back of the two 
state variables.

+ +

+
R(s)

Y(s)
Position
of head

1
s

1
s + 20

Amplifier

Ka

Motor gain

G1(s) = 5

Td(s)

FIGURE 11.35
Open-loop model 
of head control 
system.

Table 11.2  Disk Drive Control System Specifications and Actual 
Performance

Performance 
Measure

Desired 
Value

Response for  
Second-Order  
Model

Response for  
Third-Order  
Model

Percent overshoot 5%< 1%< 0%

Settling time 50 ms< 34.3 ms 34.2 ms

Maximum response for a 
 unit step disturbance

5 10 3< × − 5.2 10 5× − 5.2 10 5× −

The characteristic equation of the closed-loop system is

( )+ + + =s K K s Ka a20 5 5 0,2
2

since K 1.1 =  In order to achieve the specifications, we select 0.90ζ =  and 
n 125.ζω =  Then the desired closed-loop characteristic equation is

2 250 19290 0.2 2 2s s s sn nζω ω+ + = + + =

Therefore, we require that =Ka5 19290 or =Ka 3858. Furthermore, we require that

+ =K Ka20 5 250,2

or K 0.012.2 =
The system with the second-order model has the desired response and meets all 

the specifications, as shown in Table 11.2. If we add the field inductance L 1 mH,=  
we have a third-order model with

G s
s

5000
1000

.1( ) =
+
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862 Chapter 11  The Design of State Variable Feedback Systems

Using this model, which incorporates the field inductance, we test the response of 
the system with the feedback gains selected for the second-order model. The results are 
provided in Table 11.2, illustrating that the second-order model is a very good model of 
the system. The actual results of the third-order system meet the specifications.

11.12 SUMMARY

In this chapter, the design of control systems in the time domain was examined. 
The three-step design procedure for constructing state variable compensators was 
presented. The optimal design of a system using state variable feedback and an inte-
gral performance index was considered. Also, the s-plane design of systems utilizing 
state variable feedback was examined. Finally, internal model design was discussed.

SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or False, 
Multiple Choice, and Word Match. To obtain direct feedback, check your answers with 
the answer key provided at the conclusion of the end-of-chapter problems. Use the block 
 diagram in Figure 11.37 as specified in the various problem statements.

K

Cx = Ax + Buª
u(t) x(t)+

-
r(t) y(t)

FIGURE 11.37 Block diagram for the Skills Check.

In the following True or False and Multiple Choice problems, circle the correct answer.

1. A system is said to be controllable on the interval t t f,  0



  if there 

exists a continuous input u t( ) such that any initial state ( )x t0  can be 
transformed to any arbitrary state ( )x t f  in a finite interval t tf  0.0− >  True or False

2. The poles of a system can be arbitrarily assigned through full-state 
feedback if and only if the system is completely controllable and 
observable. True or False

3. The problem of designing a compensator that provides asymptotic 
tracking of a reference input with zero steady-state error is called 
state-variable feedback. True or False

4. Optimal control systems are systems whose parameters are adjusted 
so that the performance index reaches an extremum value. True or False

5. Ackerman’s formula is used to check observability of a system. True or False

6. Consider the system

t t u tx x� 0 1
0 4

0
2

( ) ( ) ( )=
−











 +













( ) ( )= 



0 2 .xy t t
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The system is:
a. Controllable, observable
b. Not controllable, not observable
c. Controllable, not observable
d. Not controllable, observable

7. Consider the system

G s
s s s s

10
2 2 5

.
2 2( )

( )
( )

=
+ + +

This system is:
a. Controllable, observable
b. Not controllable, not observable
c. Controllable, not observable
d. Not controllable, observable

8. A system has the state variable representation

t t u tx x� 
1 0 0

0 3 0
0 0 5

1
1
1

( ) ( ) ( )=
−

−
−



















+



















 ( ) ( )= −



1 2 1 .xy t t

Determine the associated transfer function model G s
Y s
U s

( )
( )
( )

= .

a. G s
s s

s s s
5 32 35

9 23 15

2

3 2( ) =
+ +

+ + +

b. G s
s s

s s s
5 32 35

9 23 15

2

4 3( ) =
+ +

+ + +

c. G s
s s

s s s
2 16 22

9 23 15

2

3 2( ) =
+ +

+ + +

d. G s
s

s s
5 32

32 92( ) =
+

+ +

9. Consider the closed-loop system in Figure 11.37, where

=
− − −

















=



















= −





12 10 5
1 0 0
0 1 0

,
1
0
0

, 3 5 5 .A B C

Determine the state-variable feedback control gain matrix K so that the closed-loop 
 system poles are s 3,   4,= − −  and 6− .
a. K 1 44 67= 





b. K 10 44 67= 





c. K 44 1 1= 





d. K 1 67 44= 





10. Consider the system depicted in the block diagram in Figure 11.38.

This system is:
a. Controllable, observable
b. Not controllable, not observable
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864 Chapter 11  The Design of State Variable Feedback Systems

-

+

+

+

R(s) Y(s)
X2(s)

X1(s)
5

1
s + 3

1
s

FIGURE 11.38 Two-loop feedback control system.

11. A system has the transfer function

T s
s a

s s s s6 12 12 6
.

4 3 2( ) =
+

+ + + +

Determine the values of a that render the system unobservable.
a. a 1.30=  or = −a 1.44
b. a 3.30=  or =a 1.44
c. a 3.30= −  or = −a 1.44
d. a 5.7= −  or a 2.04= −

12. Consider the closed-loop system in Figure 11.37, where

= − −









 =











 = 





7 10
1 0

, 1
0

, 0 1 .A B C

Determine the state variable feedback control gain matrix K  for a zero steady-state 
tracking error to a step input.

a. K 3 9= −





b. K 3 6= −





c. K 3 2= −





d. K 1 4= −





13. Consider the system where

= −









 =











 = 





3 0
1 0

, 1
0

, 0 1 .A B C

It is desired to place the observer poles at = − ±3 31,2s j . Determine the appropriate 
state-variable feedback control gain matrix L.

a. L 9
3

= −











b. L 9
3

=












c. L 3
9

=












d. None of the above

c. Controllable, not observable
d. Not controllable, observable
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Skills Check 865

14. A feedback system has a state-space representation

t t u tx x� 75 0
1 0

1
0

( ) ( ) ( )= −









 +













y t tx0 3600 ,( ) ( )= 





where the feedback is u t r tKx( ) ( )= − + . The control system design specifications are: 
(i) the overshoot to a step input approximately P O. . 6%≈ , and (ii) the settling time 
Ts 0.1≈  s. A state variable feedback gain matrix which satisfies the specifications is:
a. K 10 200= 





b. K 6 3600= 





c. K 3600 10= 





d. K 100 40= 





15. Consider the system

Y s G s U s
s

U s
1

.
2( ) ( ) ( ) ( )= =













Determine the eigenvalues of the closed-loop system when utilizing state variable feed-
back, where u t x t x t r t2 22 1( ) ( ) ( ) ( )= − − + . We define ( ) ( ) ( ) ( )= =x t y t x t x t�, ,1 2 1  and 
r t( ) is a reference input.
a. s j s j1 1 1 11 2= − + = − −
b. s j s j2 2 2 21 2= − + = − −
c. s j s j1 2 1 21 2= − + = − −
d. s s1 11 2= − = −

In the following Word Match problems, match the term with the definition by writing the 
correct letter in the space provided.

a.  Stabilizing controller Occurs when the control signal for the process is a 
 direct function of all the state variables.

b.  Controllability 
matrix

A system in which any initial state x(t0) is uniquely 
 determined by observing the output y(t) on the  
interval [t0, tf].

c.  Stabilizable A system in which there exists a continuous input 
u(t) such that any initial state x(t0) can be driven to any 
arbitrary trial state x(tf) in a finite time  interval  
tf − t0 > 0.

d.  Command following A system whose parameters are adjusted so that the 
 performance index reaches an extremum value.

e.  State variable 
feedback

An important aspect of control system design 
wherein a nonzero reference input is tracked.

f.  Full-state  feedback 
control law

A linear system is (completely) controllable if and  
only if this matrix has full rank.

g. Observer A system in which the states that are unobservable 
are naturally stable.

h.  Linear quadratic 
regulator

The difference between the actual state and the 
 estimated state.

i.  Optimal control 
system

A control law of the form u(t) = −Kx (t) where x(t) 
is the state of the system assumed known at all times.
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866 Chapter 11  The Design of State Variable Feedback Systems

j. Detectable A partition of the state space that illuminates the states 
that are controllable and unobservable,  uncontrollable 
and unobservable, controllable and observable, and 
 uncontrollable and observable.

k.  Controllable system An optimal controller designed to minimize a 
 quadratic performance index.

l. Pole placement A linear system is (completely) observable if and only 
if this matrix has full rank.

m. Estimation error A dynamic system used to estimate the state of another 
dynamic system given knowledge of the system inputs 
and measurements of the system outputs.

n.  Kalman state-space 
decomposition

A design methodology wherein the objective is to  
place the eigenvalues of the closed-loop system in 
 desired regions of the complex plane.

o.  Observable system The principle that states that the full-state feedback 
law and the observer can be designed independently 
and when connected will function as an integrated 
 control system in the desired manner (that is, stable).

p.  Separation principle A system in which the states that are not controllable 
are naturally stable.

q.  Observability matrix A controller that stabilizes the closed-loop system.

E11.1 The ability to balance actively is a key ingredient 
in the mobility of a device that hops and runs on one 
springy leg, as shown in Figure E11.1 [8]. The control 
of the attitude of the device uses a gyroscope and a 
feedback such that u t tKx ,( ) ( )=  where

k
k

= −
−











K 0

0 3
,

and

t t u tx Ax B� ( ) ( ) ( )= + ,

where
0 1
2 0

and .=
−











 =A B I

Determine a value for k so that the response of each 
hop is critically damped.

E11.2 A magnetically suspended steel ball can be de-
scribed by the linear equation

( ) ( ) ( )

( ) ( )

=










 +













= 





� 0 1
9 0

0
1

,

1 0 .

x x

x

t t u t

y t t

EXERCISES

Compass

Two-axis
gyroscope

Air
valves

Gimbal

Servovalve

Hydraulic actuator
and position/velocity

sensors

Leg

Foot switch

FIGURE E11.1 Single-leg control.
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Exercises 867

The state variables are x t position1( ) =  and x t   velocity.2 ( ) =
x t   velocity.2 ( ) =  Select a feedback so that the settling time 

(with a 2% criterion) is Ts 4=  s and P.O. ≤ 10% to a 
unit step input. Choose the feedback in the form

u t k x t k x t r t1 1 2 2( ) ( ) ( ) ( )= − − +

where r t( ) is the reference input and the gains k1  and 
k2  are to be determined.

E11.3 A system is described by the matrix equations

0 1
4 0

2
0

x x( ) ( ) ( )= −
−











 +











t t u t�

y t t( ) ( )= 



 x0 1 .

Determine whether the system is controllable and 
observable.
Answer: controllable and observable

E11.4 A system is described by the matrix equations

t t u t( ) ( ) ( )=










 +











x x2 0

0 1
0
1

�

x( ) ( )= 



y t t0 1 .

Determine whether the system is controllable and 
observable.

E11.5 A system is described by the matrix equations

0 1

1 2
2
1

x x( ) ( ) ( )=
− −

















+ −









t t u t�

x( ) ( )= 



y t t0 1 .

Determine whether the system is controllable and 
observable.

E11.6 A system is described by the matrix equations

4 5
0 7

1
0

x x( ) ( ) ( )=
−











 +











t t u t�

x( ) ( )= 



y t t0 1 .

Determine whether the system is controllable and 
observable.
Answer: uncontrollable and unobservable

E11.7 Consider the system represented in state variable 
form

t t u tx Ax B� ( ) ( ) ( )= +

y t t u tCx D ,  ( ) ( ) ( )= +

where
5 8
1 0

, 2
0

,A B= − −









 =













[ ]= −



 =C D1 3 , and 0 .

Sketch a block diagram model of the system.

E11.8 Consider the third-order system

0 0 1
1 0 0
7 1 2

4
1
9

x x( ) ( ) ( )=
− − −



















+ −



















t t u t�

 y t t( ) ( )= 



 x12 4 3 .

Sketch a block diagram model of the system.

E11.9 Consider the second-order system

x x( ) ( ) ( )=
−

−

















+
















t t
k

k
u t

1 3

4 1
1

2
�

 y t t u tx1 0 0 .( ) ( ) [ ] ( )= 



 +

For what values of k1  and k2  is the system completely 
controllable?

E11.10 Consider the block diagram model in Figure E11.10. 
Write the corresponding state variable model in the 
form

t t u tx Ax B� ( ) ( ) ( )= +

y t t u tCx D .( ) ( ) ( )= +

Y(s)
+

+
U(s) 4

6

–6

1

15

9

+
1
s

1
s

1
s

- -
-

+

FIGURE E11.10
State variable block 
diagram.
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868 Chapter 11  The Design of State Variable Feedback Systems

E11.11 Consider the system shown in block diagram form 
in Figure E11.11. Obtain a state variable representa-
tion of the system. Determine if the system is control-
lable and observable.

E11.12 Consider a single-input, single-output system that 
is described by

t t u tx Ax B� ( ) ( ) ( )= +

,y t tCx( ) ( )=

where

=
− −

















=










 = 



A B C

0 1

8 6
, 0

2
, 1 0 .

Compute the corresponding transfer function repre-
sentation of the system. If the initial conditions are 
zero (i.e., x 0 01( ) =  and x 0 02 ( ) = ), determine the 
response when u t( ) is a unit step input for t 0.≥

Y(s)

5

2

6

8

s
1

s
1

U(s)
s
1

- -

+ +
+

+

+

FIGURE E11.11
State variable block 
diagram with a 
feedforward term.

P11.1 A first-order system is represented by the time-do-
main differential equation

.�x t x t u t( ) ( ) ( )= +

A feedback controller is to be designed such that

u t kx t( ) ( )= −2 ,

and the desired equilibrium condition is x t 0( ) =  as 
t .→ ∞  The performance integral is defined as

∫=
∞

J x dt,2
0

and the initial value of the state variable is x( ) =0 3.  
Obtain the value of k in order to make J a minimum. 
Is this k physically realizable? Select a practical value 
for the gain k, and evaluate the performance index 
with that gain. Is the system stable without the feed-
back due to u t( )?

P11.2 To account for the expenditure of energy and re-
sources, the control signal is often included in the per-
formance integral. Then the operation will not involve 
an unlimited control signal u(t). One suitable perfor-
mance index, which includes the effect of the magni-
tude of the control signal, is

J x t u t dt.2 2
0∫ λ( )( ) ( )= +
∞

a. Repeat Problem P11.1 for the performance index.
b. If λ = 0.5, obtain the value of k that minimizes 

the performance index. Calculate the resulting 
minimum value of J.

P11.3 An unstable robot system is described by the vec-
tor differential equation [9]

t t u t( ) ( ) ( )=










 +











x x1 0

0 0
0
1

,�

where x ( )( ) ( ) ( )= =t x t x t T .1 2   Both state variables are 
measurable, and so the control signal is set as u t k x t x t .1 2( )( ) ( ) ( )= − +

u t k x t x t .1 2( )( ) ( ) ( )= − +  Design the gain k so that the perfor-
mance index

∫ ( ) ( )=
∞

x xJ t t dtT
0

is minimized. Evaluate the minimum value of the 
performance index. Determine the sensitivity of the 
performance to a change in k. Assume that the initial 
conditions are

( ) =










x 0 0
1

.

Is the system stable without the feedback signals due 
to u t( )?

PROBLEMS
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Problems 869

P11.4 Consider the system
x A BK x Hx( ) [ ] ( ) ( )= − =t t t ,�

where 
k k

H 0 1=
− −











 . Determine the feedback gain 

k that minimizes the performance index

∫ ( ) ( )=
∞

x xJ t t dtT
0

when T( ) = −



x 0 2, 1 .  Plot the performance 

index J versus the gain k.

P11.5 Consider the system described by

x A B( ) ( ) ( )= +t t u tx ,�

where t x t x t Tx ,   ,1 2( )( ) ( ) ( )=  

0 1
0 0

and  0
1

.A B=










 =











  

The state feedback of the system is u t k x t k x t( ) ( ) ( )= − − ,1 1 2 2 
u t k x t k x t( ) ( ) ( )= − − ,1 1 2 2  where 3 and , 0.1 2k k k k k= = >  Given 

the initial condition ( )( ) = Tx 0 0, 1 , and determine the 
gain k to minimize the performance index

x x∫ ( )( ) ( ) ( ) ( )= +
∞

J t t u t u t dtT T .
0

Plot the function J(k).

P11.6 For the solutions of Problems P11.3, P11.4, and 
P11.5, determine the roots of the closed-loop optimal 
control system. Note that the resulting closed-loop 
roots depend on the performance index selected.

P11.7 A system has the vector differential equation

� t t u tx Ax B( ) ( ) ( )= +

where
0 1
0 0

and  0
1

.A B=










 =













We want both state variables to be used in the feedback so 
that ( ) ( ) ( )= − +u t k x t k x t .1 1 2 2  Also, we desire to have 
a natural frequency nω  = 3. Find a set of gains k1  and k2  
in order to achieve an optimal system when J is given by

x x∫ ( ) ( ) ( ) ( )= +
∞

J t t u t u t dtT T .
0

Assume ( ) = 



xT 0 1, 0 .

P11.8 For the system of P11.7, determine the optimum 
value for k2  when k = 0.251 , and ( ) = 



xT 0 1, 0 .

P11.9 An interesting mechanical system with a challeng-
ing control problem is the ball and beam, shown in 
Figure P11.9(a) [10]. It consists of a rigid beam that is 
free to rotate in the plane of the paper around a center 
pivot, with a solid ball rolling along a groove in the 
top of the beam. The control problem is to position 
the ball at a desired point on the beam using a torque 
applied to the beam as a control input at the pivot.
 A linear model of the system with a measured 
value of the angle tφ( ) and its angular velocity 
φ ω( )= t  is available. Select a feedback scheme so that 
the response of the closed-loop system has a percent 
overshoot of P O =. . 5%  and a settling time (with a 
2% criterion) of Ts = 1.5 s  for a step input.

P11.10 The dynamics of a rocket are represented by

t t u tx x0 0
1 0

1
0

� ( ) ( ) ( )=










 +













 y t tx0 1[ ]( ) ( )= ,

and state variable feedback is used, where 
u t x t x t r t( ) ( ) ( ) ( )= − − +  7 12 .1 2  Determine the 
roots of the characteristic equation of this system and 
the response of the system when the initial conditions 
are x 0 11( ) =  and x 0 1.2 ( ) = −  Assume the reference 
input r t 0.( ) =

+

Ball

Beam

Pivot

(a)

(b)

Control
input

Inputs to
be selected

Torque
K f(s)

1

s2

f(t)

Motor and amplifier

FIGURE P11.9
(a) Ball and beam. 
(b) Model of the ball 
and beam.
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870 Chapter 11  The Design of State Variable Feedback Systems

P11.15 A telerobot system has the matrix equations [16]

x x( ) ( ) ( )=

−

−

−





















+



















t t u t

5 1 0

0 1 1

0 0 6

1
1
0

�

y t t[ ]( ) ( )= x3 1 0 .

(a) Determine the transfer function, G s Y s U s .( ) ( ) ( )=
G s Y s U s .( ) ( ) ( )=  (b) Draw the block diagram indicating the state 

variables. (c) Determine whether the system is control-
lable. (d) Determine whether the system is observable.

P11.16 Hydraulic power actuators were used to drive 
the dinosaurs of the movie Jurassic Park [20]. The 
motions of the large monsters required high-power 
actuators requiring 1200 watts.
 One specific limb motion has dynamics repre-
sented by

t t u t( ) ( ) ( )=
−

−

















+










x x

3 0

1 1
1
0

�

 x[ ]( ) ( ) [ ] ( )= +y t t u t1 0 0 .

We want to place the closed-loop poles at s j= − ±5 . 
Determine the required state variable feedback 
using Ackermann’s formula. Assume that the com-
plete state vector is available for feedback.

P11.17 A system has a transfer function

12 48 72 52
.

2

4 3 2
Y s
R s

s as b
s s s s

( )
( )

=
+ +

+ + + +

Determine real values of a and b so that the system is 
either uncontrollable or unobservable.

P11.18 A system has a plant
Y s

U s
G s

s

( )
( )

( )
( )

= =
+

1

2
.2

(a) Find the matrix differential equation to represent 
this system. Identify the state variables on a block dia-
gram model. (b) Select a state variable feedback struc-
ture using u t( ), and select the feedback gains so that the  
response y t( ) of the unforced system is critically damped 
when the initial condition is x 0 11( ) =  and x 0 0,2 ( ) =  
where x y t .1 ( )=  The repeated roots are at s = −3.

P11.19 The block diagram of a system is shown in Figure 
P11.19. Determine whether the system is controllable 
and observable.

P11.20 Consider the automatic ship-steering system. The 
state variable form of the system differential equation is

t t t�x x

0.06 5 0 0

0.01 0.2 0 0

1 0 0 10

0 1 0 0

0.1
0.05
0
0

,δ( ) ( ) ( )=

− −

− −



























+

−





















y(t) = [0   0   10   0] x(t)

P11.11 The state variable model of a plant to be con-
trolled is

7 1
4 0

0.2
0

t t u tx x( ) ( ) ( )=
− −















+
















�

 y t t u tx0 1 0 .[ ]( ) ( ) [ ] ( )= +

Use state variable feedback, and incorporate a com-
mand input u t t r tKx .α( ) ( ) ( )= − +  Select the gains 
K and α so that the system has a rapid response with 
a percent overshoot of P O. . 1%= , a settling time 
(with a 2% criterion) of Ts 1 s≤ , and a zero steady-
state error to a unit step input.

P11.12 A voice-coil actuator-driven electromechanical 
system has the following state-space model:

x A B( ) ( ) ( )= +t t u tx�

,  y t tCx( ) ( )=

where

1.4890 0.7681 0.0945 0.0424
1 0 0 0
0 1 0 0
0 0 1 0

,

1
0
0
0

, and 0 0 0 1 .

=

− − − −





















=























= 





A

B C

Compute the transfer function and the poles of this 
system. 

Determine whether it is controllable and observable.

P11.13 A feedback system has a plant transfer function

Y s
R s

G s
s s

45.78
50

.
( )
( )

( )
( )

= =
+

We want the percent overshoot to a step to be 
≤P O. . 10%  and the settling time (with a 2% criterion)  

Ts 1 s.≤  Design an appropriate state variable feedback 
system for r t k x t k x t .1 1 2 2( ) ( ) ( )= − −

P11.14 A process has the transfer function

t t u t( ) ( ) ( )=
−















+










x x

8 0
1 0

1
0

�

 y t t u t[ ]( ) ( ) [ ] ( )= − +x1 1 0 .

Determine the state variable feedback gains to 
achieve a settling time (with a 2% criterion) of 

=Ts 1.5 s  and a percent overshoot of P O =. . 8%.  
Assume the complete state vector is available for 
feedback.
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Problems 871

+

+

+

+

R(s) Y(s)

2

1
s + 5

1
s

FIGURE P11.19
Multiloop feedback 
control system.

R1

R2

+

-

+

-

+-
C2

C1

no(t)
ni(t)

n1(t)

nC1(t)

nC2(t)

FIGURE P11.21 An op-amp circuit.

where υ ω θ[ ]( ) ( ) ( ) ( ) ( )= .t t t y t tT
sx  The state 

variables are x t t the1 υ( ) ( )= =  transverse velocity; 
x t ts angular2 ω( ) ( )= =  rate of ship’s coordinate frame 
relative to response frame; x t y t deviation3( ) ( )= =  
distance on an axis perpendicular to the track; 
x t t  deviation4 θ( ) ( )= =  angle. (a) Determine 
whether the system is stable. (b) Feedback can be added 
so that

.1 1 3 3t k x t k x t r tδ( ) ( ) ( ) ( )= − − +

Determine whether this system is stable for suitable 
values of k1  and k .3  If so, determine k1 and k3 such 
that the percent overshoot P.O. ≤ 25% to a unit step, 
R(s) = 1/s and TS ≤ 20 s.

P11.21 An op-amp circuit is shown in Figure P11.21 with 
input u(t) = vi (t), and output y t v t( )=( ) .0  
a. Determine the system transfer function.
b. Select the state variables, and write the state 

equations for this system.
c. Determine its observability, and find the condi-

tion when the system has a double root.

P11.22 The speed control system of an electric car has a 
plant transfer function of 

G s
s s

( )
( )

=
+

1
0.2 1

 

in the open loop and a negative feedback transfer 
function of H(s) = k with a reference input of r(t) 
and an output y(t).
a. Represent the system in the block diagram for 

unity feedback systems by scaling the input, and 
write the corresponding vector differential equa-
tion for this system.

b.  The system uses state variable feedback with a 
feedback signal from the output derivative y t( )�  
with gain b. Design k and b so that the car speed 
has a settling time of 0.5 s and a percent over-
shoot of 10%.

c. Plot the response of the state variable feedback 
system to a step input.

P11.23 Let 
A B C= −









 = −









 =1 2

0 1
, 1

1
, [1 0],

and D = [0]. Then design a controller using internal 
model methods so that the steady-state error for a 
step input is zero and the desired roots of the charac-
teristic equation are = − ± = −s j s2 2 and 20.  

P11.24 Let A B C=










 =











 =0 1

0 0
, 0

1
, [1 0]  

and D = [0]. Then design a controller using internal 
model methods so that the steady-state error for a 
ramp input is zero and the roots of the characteristic 
equation are s j2 2= − ± , = − = −s s2, and 1.

P11.25 Consider the system represented in state vari-
able form

 t t u tx Ax B� ( ) ( ) ( )= +

y t t u tCx D ,  ( ) ( ) ( )= +

where

A B
1 4

5 10
, 0

1
,=

−

















=












C D1 4 and 0 .[ ] [ ]= − =
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872 Chapter 11  The Design of State Variable Feedback Systems

Verify that the system is observable. Then design a 
full-state observer by placing the observer poles at 
s 1.1,2 = −  Plot the response of the estimation error 

t t te x x̂( ) ( ) ( )= −  with an initial estimation error of 
Te 0 1, 1 .[ ]( ) =

P11.26 Consider the second-order system

t t u t( ) ( ) ( )=

− − −





















+



















x x

0 1 0

0 0 1

1 2 6

0
0
7

�

 y t t u t[ ]( ) ( ) [ ] ( )= − +x5 4 0 0 .

Verify that the system is observable. If so, determine 
the observer gain matrix required to place the ob-
server poles at = − ±s j2 31,2  and s = −6.3

P11.27 Consider the second-order system

x x( ) ( ) ( )=
− −

















+










t t u t

0 1

5 9
0
4

�

 y t t u t[ ]( ) ( ) [ ] ( )= +x2 1 0 .

Determine the observer gain matrix required to place 
the observer poles at = − ±s j1 2.1,2

P11.28 Consider the single-input, single-output system is 
described by

t t u tx Ax B� ( ) ( ) ( )= +

 y t tCx( ) ( )=

where

K
A B C0 1

16 8
, 0 , 1 0 .[ ]=

− −











 =











 =

a. Determine the value of K resulting in a zero 
steady-state tracking error when u t( ) is a 
unit step input for t 0.≥  The tracking error is 
 defined here as e t u t y t .( ) ( ) ( )= −

b. Plot the response to a unit step input and ver-
ify that the tracking error is zero for the gain K 
 determined in part (a).

P11.29 The block diagram shown in Figure P11.29 is an 
example of an interacting system. Determine a state 
variable representation of the system in the form

t t u tx Ax B� ( ) ( ) ( )= +

y t t u tCx D( ) ( ) ( )= +

y

3

u

2

s
1

s
1

+

+

+

+

-

-

-

FIGURE P11.29 Interacting feedback system.

AP11.1 A DC motor control system has the form shown 
in Figure AP11.1 [6]. The three state variables are 
available for measurement; the output position is 
x t .1( )  Select the feedback gains so that the system has 
a steady-state error equal to zero for a step input and a 
response with a percent overshoot of P O ≤. . 4%.

AP11.2 A system has the model

5 2 1
1 0 0

0 1 0

16
0
0

� t t u tx x( ) ( ) ( )=
− − −
−





















+



















[ ]( ) ( )= 0 0 10 .y t tx

Add state variable feedback so that the closed-loop 
poles are s j s= − ± = −2 2 and 20.

ADVANCED PROBLEMS

U(s)
K

s + 3
4

s + 1
1
s

X3(s) V If (s)

Field
current

X2(s) X1(s)
PositionVelocity

FIGURE AP11.1
Field-controlled DC 
motor.
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AP11.3 A system has a matrix differential equation

t t
b

b
u t( ) ( ) ( )=

− −

















+
















x x
0 1

2 3 2
.1

2
�

What values for b1  and b2 are required so that the 
system is controllable?

AP11.4 The vector differential equation describing the 
inverted pendulum of Example 3.3 is

�

0 1 0 0
0 0 1 0
0 0 0 1
0 0 9.8 0

0
1
0
1

.t t u tx x( ) ( ) ( )= −























+

−























Assume that all state variables are available for mea-
surement, and use state variable feedback. Place the sys-
tem characteristic roots at 5 2, 3,s j= − ± −  and −3.

AP11.5 An automobile suspension system has three 
physical state variables, as shown in Figure AP11.5 
[13]. The state variable feedback structure is shown 
in the figure, with K 1.1 =  Select K2 and K3 so that 
the roots of the characteristic equation are three real 
roots lying between s 3= −  and s 6.= −  Also, select 
Kp  so that the steady-state error for a step input is 
equal to zero.

AP11.6 A system is represented by the differential 
equation

y t y t y t u t u t4 4 2 ,( ) ( ) ( ) ( ) ( )+ + = +�� � �

where y t output( ) =  and u t input.( ) =

(a) Define the state variables as x1(t) = y(t) and x2(t) 
= ẏ(t). Develop a state variable representation and 
show that it is a controllable system. (b) Define the 
state variables as x t y t1( ) ( )=  and x t y t u t2 ( ) ( ) ( )= −� . 
Develop a state variable represetation and determine 
whether the system is controllable. (c) Explain why 
the system controllability differs in these two cases.

AP11.7 The Radisson Diamond uses pontoons and stabi-
lizers to damp out the effect of waves hitting the ship, 
as shown in Figure AP11.7(a). The block diagram of the 
ship roll control system is shown in Figure AP11.7(b). 

- -
-

+
R(s)

X1(s) = Y(s)X2(s)X3(s)2
s + 4

1
s + 2

1
s + 3

Kp

K1

K2

K3

FIGURE AP11.5
Automobile 
 suspension system.

Determine the feedback gains K2 and K3 so that the 
characteristic roots are s 15= −  and s j2 2.= − ±  
Plot the roll angle for a unit step disturbance.

AP11.8 Consider the system

t t u tx Ax B� ( ) ( ) ( )= +

where

A B
1 1.6 0
0 0 1

0 0 11.8

and
0
0

8333.0
.=

−

−





















=



















(a) Design a state variable controller using only x t1( ) 
as the feedback variable, so that the step response has 
a percent overshoot of P O. . 10%≤  and a settling time 
(with a 2% criterion) of Ts 5 s≤ . (b) Design a state vari-
able controller feedback using two state variables, level 
x t1( ) and shaft position x t ,2 ( )  to satisfy the specifica-
tions of part (a). (c) Compare the results of parts (a) and 
(b).

AP11.9 The motion control of a lightweight hospital 
transport vehicle can be represented by a system 
of two masses, as shown in Figure AP11.9, where 
m m 11 2= =  and k k 11 2= =  [21]. (a) Determine 
the state vector differential equation. (b) Find the 
roots of the characteristic equation. (c) We wish to 
stabilize the system by letting u t kx ti ,( ) ( )= −  where 
u is the force on the lower mass, and x ti ( ) is one of 
the state variables. Select an appropriate state variable 
x ti .( )  (d) Choose a value for the gain k and sketch the 
root locus as k varies.

AP11.10 Consider the inverted pendulum mounted 
to a motor, as shown in Figure AP11.10. The motor 
and load are assumed to have no friction damping. 
The pendulum to be balanced is attached to the 
horizontal shaft of a servomotor. The servomotor 
carries a tachogenerator, so that a velocity signal 
is available, but there is no position signal. When 
the motor is unpowered, the pendulum will hang 
vertically downward and, if slightly disturbed, will 
perform oscillations. If lifted to the top of its arc, 
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SIDE VIEW FRONT VIEW

Electronically
controlled stabilizers

Passenger
cabins

Strut

Pontoon

(a)

(b)

X3 X2 X1

K3

+

+

K2

2

s + 2
1
s

60

s + 8
R(s) = 0

f(s)
Roll angle

Td(s)

- -
-

+

FIGURE AP11.7
(a) Radisson 
Diamond. 
(b) Control system 
to reduce the effect 
of the disturbance.

the pendulum is unstable in that position. Devise a 
feedback compensator using only the velocity signal 
from the tachometer.

AP11.11 Determine an internal model controller ( )G sc  
for the system shown in Figure AP11.11. We want 
the steady-state error to a step input to be zero. We 
also want the settling time (with a 2% criterion) to 
be Ts 5≤  s.

AP11.12 A fourth-order system has the model.

t t u tx Ax B� ( ) ( ) ( )= +

,  y t tCx( ) ( )=

where

2.4762 3.3755 0.0225 2.5811
0.9504 2.1473 2.1050 3.5917
2.1847 1.0792 3.4821 0.1983
3.5185 2.3825 1.2432 1.6509

,A =

− − −
− − − −

− −
−























0.2916
0.1978

0
0

, and 0 0 0 1 .=























= 



B C

Motor Tachometer

Tachometer
output

FIGURE AP11.10 Motor and inverted pendulum.

k1
z

u

Input force

k2
y

m1

m2

FIGURE AP11.9 Model of hospital vehicle.
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-

+

-

+
R(s) Y(s)Gc(s)

1
(s + 1)(s + 2)

K2 X(s)

Process

FIGURE AP11.11
Internal model 
control.

What are the poles of the open-loop system? By using 
the state variable feedback control u(t) = −Kx(t),  
determine matrix K to place the closed-loop poles at 
−1, −2, −4, and −8.

AP11.13 Consider the system represented in state vari-
able form

t t u tx Ax B� ( ) ( ) ( )= +

,  y t t u tCx D( ) ( ) ( )= +

where

A B=
− −

















=












1 7

6 3
, 5

1
,

[ ]= 



 =C D8 1 , and 0 .

Verify that the system is observable and control-
lable. If so, design a full-state feedback law and an 
observer by placing the closed-loop system poles 
at s j= − ±2 21, 2  and the observer poles at 
s = −13.1, 2

AP11.14 Consider the third-order system

t t u t( ) ( ) ( )=

− − −





















+



















x x

0 1 0

0 0 1

10 2 2

0
0
6

�

y t t u t( ) ( ) [ ] ( )= −





+x1 5 3 0 .

+ + +

- -
U(s) Y(s)s

1
s
1

4

2

7

FIGURE AP11.15 A second-order system block 
diagram.

Verify that the system is observable and controlla-
ble. Then, design a full-state feedback law and an 
observer by  placing the closed-loop system poles at 
s j s= − ± = −4 1,   51, 2 3  and the observer poles at 
s j s= − ± = −10 5,   25.1, 2 3

AP11.15 Consider the system depicted in Figure 
AP11.15. Design a full-state observer for the system. 
Determine the observer gain matrix L to place the 
observer poles at s j10 10.1, 2 = − ±

CDP11.1 We wish to obtain a state variable feedback sys-
tem for the capstan-slide the state variable model de-
veloped in CDP3.1 and determine the feedback system. 
The step response should have a percent overshoot of 
P O. . 2%≤  and a settling time of Ts 250 ms.≤

DP11.1 Consider the device for the magnetic levitation 
of a steel ball, as shown in Figures DP11.1(a) and (b). 
Design a feedback controller i = −k1x1 − k2x2 + βr 
where x1(t) = y(t), x2(t) = ẏ(t), and β is selected to 

DESIGN PROBLEMS

produce a zero steady-state error to a unit step. The 
goal for y(t) is P.O. ≤ 10% for a unit step. Assume that 
y(t) and y t( )�  are measurable.

DP11.2 The control of the fuel-to-air ratio in an auto-
mobile of prime importance as automakers work 
to reduce exhaust-pollution emissions. Thus, auto 
engine designers turned to the feedback control of 
the fuel-to-air ratio. A sensor was placed in the ex-
haust stream and used as an input to a controller. The 
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(b)

-10

s2 - 1000

i

Light
sensor

Light
source

y

(a)

I(s)
Current
to coil

Y(s)
Vertical
position
of ball

Electromagnet

FIGURE DP11.1 (a) The levitation of a ball using an 
electromagnet. (b) The model of the electromagnet and 
the ball.

controller actually adjusts the orifice that controls 
the flow of fuel into the engine [3].
 Select the devices and develop a linear model 
for the entire system. Assume that the sensor mea-
sures the actual fuel-to-air ratio with a negligible 
delay. With this model, determine the optimum con-
troller when we desire a system with a zero steady-
state error to a step input and a percent overshoot for 
a step command of P O. . 10%.≤

DP11.3 Consider the feedback system depicted in 
Figure DP11.3. The system model is given by

t t u tx Ax B� ( ) ( ) ( )= +

y t tCx( ) ( )=

y(t)
u(t)

r(t)

System Model

Compensator (Observer + Control Law)

N
+

+

u(t)+

x = Ax + Bu
y = Cx
ª

x = (A - BK - LC)x + Ly + Mr
u = -KxN+
ªN N

FIGURE DP11.3
Feedback system 
constructed to 
track a desired 
input r t( ).

Body fixed axis

x(t)

u(t) d(t)

FIGURE DP11.4 Helicopter pitch angle, ,θ  control.

where

=
− −











 =











 = 





0 1
10.5 11.3

, 0
0.55

, 1 0 .A B C

Design the compensator to meet the following speci-
fications:

1. The steady-state error to a unit step input is zero.
2. The settling time Ts 1<  s and the percent over-

shoot is P O. . 5%.<
3. Select initial conditions x 0( ) and different initial 

conditions x̂ 0( ) and simulate the response of the 
closed-loop system to a unit step input.

DP11.4 A high-performance helicopter has a model 
shown in Figure DP11.4. The goal is to control the 
pitch angle tθ( ) of the helicopter by adjusting the 
rotor thrust angle t .δ( )  The equations of motion of 
the helicopter are

t t x t n t1 1θ σ θ α δ( ) ( ) ( ) ( )= − − +�� �� �

x t g t t x t g t ,2 2θ α θ σ δ( ) ( ) ( ) ( ) ( )= − − +�� � �
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where x t( ) is the translation in the horizontal 
 direction. For a high-performance helicopter, we find 
that

0.415 1.431 2σ α= =

n0.0198 6.272σ = =

g0.0111 9.81α = =

all in appropriate SI units.
 Find (a) a state variable representation of this 
system and (b) the transfer function representation for 

s s .θ δ( ) ( )  (c) Use state variable feedback to achieve 
adequate performances for the controlled system.
 Desired specifications include (1) a steady-state 
for an input step command for sd ,θ ( )  the desired 
pitch angle, less than 20% of the input step magni-
tude; (2) an overshoot for a step input command less 
than 20%; and (3) a settling (with a 2% criterion) 
time for a step command of less than 1.5 seconds.

DP11.5 The headbox process is used in the manufac-
ture of paper to transform the pulp slurry flow into 
a jet of 2 cm and then spread it onto a mesh belt [22]. 
To achieve desirable paper quality, the pulp slurry 
must be distributed as evenly as possible on the belt, 
and the relationship between the velocity of the jet 
and that of the belt, called the jet/belt ratio, must 
be maintained. One of the main control variables is 
the  pressure in the headbox, which in turn controls 
the velocity of the slurry at the jet. The total pressure 
in the headbox is the sum of the liquid-level pressure 
and the air pressure that is pumped into the headbox. 
Because the pressurized headbox is a highly dynamic 
and coupled system, manual control would be diffi-
cult to maintain and could result in degradation in 
the sheet properties.
 The state-space model of a typical headbox, lin-
earized about a particular stationary point, is given 
by

� t t u t( ) ( ) ( )= −
−











 +











x x0.8 0.02

0.02 0
0.05
0.001

and y t t( ) ( )= 



 x1, 0 .

 The state variables are x t liquid1( ) =  level and 
x t pressure.2 ( ) =  The control variable is u t pump1( ) =  
current. (a) Design a state variable feedback system 
that has a characteristic equation with real roots with 
a magnitude greater than five. (b) Design an observer 
with observer poles located at least ten times farther in 
the left half-plane than the state variable feedback sys-
tem. (c) Connect the observer and full-state feedback 
system and sketch the block diagram of the integrated 
system.

DP11.6 A coupled-drive apparatus is shown in Figure 
DP11.6. The coupled drives consist of two pulleys 
connected via an elastic belt, which is tensioned by a 
third pulley mounted on springs providing an under-
damped dynamic mode. One of the main pulleys, pul-
ley A, is driven by an electric DC motor. Both pulleys 
A and B are fitted with tachometers that generate 
measurable voltages proportional to the rate of ro-
tation of the pulley. When a voltage is applied to the 
DC motor, pulley A will accelerate at a rate governed 
by the total inertia experienced by the system. Pulley 
B, at the other end of the elastic belt, will also accel-
erate owing to the applied voltage or torque, but with 
a lagging effect caused by the elasticity of the belt. 
Integration of the velocity signals measured at each 
pulley will provide an angular position estimate for the  
pulley [23].
 The second-order model of a coupled-drive is

� 0 1
36 12

0
1

t t u tx x( ) ( ) ( )=
− −











 +













and y t x t .1( ) ( )=

(a) Design a state variable feedback controller that 
will yield a step response with deadbeat response and 
a settling time (with a 2% criterion) of Ts 0.5≤  s.  
(b) Design an observer for the system by placing the 
observer poles appropriately in the left half-plane. 
(c) Draw the block diagram of the system including 
the compensator with the observer and state feed-
back. (d) Simulate the response to an initial state at 

T
x 0 1 0( ) = 



  and ˆ 0 0 0 .

T
x( ) = 





DP11.7 A closed-loop feedback system is to be designed 
to track a reference input. The desired feedback 
block diagram is shown in Figure DP11.3. The system 

Pulley A Pulley B

Spring

Tensioning
pulley

Elastic
belt

FIGURE DP11.6 
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y(t)
u(t)

r(t)

System Model

N
+

+

Control Law

-K

Observer

x = Ax + Bu
y = Cx
ª

x = (A - LC)x + Bu + LyªN N

FIGURE DP11.7
Feedback system 
constructed to 
track a desired 
input r t( ).

CP11.1 Consider the system

( ) ( ) ( )=
−

−



















+
−



















t t u t�x x
5 2 0
3 0 8
9 13 3

12
0
5

,

y t t( ) ( )= 



 x1 5 1 .

Using the ctrb and obsv functions, show that the sys-
tem is controllable and observable.

CP11.2 Consider the system

( ) ( ) ( )=
− −











 +











t t u t�x x0 1

15 23
0

16
,

 1 0 .y t tx( ) ( )= 





Determine if the system is controllable and observ-
able. Compute the transfer function from u t( ) to y(t).

CP11.3 Find a gain matrix K so that the closed-loop poles 
of the system,

( ) ( ) ( )=
− −











 +











t t u t�x x0 1

6 5
1
1

x( ) ( )= −



y t t1 1 ,

are s = −21  and s = −5.2  Use state feedback 
Kx( ) ( )= −u t t .

CP11.4 The following model has been proposed to de-
scribe the motion of a constant-velocity rocket:

t t u t( ) ( ) ( )=
− −



























+



























x x

0 1 0 0 0
0.64 1.2 0 0 0
0.6 0 0 0 0

0 0 17.8 0 0
0.5 1 0 0 0

0
4.5
0
0
0

,�

y t t( ) ( )= 



0 0 0 1 0 .x

a. Verify that the system is not controllable by analyz-
ing the controllability matrix using the ctrb function.

b. Develop a controllable state variable model by 
first computing the transfer function from u t( ) 
to y t( ), then cancel any common factors in the 
numerator and denominator polynomials of the 
transfer function. With the modified transfer 
function just obtained, use the ss function to de-
termine a modified state variable model for the 
system.

c. Verify that the modified state variable model in 
part (b) is controllable.

d. Is the constant velocity rocket stable?
e. Comment on the relationship between the con-

trollability and the complexity of the state vari-
able model (where complexity is measured by the 
number of state variables).

COMPUTER PROBLEMS

model is given by
t t u t( ) ( ) ( )= +x Ax B�

y t t( ) ( )= Cx

where

=

− − −





















=



















= 





0 1 0

0 0 1

4 8 10

,
0
0
1

, 1 0 0 .A B C

Design the observer and the control law to meet the 
following specifications:

1. The steady-state error of the closed-loop system 
to a unit step input is zero.

2. P.O. ≤ 20% to a unit step.
3. ≤Ts 1 s to a unit step.
4. Select initial conditions x 0( ) and different initial 

conditions x̂ 0( ) and simulate the response of the 
closed-loop system to a unit step input. Verify 
that the tracking error is zero in the steady-state.
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CP11.5 A linearized model of a vertical takeoff and 
landing (VTOL) aircraft is [24]

.1 1 2 2t t u t u tx Ax B B( ) ( ) ( ) ( )= + +�

where

=

− −
−
− −























A

0.0523 0.0912 0.0291 0.3120
0.0482 6.5100 0 5.1800
0.2719 0.2512 0.7070 0.9170

0 0 1.4200 0

=
−























= −























B B

0.2412
4.412
5.784

0

,

0.1571
2.212

5.1200
0

.1 2

The state vector components are: (i) x t1( ) is the 
horizontal velocity (knots), (ii) x t2 ( ) is the ver-
tical velocity (knots), (iii) x t3( )  is the pitch rate 
(degrees/second), and (iv) x t4 ( ) is the pitch angle 
(degrees). The input u t1( ) is used mainly to control 
the vertical motion, and u t2 ( )  is used for the hori-
zontal motion.

(a) Compute the eigenvalues of the system matrix 
A. Is the system stable? (b) Determine the charac-
teristic polynomial associated with A using the poly 
function. Compute the roots of the characteristic 
equation, and compare them with the eigenvalues 
in part (a). (c) Is the system controllable from u t1( ) 
alone? What about from u t2 ( )  alone? Comment on 
the results.

CP11.6 In an effort to open up the far side of the Moon 
to exploration, studies have been conducted to 
determine the feasibility of operating a communi-
cation satellite around the translunar equilibrium 
point in the Earth–Sun–Moon system. The desired 
satellite orbit, known as a halo orbit, is shown in 
Figure CP11.6. The objective of the controller is to 
keep the satellite on a halo orbit trajectory that can 
be seen from the Earth so that the lines of commu-
nication are accessible at all times. The communica-
tion link is from the Earth to the satellite and then 
to the far side of the Moon.
 The linearized (and normalized) equations of 
 motion of the satellite around the translunar equilib-
rium point are [25]

t t( ) ( )=

− −
−































0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

7.3809 0 0 0 2 0
0 2.1904 0 2 0 0
0 0 3.1904 0 0 0

x x�

u t u t u t

0
0
0
1
0
0

0
0
0
0
1
0

0
0
0
0
0
1

.1 2 3( ) ( ) ( )+
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The state vector tx( ) is the satellite position and ve-
locity, and the inputs u t ii ,   1,  2,  3,( ) =  are the en-
gine thrust accelerations in the ,   ,ξ η  and ζ  directions, 
respectively.

 (a) Is the translunar equilibrium point a sta-
ble  location? (b) Is the system controllable from 
u t1( ) alone? (c) Repeat part (b) for u t .2 ( )  (d) 
Repeat part (b) for u t .3( )  (e) Suppose that we can 
observe the position in the η  direction. Determine 
the transfer function from u t2 ( ) to x t .2 ( )  (Hint: Let 

y t t0 1 0 0 0 0 x .)( ) ( )= 



  (f) Compute a 

state-space representation of the transfer function in 
part (e) using the ss function. Verify that the system is 
controllable. (g) Using state feedback

u t t( ) ( )= − ,2 Kx

design a controller (i.e., find K) for the system in 
part (f) such that the closed-loop system poles are at 
s j11,2 = − ±  and s 10.3,4 = −

CP11.7 Consider the system

� t tx x( ) ( )=
− − −



















0 1 0
0 0 1
2 4 6

,

 y t t( ) ( )= 



1 0 0 .x  (CP11.1)

Suppose that we are given three observations 
y t ii( ) =, 1,  2,  3,  as follows:

 y t t1 at 01 1( ) = =
y t t0.0256 at 22 2( ) = − =

 y t t0.2522 at 4.3 3( ) = − =

(a) Using the three observations, develop a method 
to determine the initial value of the state vector t( )x 0  
for the system in Equation CP11.1 that will reproduce 
the three observations when simulated using the Isim 
function. (b) With the observations given, compute 

t( )x 0  and discuss the condition under which this prob-
lem can be solved in general. (c) Verify the result by 
simulating the system response to the computed ini-
tial condition. (Hint: Recall that t e tt t ( )( ) = ( )−x xA

00  
for the system in Equation CP11.1.)

CP11.8 Consider the system

t t u t( ) ( ) ( )= +x Ax B�
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880 Chapter 11  The Design of State Variable Feedback Systems

where

=
−











 =













0 0
1 0

and 0
1

.A B

Let u t t( ) ( )= −Kx  and consider the performance 
index

 ∫ ( ) ( ) ( ) ( )= =
∞

x x x PxJ t t dtT T 0 0 .
0

Determine the optimal system when =xT(0) (1, 0).

CP11.9 A first-order system is given by

x t x t u t( ) ( ) ( )= − +�

with the initial condition x x0 .0( ) =  We want to 
 design a feedback controller

u t kx t( ) ( )= −

such that the performance index

J x t u t dt 2 2
0∫ λ( )( ) ( )= +
∞

is minimized.

(a) Let 1.λ =  Develop a formula for J in terms of k, 
valid for any x ,0  and use an m-file to plot J x0

2  versus 
k. From the plot, determine the approximate value of 
k kmin=  that minimizes J x .0

2  (b) Verify the result  
in part (a) analytically. (c) Using the procedure devel-
oped in part (a), obtain a plot of kmin versus ,λ  where 
kmin is the gain that minimizes the perfor mance index.

Moon

Moon

Halo orbit of
spacecraft

View from the Earth

Earth

Moon’s
orbit

h

z

h

z

j

FIGURE CP11.6 The translunar satellite halo orbit.

CP11.10 Consider the system represented in state vari-
able form

t t u t( ) ( ) ( )= +x Ax B�
y t t u t( ) ( ) ( )= + ,Cx D

where

=
− −











 =











A B0 1

25.5 17.5
, 8.8

19.1
,

C D [ ]= 



 =1 0 and 0 .

Using the acker function, determine a full-state 
feedback gain matrix and an observer gain matrix to 
place the closed-loop system poles at s = −31,2  and 
the  observer poles at s j= − ±18 5.1,2

CP11.11 Consider the third-order system

� t t u tx x( ) ( ) ( )=
− − −



















+



















0 1 0
0 0 1

4.3 1.7 6.7

0
0

0.35

y t t u t( ) ( ) [ ] ( )= 



 +0 1 0 0 .x

(a) Using the acker function, determine a full-
state feedback gain matrix and an observer gain 
matrix to place the closed-loop system poles at 
s j s1.4 1. 4,   21,2 3= − ± = −  and the observer 
poles at s j s  18 5, 20.1,2 3= − ± = −  (b) Construct 
the state variable compensator. (c) Simulate the 
closed-loop system with the state initial condi-
tions T( ) = ( )0 1 0 0x  and initial state estimate of 

T( ) = ( )ˆ 0 0.5 0.1 0.1 .x
CP11.12 Implement the system shown in Figure 

CP11.12 in an m-file. Obtain the step response of 
the system.

CP11.13 Consider the system in state variable form

A x( ) ( )=

− − − −























+























t u t

0 1 0 0
0 0 1 0
0 0 0 1
4 7 8 11

0
0
0
1

y t t u t( ) ( ) [ ] ( )= 



 +1 0 0 0 0 .x

+ + +

- -
U(s) Y(s)s

1
s
1

12

10

20

15

FIGURE CP11.12 Control system for m-file implementation.
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Terms and Concepts 881

Design a full-state feedback gain matrix and an 
 observer gain matrix to place the closed-loop sys-
tem poles at s j s j= − ± = − ±2 2,   51,2 3,4  and 
the  observer poles s j s= − ± = −9 2,   15.1,2 3,4  

Construct the state variable compensator, and simu-
late the closed-loop system. Select several values of 
initial states and initial state estimates in the observer, 
and display the tracking results.

ANSWERS TO SKILLS CHECK

True or False: (1) True; (2) True; (3) False; (4)  True; 
(5) False

Multiple Choice: (6) c; (7) a; (8) c; (9) a; (10) a; (11) b; 
(12) a; (13) b; (14) b; (15) a

Word Match (in order, top to bottom): e, o, k, i, d, b, j, 
m, f, n, h, q, g, l, p, c, a

[ ]( ) ( )( )= … −
o

T T T n T
T

P 2 1C CA CA CA  has full 

rank, where A is an n n×  matrix. For single-input, 
single-output linear systems, the system is observable 
if and only if the determinant of the n n×  observ-
ability matrix oP  is nonzero.

Observable system A system is observable on the inter-
val t t f,  0



  if any initial state t( )x 0  is uniquely deter-

mined by observing the output y t( ) on the interval 
t t f,   .0





Observer A dynamic system used to estimate the state 
of another dynamic system given knowledge of 
the system inputs and measurements of the system 
outputs.

Optimal control system A system whose parameters are 
adjusted so that the performance index reaches an 
 extremum value.

Pole placement A design methodology wherein the ob-
jective is to place the eigenvalues of the closed-loop 
system in desired regions of the complex plane.

Regulator problem The control design problem when 
the reference input r t 0( ) =  for all t t0≥ .

Separation principle The principle that states that the 
full-state feedback law and the observer can be de-
signed independently and when connected will func-
tion as an integrated control system in the desired 
manner (i.e., stable).

Stabilizable A system in which the states that are not 
controllable are naturally stable.

Stabilizing controller A controller that stabilizes the 
closed-loop system.

State variable feedback Occurs when the control signal 
u for the process is a direct function of all the state 
variables.

Command following An important aspect of control 
system design wherein a nonzero reference input is 
tracked.

Controllability matrix A linear system is (completely) 
controllable if and only if the controllability matrix 

= … −
c

n[ ]2 1P B AB A B A B  has full rank, where  
A is an n n×  matrix. For single-input, single-output 
linear systems, the system is controllable if and only 
if the determinant of the n n×  controllability matrix 

cP  is nonzero.

Controllable system A system is controllable on the in-
terval t t f,  0



  if there exists a continuous input u t( ) 

such that any initial state t( )0x  can be driven to any 
arbitrary trial state t f( )x  in a finite time interval 
t tf 0.0− >

Detectable A system in which the states that are unob-
servable are naturally stable.

Estimation error The difference between the actual 
state and the estimated state t t tx x( ) ( ) ( )= −e ˆ .

Full-state feedback control law A control law of the 
form Kx= −u  where x is the state of the system as-
sumed known at all times.

Internal model design A method of tracking reference 
inputs with guaranteed steady-state tracking errors.

Kalman state-space decomposition A partition of the 
state space that illuminates the states that are control-
lable and unobservable, uncontrollable and unobserv-
able, controllable and observable, and uncontrollable 
and observable.

Linear quadratic regulator An optimal controller de-
signed to minimize the quadratic performance index  

J dtT Tx Qx u Ru∫ ( )= +
∞

,
0

 where Q and R are de-

sign parameters.

Observability matrix A linear system is (completely) 
observable if and only if the observability matrix 

TERMS AND CONCEPTS
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12.11 Sequential Design Example: Disk Drive Read System 919

12.12 Summary 921

PREVIEW

Physical systems and the external environment in which they operate cannot be 
modeled precisely, may change in an unpredictable manner, and may be subject to 
significant disturbances. The design of control systems in the presence of signifi-
cant uncertainty motivates the concept of robust control system design. Advances 
in robust control design methodologies can address stability robustness and per-
formance robustness in the presence of uncertainty. In this chapter, we describe 
five methods for robust design, including root locus, frequency response, ITAE 
methods for a robust PID systems, internal model control, and pseudo-quantita-
tive feedback methods. However, we should also realize that classical design tech-
niques may also produce robust control systems. Control engineers who are aware 
of these issues can design robust PID controllers, robust lead-lag controllers, and 
so forth. The chapter concludes with a PID controller design for the Sequential 
Design Example: Disk Drive Read System.

DESIRED OUTCOMES

Upon completion of Chapter 12, students should be able to:

	❏ Describe the role of robustness in control system design.

	❏ Identify uncertainty models, including additive uncertainty, multiplicative uncertainty, 
and parameter uncertainty.

	❏ Explain the various methods of tackling the robust control design problem using root  
locus, frequency response, ITAE methods for PID control, internal model, and pseudo- 
quantitative feedback methods.
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Section 12.1 Introduction 883

12.1 INTRODUCTION

A control system designed using the methods and concepts of the preceding chap-
ters assumes knowledge of the model of the process and controller and constant 
parameters. The process model will be an inaccurate representation of the actual 
physical system due to

	❍ parameter changes

	❍ unmodeled dynamics

	❍ unmodeled time delays

	❍ changes in equilibrium point (operating point)

	❍ sensor noise

	❍ unpredicted disturbance inputs.

The goal of robust control system design is to maintain acceptable closed-loop sys-
tem performance in the presence of model inaccuracies and changes.

(b)

Td (s)

(a)

Td (s)

Y(s)
G(s)

1

1

Gc(s)

N(s)

-1

1

1

R(s)

+

-

+

+

Controller

Gc(s)

+

+
N(s)

R(s) Y(s)

Process

G(s)
Ea(s)

FIGURE 12.1
Closed-loop  control 
system. (a) Signal 
flow graph. 
(b) Block diagram.

A robust control system maintains acceptable performance in the presence 
of significant model uncertainty, disturbances, and noise.

A system structure that incorporates system uncertainties is shown in 
Figure  12.1. This model includes the sensor noise ( )N s , the disturbance input 

( )T sd , and a process ( )G s  with unmodeled dynamics or parameter changes. The 

M12_DORF2374_14_GE_C12.indd   883M12_DORF2374_14_GE_C12.indd   883 15/09/21   9:46 AM15/09/21   9:46 AM



884 Chapter 12  Robust Control Systems

unmodeled dynamics and parameter changes may be significant, and for these sys-
tems the challenge is to create a design that retains the desired performance.

12.2 ROBUST CONTROL SYSTEMS AND SYSTEM SENSITIVITY

Designing highly accurate systems in the presence of significant plant uncertainty 
is a classical feedback design problem. The theoretical bases for the solution of this 
problem date back to the works of H. S. Black and H. W. Bode in the early 1930s, 
when this problem was referred to as the sensitivities design problem. A significant 
amount of literature has been published since then regarding the design of systems 
subject to large process uncertainty. The designer seeks to obtain a system that per-
forms adequately over a large range of uncertain parameters. A system is said to be 
robust when it is durable, hardy, and resilient.

A control system is robust when (1) it has low sensitivities, (2) it is stable over 
the expected range of parameter variations, and (3) the performance continues to 
meet the specifications in the presence of a set of changes in the system parameters 
[3, 4]. Robustness is the low sensitivity to effects that are not considered in the anal-
ysis and design phase—for example, disturbances, measurement noise, and unmod-
eled dynamics. The system should be able to withstand these neglected effects when 
performing the tasks for which it was designed.

For small-parameter perturbations, we may use, as a measure of robustness, the 
differential sensitivities discussed in Sections 4.3 (system sensitivity) and Section 7.5 
(root sensitivity) [6]. The system sensitivity is defined as

 ,
α α

=
∂
∂

αS
T TT  (12.1)

where α is the parameter and T the transfer function. The root sensitivity is defined as

 S
rr ii .

α α
=

∂
∂α  (12.2)

When the zeros of ( )T s  are independent of the parameter α, we showed that

 
1

,
1

S S
s r

T

i

n
r

i

i∑= − ⋅
+

α α
=

 (12.3)

for an nth-order system. For example, if we have a closed-loop system, as shown 
in Figure 12.2, where the variable parameter is α, then α[ ]( ) ( )= + +T s s1 1 , and

 S
s

T α
α

=
−

+ +
α

1
.  (12.4)

This follows because r 1 ,1 α( )= + +  and

 α− = −α .Sri  (12.5)
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Section 12.2 Robust Control Systems and System Sensitivity 885

Therefore,

 
α

α
α

= −
+ +

=
−

+ +
α α

1
1 1

.S S
s s

T ri  (12.6)

Let us examine the sensitivity of the second-order system shown in Figure 12.3. 
The transfer function of the closed-loop system is

 ( ) =
+ +

T s
K

s s K
.

2
 (12.7)

The system sensitivity for K is

 S s S
s s

s s K
K
T( )

( )
= =

+
+ +

1
.

2
 (12.8)

A Bode plot of the asymptotes of T j20 log ω( )  and S j20 log ω( )  is shown in Figure 
12.4 for =K 1 4 (critical damping). Note that the sensitivity is small for lower fre-
quencies, while the transfer function primarily passes low frequencies.

Of course, the sensitivity ( )S s  only represents robustness for small changes in 
gain. If K changes from =K 1 4  within the range =K 1 16 to =K 1, the resulting 
range of step response is shown in Figure 12.5. This system, with an expected wide 

-

+
R(s) Y(s)

1
s + a

FIGURE 12.2
A first-order 
system.

R(s) Y(s)
K

s(s + 1)

+

-FIGURE 12.3
A second-order 
system.
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20 log 0S 0
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4
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FIGURE 12.4 Sensitivity and 20 log ω( )T j  for the 
second-order system in Figure 12.3. The asymptotic 
approximations are shown for 1 4.K =

1.4

1.0

y(t)

0 2 4

Time (s)

6 8 10 12

K = 1

K = 1/4 K = 1/16

FIGURE 12.5 The step response for selected gain K.
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886 Chapter 12  Robust Control Systems

range of K, may not be considered adequately robust. A robust system would be ex-
pected to yield essentially the same (within an agreed-upon variation) response to a 
selected input.

EXAMPLE 12.1 Sensitivity of a controlled system

Consider the system shown in Figure 12.6, where ( ) =G s s1 2  and a PD controller 
G s K K sc p D .( ) = +  Then the sensitivity with respect to changes in ( )G s  is

 
( ) ( )

=
+

=
+ +

1
1

,
2

2
S

G s G s
s

s K s KG
T

c D p
 (12.9)

and

 T s
K s K

s K s K
D p

D p
.

2( ) =
+

+ +
 (12.10)

Consider the nominal condition ζ = 1 and Kn p .ω =  Then, KD n2ω=  to achieve 
ζ = 1. Therefore, we may plot S20 log  and T20 log  on a Bode plot, as shown in 
Figure 12.7. Note that the frequency ωn  is an indicator on the boundary between 
the frequency region in which the sensitivity is the important design criterion and 
the region in which the stability margin is important. Thus, if we specify ωn  prop-
erly to take into consideration the extent of modeling error and the frequency of 
external disturbance, we can expect the system to have an acceptable amount of 
robustness. ■

EXAMPLE 12.2 System with a right-hand-plane zero

Consider the system shown in Figure 12.8, where the plant has a zero in the right-
hand plane. The closed-loop transfer function is

 ( )
( )

( ) ( )
=

−
+ + + −

T s
K s

s K s K
1

2 1
.

2
 (12.11)

The system is stable for a gain − < <K2 1. The steady-state error due to a negative 
unit step input ( ) = −R s s1  is

 =
−
−

e
K

K
1 2
1

,ss  (12.12)

-

+
ProcessController

Kp + KD sR(s) Y(s)
1
s2

FIGURE 12.6
A system with a PD 
controller.
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Section 12.2 Robust Control Systems and System Sensitivity 887

and =e 0ss  when =K 1 2. The response is shown in Figure 12.9. Note the  initial 
undershoot at =t 1 s. This system is sensitive to changes in K, as recorded in  
Table 12.1. The performance of this system might not be acceptable for a change of 
gain of only ±10%. Thus, this system would not be considered robust. The steady-
state error of this system changes greatly as K changes. ■

20
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-20

-40

0.01 0.1 1 10 100

M
ag

ni
tu

de
 (

dB
)

-60

v/vn

20 log 0T 0

20 log 0S 0

FIGURE 12.7 Sensitivity and T s( )  for the second-
order system in Figure 12.6.

R(s) Y(s)K
-

+ s - 1

(s + 1)2

G(s)

FIGURE 12.8 A second-order system.

y(t)

0 5 10 15 20 25 30

1.0

0.8

0.6

0.4

0.2

0

-0.2

Time (s)

FIGURE 12.9
Step response 
of the system in 
Figure 12.8 with 

1 2.K =

Table 12.1 Results for Example 12.2

K 0.25 0.45 0.50 0.55 0.75

ess 0.67 0.18 0 0.22 1.0

Undershoot 5% 9% 10% 11% 15%

Settling time (seconds) 15 24 27 30 45
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888 Chapter 12  Robust Control Systems

12.3 ANALYSIS OF ROBUSTNESS

System goals include maintaining a small tracking error for an input ( )R s  and 
 keeping the output ( )Y s  small for a disturbance ( )T sd . The sensitivity function is

( )
( ) ( )

=
+

S s
G s G sc

1
1

,

and the complementary sensitivity function is

( )
( ) ( )

( ) ( )
=

+
C s

G s G s
G s G s
c

c1
.

We also have the relationship

 ( ) ( )+ =S s C s 1. (12.13)

For physically realizable systems, the loop gain ( ) ( ) ( )=L s G s G sc  is small for high 
frequencies. This means that ω( )S j  approaches 1 at high frequencies.

Consider the closed-loop system shown in Figure 12.1. An additive perturbation  
characterizes the set of possible processes as follows:

( ) ( ) ( )= +G s G s A sa ,

where ( )G s  is the nominal process, and ( )A s  is the perturbation that is bounded in 
magnitude. We assume that ( )G sa  and ( )G s  have the same number of poles in the 
right-hand s-plane (if any) [32]. Then the system stability will not change if

 A j G j G jc1 for all  .ω ω ω ω( ) ( ) ( )< +  (12.14)

This assures stability but not dynamic performance.
A multiplicative perturbation is modeled as

[ ]( ) ( ) ( )= +G s G s M sm 1 .

The perturbation is bounded in magnitude, and it is again assumed that ( )G sm  and 
( )G s  have the same number of poles in the right-hand s-plane. Then the system 

stability will not change if

 1
1

for all  .M j
G j G jc

ω
ω ω

ω( )
( ) ( )

< +  (12.15)

Equation (12.15) is called the robust stability criterion. This is a test for robust-
ness with respect to a multiplicative perturbation. This form of perturbation is often 
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Section 12.3 Analysis of Robustness 889

used because it satisfies the intuitive  properties of (1) being small at low frequen-
cies, where the nominal process model is usually well known, and (2) being large at 
high frequencies, where the nominal model is always inexact.

EXAMPLE 12.3 System with multiplicative perturbation

Consider the system of Figure 12.1 with =G Kc ,  and

( )
( )

( )
( )

=
+

+ + +
G s

s
s s s s

170000  0.1
3 10 10000

.
2

The system is unstable with =K 1, but a reduction in gain to =K 0.5 will stabilize 
it. Now, consider the effect of an unmodeled pole at 50 rad/s. In this case, the multi-
plicative perturbation is determined from

( )+ =
+

M s
s

1
50

50
,

or ( ) ( )= − +M s s s 50 . The magnitude bound is then

ω
ω

ω
( ) =

−
+ 50

.M j
j

j

ω( )M j  and KG j1 1 ω( )( )+  are shown in Figure 12.10(a), where it is seen that the 
criterion of Equation (12.15) is not satisfied. Thus, the system may not be stable.

If we use a lag compensator

( )
( )

=
+

+
G s

s
s

c
0.15 25

2.5
,

the loop transfer function is ( ) ( ) ( )= +L s G s G sc1 . We reshape the function 
ω ω( ) ( )G j G jc  in the frequency range ω< <2 25 and check the condition

ω
ω ω

( )
( ) ( )

< +1
1

,M j
G j G jc

as shown in Figure 12.10(b). Here the robustness inequality is satisfied, and the 
system is robustly stable. ■

The control objective is to design a compensator ( )G sc  so that the transient, 
steady-state, and frequency-domain specifications are achieved and the cost of 
feedback measured by the bandwidth of the compensator ω( )G jc  is sufficiently 
small. This bandwidth constraint is needed mainly because of measurement noise. 
In  subsequent sections, we discuss including a pre-filter in a two-degree-of-freedom 
configuration to help achieve the design goals.
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890 Chapter 12  Robust Control Systems

12.4 SYSTEMS WITH UNCERTAIN PARAMETERS

Many systems have several parameters that are constants but uncertain within a 
range. For example, consider a system with a characteristic equation

 + + + + =−
−

−
−s a s a s an

n
n

n
n �   01

1
2

2
0  (12.16)

with known coefficients within bounds

α β≤ ≤ = …a ni i i  and i 0,   ,   ,

where =an 1.
To ascertain the stability of the system, we might have to investigate all possi-

ble combinations of parameters. Fortunately, it is possible to investigate a limited 
number of worst-case polynomials [20]. The analysis of only four polynomials is 
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FIGURE 12.10
The robust 
 stability criterion 
for Example 12.3.
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Section 12.4 Systems with Uncertain Parameters 891

sufficient, and they are readily defined for a third-order system with a characteristic 
equation

 + + + =s a s a s a 0.3
2

2
1 0  (12.17)

The four polynomials are

 α β β( ) = + + +q s s s s ,  1
3

2
2

1 0

 β α α( ) = + + +q s s s s ,  2
3

2
2

1 0

β β α( ) = + + +q s s s s ,  3
3

2
2

1 0

 α α β( ) = + + +q s s s s .4
3

2
2

1 0

One of the four polynomials represents the worst case and may indicate either 
 unstable performance or at least the worst performance for the system in that case.

EXAMPLE 12.4 Third-order system with uncertain parameters

Consider a third-order system with uncertain coefficients such that

 α β≤ ≤ ⇒ = =a8 60 8,   60;  0 0 0

 α β≤ ≤ ⇒ = =a12 100 12,   100;  1 1 1

α β≤ ≤ ⇒ = =a7 25 7,   25.2 2 2

The four polynomials are

 ( ) = + + +q s s s s7 100 60,  1
3 2

( ) = + + +q s s s s25 12 8,  2
3 2

 ( ) = + + +q s s s s25 100 8,  3
3 2

 ( ) = + + +q s s s s7 12 60.4
3 2

We then proceed to check these four polynomials by means of the Routh–Hurwitz 
criterion, and determine that the system is stable for all the range of uncertain 
parameters. ■

EXAMPLE 12.5 Stability of uncertain system

Consider a unity feedback system with a process transfer function (under nominal 
conditions)

( )
( )( )

=
+ +

G s
s s s

4.5
1 2

.

The nominal characteristic equation is then

( ) = + + + =q s s s s3 2 4.5 0,3 2

where = = =a a4.5,   2,  and a 3.0 1 2  Using the Routh–Hurwitz criterion, we find 
that this system is nominally stable. However, if the system has uncertain coeffi-
cients such that

 a4 5 4, 5,0 0 0α β≤ ≤ ⇒ = =
a1 3 1, 3,1 1 1α β≤ ≤ ⇒ = =

 α β≤ ≤ ⇒ = =a2 4 2, 4,2 2 2
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892 Chapter 12  Robust Control Systems

then we must examine the four polynomials:

( ) = + + +q s s s s2 3 5,  1
3 2

( ) = + + +q s s s s4 1 4,  2
3 2

( ) = + + +q s s s s4 3 4,  3
3 2

 ( ) = + + +q s s s s2 1 5.4
3 2

Using the Routh–Hurwitz criterion, ( )q s1  and ( )q s3  are stable and ( )q s2  is margin-
ally stable. For ( )q s ,4  we have

1 1
2 5
3 2

5

.

3

2

1

0

−

s

s

s

s

Therefore, the system is unstable for the worst case, where α α= =minimum,   2 1  
minimum, and β = maximum.0  This occurs when the process has changed to

( )
( )( )

=
+ +

G s
s s s

5
1 1

.

Note that the third pole has moved toward the -axisjω  to its limit at = −s 1 and  
that the gain has increased to its limit at =K 5. ■

12.5 THE DESIGN OF ROBUST CONTROL SYSTEMS

The design of robust control systems involves determining the structure of the con-
troller and adjusting the controller parameters to achieve acceptable performance 
in the presence of uncertainty. The structure of the controller is chosen such that 
the system response can meet certain performance criteria.

One possible objective in the design of a control system is that the controlled 
system output should very accurately track the input. That is, we want to minimize 
the tracking error. In an ideal setting, the Bode plot of the loop gain, ( )L s , would 
be 0-dB gain of infinite bandwidth and zero phase shift. In practice, this is not pos-
sible. One possible design objective is to maintain the magnitude response curve as 
flat and as close to unity for as large a bandwidth as possible for a given plant and 
controller combination [20].

Another important goal of a control system design is that the effect on the 
output of the system due to disturbances is minimized. Consider the control sys-
tem shown in Figure 12.11, where ( )G s  is the plant and ( )T sd  is the disturbance. 
We then have

 ( )
( )
( )

( ) ( )
( ) ( )

= =
+

T s
Y s
R s

G s G s
G s G s
c

c1
, (12.18)
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Section 12.5 The Design of Robust Control Systems 893

and

 
( )
( )

( )
( ) ( )

=
+

Y s
T s

G s
G s G sd c1

. (12.19)

Note that both the reference and disturbance transfer functions have the same 
denominator; in other words, they have the same characteristic equation—namely,

 ( ) ( ) ( )+ = + =G s G s L sc1 1 0. (12.20)

Recall that the sensitivity of ( )T s  with respect to ( )G s  is

 
1

1
.S

G s G sG
T

c ( ) ( )
=

+
 (12.21)

Equation (12.21) shows that for low sensitivity, we desire a high value of loop gain 
ω( )L j . But it is known that a high gain can lead to instability and amplification of 

the measurement noise. Thus, we seek the following:

1. ( )T s  with wide bandwidth.

2. Large loop gain ( )L s  at low frequencies.

3. Small loop gain ( )L s  at high frequencies.

Setting the design of robust systems in frequency-domain terms, we scale a 
compensator ( )G sc  such that the closed-loop sensitivity is less than some tolerance 
value. But sensitivity minimization involves finding a compensator such that the 
closed-loop sensitivity is minimized.

The gain and phase margin problem is to find a compensator to achieve  prescribed 
gain and phase margins. The disturbance rejection problem and measurement noise 
attenuation problem seeks a solution with high loop gain at low frequencies and 
low loop gain at high frequencies, respectively. For the frequency-domain specifica-
tions, we seek the following conditions for the Bode plot of ω ω( ) ( )G j G jc ,  shown in 
Figure 12.12:

1. For relative stability, the loop gain must have not more than a −20-dB decade  slope 
at or near the crossover frequency ωc.

2. Steady-state accuracy and measurement noise rejection achieved by the low gain at 
high frequency.

3. Disturbance rejection by a high gain over low frequencies.

4. Accuracy over a bandwidth ωB ,  by maintaining the loop gain above a prescribed 
level.

-

+
R(s) Y(s)

Td(s)

+

+
G(s)Gc(s)

FIGURE 12.11
A system with a 
disturbance.
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894 Chapter 12  Robust Control Systems

Using the root sensitivity concept, we can state that Sa
r  must be minimized while 

attaining ( )T s  with dominant roots that will provide the appropriate  response and 
minimize the effect of ( )T sd . As an example, let ( ) =G s Kc  and ( )( ) ( )= +G s s s1 / 1  
for the system in Figure 12.11. This system has two roots, and we select a gain K so 
that ( ) ( )Y s T sd/  is minimized, SK

r  is minimized, and ( )T s  has desirable dominant 
roots. The sensitivity is

 S
dr
dK

K
r

ds
dK

K
r

K
r

s r
,= ⋅ = ⋅

=
 (12.22)

and the characteristic equation is

 ( )+ + =s s K1 0. (12.23)

Therefore, ( )= − +dK ds s2 1 , since ( )= − +K s s 1 . We then obtain

 S
s

s s
s

K
r

s r

1
2 1

 
1

.
( )

=
−

+
− +

=
 (12.24)

When ζ < 1, the roots are complex and = − + −r j K0.5
1
2

4 1. Then,

 S
K

KK
r

4 1
.

1/2

=
−







  (12.25)

The magnitude of the root sensitivity is shown in Figure 12.13 for =K 0.2  to  
=K 5. The percent overshoot to a step is also shown. As illustrated in Figure 12.13, 

select K ≈ 1.25  yields a near minimum sensitivity while maintaining good perfor-
mance for the step response. To reduce the root sensitivity while simultaneously 
minimizing the effect of disturbances, we can use the design procedure as follows:

1. Sketch the root locus of the compensated system with ( )G sc  chosen to attain the 
 desired location for the dominant roots.

2. Maximize the gain of ( )G sc  to reduce the effect of the disturbance.

3. Determine SK
r  and attain the minimum value of the root sensitivity consistent with the 

transient response required, as described in Step 1.

20 log 0GcG 0

Minimum performance
bounds

High gains for good performance
(command following)

Stable crossover
(gain and phase margins)

Robustness
bounds

Low gains to reduce
sensitivity to sensor

noise and model uncertainty

vc

FIGURE 12.12
Bode plot for 20 log 

.ω ω( ) ( )G j G jc
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Section 12.5 The Design of Robust Control Systems 895

EXAMPLE 12.6 Sensitivity and compensation

Consider the system in Figure 12.11 when ( ) =G s s1 2  and ( )G sc  is to be selected 
by frequency response methods. Therefore, the compensator is to be selected to 
achieve an appropriate gain and phase margin while minimizing sensitivity and the 
effect of the disturbance. Thus, we choose

 
( )

( ) =
+

+
G s

K s z

s p
c

1

1
. (12.26)

Choose =K 10  to reduce the effect of the disturbance. To attain a phase margin 
of 45°, select =z 2.0  and =p 12.0. The compensated diagram is shown in Figure 
12.14. The closed-loop bandwidth is ω ω=B c1.6 . Thus, we will increase the band-
width by using the compensator.

The sensitivity at ωc  is

 ω
ω ω ω ω

( )
( ) ( )

=
+ =

1
1

.S j
G j G jG

T
c

c c

 (12.27)
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FIGURE 12.13
Sensitivity and 
percent overshoot 
for a second-order 
system.
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896 Chapter 12  Robust Control Systems

To estimate SG
T ,  we recall that the Nichols chart enables us to obtain

 T j
G j G j

G j G j
c

c1
.ω

ω ω
ω ω

( ) ( ) ( )
( ) ( )

=
+

 (12.28)

We can plot points of ω ω( ) ( )G j G jc  on the Nichols chart and then read T jω( )  from 
the chart. Then, we have

 S j
T j

G j G jG
T

c
,1

1

1 1
ω

ω

ω ω
( )

( )
( ) ( )

=  (12.29)

where 1ω  is chosen at a frequency below ωc. The Nichols chart for the com-
pensated system is shown in Figure 12.15. For c 2.5 2,1ω ω= =  we have 

T j dB20 log 2.5 1ω( ) =  and G j G jc20 log 9 dB.1 1ω ω( ) ( ) =  Therefore,

S j
T j

G j G jc

1.33
2.8

0.47.1
1

1 1
ω

ω

ω ω
( )

( )
( ) ( )

= = =  ■

12.6 THE DESIGN OF ROBUST PID-CONTROLLED SYSTEMS

The PID controller has the transfer function

G s K
K
s

K sc P
I

D .( ) = + +

The popularity of PID controllers can be attributed partly to their robust perfor-
mance over a wide range of operating conditions and partly to their functional sim-
plicity, which allows engineers to operate them in a straightforward manner. To 
implement the PID controller, three parameters must be determined for the given 
process: proportional gain, integral gain, and derivative gain [31].

Consider the PID controller

G s K
K
s

K s
K s K s K

s
c P

I
D

D P I
2

( ) = + + =
+ +

 
K s as b

s
K s z s z

s
D D ,

2
1 2( ) ( )( )

=
+ +

=
+ +

 (12.30)

where a K KP D=  and b K KI D=  Therefore, a PID controller introduces a trans-
fer function with one pole at the origin and two zeros.

Recall that a root locus begins at the poles and ends at the zeros. If we have a 
system as shown in Figure 12.16 with

( )
( )( )

=
+ +

G s
s s

1
2 5

,

and we use a PID controller with complex zeros, we can plot the root locus as shown 
in Figure 12.17. As the gain KD  of the controller is increased, the complex roots 
approach the zeros. The closed-loop transfer function is
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1

T s
G s G s G s

G s G s
c p

c
( )

( ) ( ) ( )
( ) ( )

=
+

 
K s z s z

s r s r s r
G s

K G s

s r
D

p
D pˆ

ˆ
  ,1 1

2 1 1 2
�

( )
( )( )

( )( )
( )

( )
=

+ +
+ + + +

 (12.31)
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898 Chapter 12  Robust Control Systems

because the zeros and the complex roots are approximately equal r z .1 1( )≈  Setting 
1,G sp ( ) =  we have

 T s
K

s r
K

s K
D D

D2
( ) =

+
≈

+
 (12.32)

when KD 1.�  The only limiting factor is the allowable magnitude of ( )U s  
(Figure 12.16) when KD  is large. If KD  is 100, the system has a fast response 
and zero steady-state error. Furthermore, the effect of the disturbance is reduced 
significantly.

In general, we note that PID controllers are particularly useful for reducing 
steady-state error and improving the transient response when ( )G s  has one or two 
poles (or may be approximated by a second-order process).

The main problem in the selection of the three PID controller parameters is 
that these coefficients do not readily translate into the desired performance and ro-
bustness characteristics that the control system designer has in mind. Several rules 
and methods have been proposed to solve this problem. In this section, we consider 
several design methods using root locus and performance indices.

The first design method uses the ITAE performance index. Hence, we select the 
three PID coefficients to minimize the ITAE performance index, which produces 

-

+
R(s) Y(s)

Ea(s) U(s)

Td(s)

+

+
Gp(s) Gc(s) G(s)

FIGURE 12.16
Feedback control 
system with a 
 desired input R s( )  
and an undesired 
input Td s .( )

j2

j4

- j2

- j4

-r2

-6-8-10 -4 -2

-z1
-r1

KD
increasing

z1-
r1-

FIGURE 12.17
Root locus with 

z j− = − +6 2.1

M12_DORF2374_14_GE_C12.indd   898M12_DORF2374_14_GE_C12.indd   898 15/09/21   9:46 AM15/09/21   9:46 AM



Section 12.6 The Design of Robust PID-Controlled Systems 899

an excellent transient response to a step or a ramp. The design procedure consists 
of three steps:

1. Select the ωn  of the closed-loop system by specifying the settling time.

2. Determine the three coefficients using the appropriate optimum equation (Table 5.3 
and Table 5.4) and the ωn  of step 1 to obtain ( )G sc .

3. Determine a prefilter G sp ( )  so that the closed-loop system transfer function, ( )T s , 
does not have any zeros.

EXAMPLE 12.7 Robust control of temperature

Consider a temperature controller with a control system as shown in Figure 12.16 
and a process

 ( )
( )

=
+

G s
s

1

1
.2  (12.33)

If ( ) =G sc 1, the steady-state error is ess = 50%,  and the settling time (with a 2% 
criterion) is Ts = 3.2 s for a step input. We want to obtain an optimum ITAE per-
formance for a step input and a settling time of Ts … 0.5 s. Using a PID controller, 
we have

 ( )
( )
( )

( ) ( )
( ) ( )

= =
+

T s
Y s
R s

G s G s
G s G s
c

c1
1

K s K s K
s K s K s K

D P I

D P I2 1
,

2

3 2( ) ( )
=

+ +
+ + + + +

 (12.34)

where 1.G sp ( ) =  The optimum coefficients of the characteristic equation for ITAE 
are

 s s sn n n1.75 2.15 0.3 2 2 3ω ω ω+ + + =  (12.35)

We need to select ωn  in order to meet the settling time requirement. Since 
ζω( )=Ts n4  and ζ  is unknown but near 0.8, we set ω =n 10. Then, equating the 

denominator of Equation (12.34) to Equation (12.35), we obtain the three coeffi-
cients as K KP D214,   15.5,= =  and KI 1000.=

Then Equation (12.34) becomes

 ( ) =
+ +

+ + +
T s

s s
s s s

15.5 214 1000
17.5 215 1000

1

2

3 2

 
( )( )

=
+ + + −
+ + +

s j s j

s s s

15.5 6.9 4.1 6.9 4.1
17.5 215 1000

.
3 2

 (12.36)

The response of this system to a step input has a percent overshoot of P.O. = 33.9%, 
as recorded in Table 12.2.

We select a prefilter G sp ( ) so that we achieve the desired ITAE response with

 
1

1000
17.5 215 1000

.
3 2

T s
G s G s G s

G s G s s s s
c p

c
( )

( ) ( ) ( )
( ) ( )

=
+

=
+ + +

 (12.37)
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900 Chapter 12  Robust Control Systems

Table 12.2 Results for Example 12.7

Controller ( ) =G sc 1 PID and  
( ) =G sp 1

PID with  
( )G sp  Prefilter

Percent overshoot 4.2% 33.9% 1.9%
Settling time (seconds) 4.2 0.6 0.75
Steady-state error 50% 0.0% 0.0%
Disturbance error 52% 0.4% 0.4%

Therefore, we require that

 G s
s s

p
64.5

13.8 64.52( ) =
+ +

 (12.38)

in order to eliminate the zeros in Equation (12.36) and bring the overall numerator 
to 1000. The response of the system ( )T s  to a step input is indicated in Table 12.2. 
The system has a small percent overshoot, a settling time of Ts … 0.5 s, and zero 
steady-state error. Furthermore, for a disturbance ( ) =T s sd 1 ,  the maximum value 
of ( )y t  due to the disturbance is 0.4% of the magnitude of the disturbance. This is a 
very favorable design.

Let us consider the system when the plant varies significantly, so that

 
τ

( )
( )

=
+

G s
K

s 1
,2  (12.39)

where τ≤ ≤0.5 1 and ≤ ≤K1 2. We want to investigate the behavior using the 
ITAE optimum system with the prefilter. The objective is to have an overshoot of 
P.O. … 4% and a settling time (with a 2% criterion) of Ts … 2 s while ( )G s  can attain 
any value in the range indicated.

We then obtain the step response for the four conditions: τ τ τ= = = = = =K K K1,   1;   0.5, 1;   1,   2; 
τ τ τ= = = = = =K K K1,   1;   0.5, 1;   1,   2;  and τ = =K0.5,   2. The results are summarized in 

Figure 12.18. This is a very robust system. ■

The value of ωn  that can be chosen will be limited by considering the maxi-
mum allowable ( )u t , where ( )u t  is the output of the controller, as shown in Figure 
12.16. As an example, consider the system in Figure 12.16 with a PID controller, 

( )( ) ( )= +G s s s1 1 , and the necessary prefilter ( )G sp  to achieve ITAE perfor-
mance. If we select ω =n 10,  20,  and 40, the maximum value of ( )u t  is as recorded 
in Table 12.3. If we wish to limit ( )u t , we need to limit ωn. Thus, we are limited in 
the settling time we can achieve.

12.7 THE ROBUST INTERNAL MODEL CONTROL SYSTEM

The internal model control system is shown in Figure 12.19. We now consider the 
use of the internal model design with special attention to robust system perfor-
mance. The internal model principle states that if ( ) ( )G s G sc  contains ( )R s  then 

( )Y s  will track ( )R s  asymptotically (in the steady state), and the tracking is robust.
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Section 12.7 The Robust Internal Model Control System 901

Consider a simple system with ( ) =G s s1 , for which we seek a ramp response 
with a steady-state error of zero. A PI controller is sufficient, and we let K = 0 (no 
state variable feedback). Then we have

 G s G s K
K
s s

K s K

s
c p

I p I1
.

2( ) ( ) = +






 =

+
 (12.40)

Note that for a ramp, R s s1 ,2( ) =  which is contained as a factor of Equation 
(12.40), and the closed-loop transfer function is

 T s
K s K

s K s K
p I

p I
.

2( ) =
+

+ +
 (12.41)

Table 12.3 Maximum Value of Plant Input

ωn
10 20 40

( )u t  maximum for ( ) =R s s1 35 135 550

Settling time (seconds) 0.9 0.5 0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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1

1.2
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y(t)

K = 1, t = 0.5

K = 1, t = 1
K = 2, t = 1

K = 2, t = 0.5

FIGURE 12.18
Response of the 
closed loop system 
in the presence of 
uncertainty in K 
and τ. 

- -

+ +
R(s) Y(s)Gc(s)

Ea(s)
G(s)

Process

K x
FIGURE 12.19
The internal model 
control system.
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902 Chapter 12  Robust Control Systems

Using the ITAE specifications for a ramp response, we require that

 T s
s

s s
n n

n n

3.2
3.2

.
2

2 2
ω ω

ω ω
( ) =

+
+ +

 (12.42)

We select ωn  to satisfy a specification for the settling time. For a settling time (with a 
2% criterion) of Ts = 1 s, we select ω =n 5. Then we require =Kp 16 and =KI 25. 
The  response of this system settles in Ts = 1 s and then tracks the ramp with zero 
steady-state error. If this system (designed for a ramp input) receives a step input, the 
response has a percent overshoot of P.O. = 5% and a settling time of Ts = 1.5 s. This 
system is very robust to changes in the plant. For example, if ( ) =G s K s changes gain 
so that K varies by ±50%, the change in the ramp  response is insignificant.

EXAMPLE 12.8 Design of an internal model control system

Consider the system of Figure 12.20 with state variable feedback and a compensator 
( )G sc . We wish to track a step input with zero steady-state error. Here, we select a 

PID controller for ( )G sc . We then have

G s
K s K s K

s
c

D P I ,
2

( ) =
+ +

and ( ) ( )G s G sc  will contain ( ) =R s s1 ,  the input command. Note that we feed back 
both state variables and add these additional signals after ( )G sc  in order to retain 
the integrator in ( )G sc .

The goal is to achieve a settling time (to within 2% of the final value) of Ts … 1 
second and a deadbeat response while retaining a robust response. Here, we assume 
that the two poles of ( )G s  can change by ±50%. Then the worst-case condition is

( )
( )( )

=
+ +

G s
s s

ˆ 1
0.5 1

.

One design approach is to design the control for this worst-case condition. Another 
approach, which we use here, is to design for the nominal ( )G s  and one-half the de-
sired settling time. Then we expect to meet the settling time requirement and attain 
a very fast, highly robust system. Note that the prefilter G sp ( ) is used to attain the 
desired form for ( )T s .

- -

+ +
R(s) Y(s)

Process G(s)

X2(s) X1(s)
Gc(s)Gp(s)

1
s + 2

Ka Kb

-
1

s + 1

FIGURE 12.20
An internal model 
control with state 
variable feedback 
and Gc s( ) .
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Section 12.8 Design Examples 903

The response desired is deadbeat, so we use a third-order transfer function as

 T s
s s s

n

n n n1.9 2.20
,

3

3 2 2 3
ω

ω ω ω
( ) =

+ + +
 (12.43)

and the settling time (with a 2% criterion) is 4/ .ω=Ts n  For a settling time of  
T = 0.5 s, we use ω =n 8.

The closed-loop transfer function of the system of Figure 12.20 with the appro-
priate ( )G sp  is

 T s
K

s K K s K K K s K
I

D b P a b I3 2 2
.

3 2( )
( ) ( )

=
+ + + + + + + +

 (12.44)

We let K K K Ka b P I10,   2,   127.6,   527.5,= = = =  and KD 10.35.=  Note that ( )T s  
could be achieved with other gain combinations.

The step response of this system has a deadbeat response with a percent over-
shoot of P.O. = 1.65% and a settling time of Ts = 0.5 s. When the poles of ( )G s  
change by ±50%, the percent overshoot changes to P.O. = 1.86%, and the settling 
time is Ts = 0.95 s. This is an outstanding design of a robust deadbeat response 
system. ■

12.8 DESIGN EXAMPLES

In this section we present two illustrative examples. The first example illustrates 
the design of two degree-of-freedom controllers (that is, two separate controllers) 
for an ultra-precision diamond turning machine. In the second design example, we 
consider the practical problem of designing a controller in the presence of an un-
certain time delay. The specific problem under investigation is a PID controller for 
a digital audio tape drive. The design process is highlighted with an emphasis on 
robustness.

EXAMPLE 12.9 Ultra-precision diamond turning machine

The design of an ultra-precision diamond turning machine has been studied at 
Lawrence Livermore National Laboratory. This machine shapes optical devices 
such as mirrors with ultra-high precision using a diamond tool as the cutting  
device. In this discussion, we will consider only the z-axis control. Using fre-
quency response identification with sinusoidal input to the actuator we deter-
mined that

 ( ) =
+

G s
s
4500

60
.  (12.45)

The system can accommodate high gains, since the input command is a series of 
step commands of very small magnitude (a fraction of a micron). The system has 
an outer loop for position feedback using a laser interferometer with an accuracy of 
0.1 micron −(10 m).7  An inner feedback loop is also used for velocity feedback, as 
shown in Figure 12.21.
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904 Chapter 12  Robust Control Systems

We want to select the controllers, ( )G s1  and ( )G s ,2  to obtain an overdamped, 
highly robust, high-bandwidth system. The robust system must accommodate 
changes in ( )G s  due to varying loads, materials, and cutting requirements. Thus, we 
seek a large phase margin and gain margin for the inner and outer loops, and low 
root sensitivity. The specifications are summarized in Table 12.4.

Since we want zero steady-state error for the velocity loop, we propose a veloc-
ity loop controller ( ) ( ) ( )=G s G s G s ,2 3 4  where ( )G s3  is a PI controller and ( )G s4  is 
a phase-lead compensator. Thus, we have

G s G s G s K
K
s

K s
K

s
p

I 1

1  
2 3 4

4

4α
α

( ) ( ) ( )= = +






 ⋅

+

+








and choose K K KP I/ 0.00532,   0.00272,4= =  and α = 2.95. We now have

G s K
s

s
s
s

P
188 368

1085
.2 ( ) =

+
⋅

+
+

The root locus for ( ) ( )G s G s2  is shown in Figure 12.22. When =KP 2, we have 
the velocity closed-loop transfer function given by

 
( ) ( )

( )
( )
( )

( )( )
( )( )

= =
+ +

+ + +
≈

+
T s

V s
U s

s s
s s s s

9000 188 368
205 305 10

10
10

,2 4

4

4
 (12.46)

- -

+ +U(s)
R(s)

Position
command
(microns)

V(s)
Velocity Y(s)

Position

Position
controller

G1(s)

Velocity
controller

G2(s) 1
s

Actuator
and cutter

G(s)

Laser
interferometer

1

Tachometer

1

FIGURE 12.21
Turning machine 
control system.

Table 12.4 Specifications for Turning Machine Control System

Transfer Function

Specification Velocity, ( ) ( )V s U s Position ( ) ( )Y s R s

Minimum bandwidth 950 rad/s 95 rad/s
Steady-state error to a step 0 0

Minimum damping ratio ζ 0.8 0.9

Maximum root sensitivity SK
r 1.0 1.5

Minimum phase margin 90° 75°
Minimum gain margin 40 dB 60 dB
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FIGURE 12.22
Root locus for 
 velocity loop as  
Kp varies.

Table 12.5 Design Results for Turning Machine Control System

Achieved Result Velocity Position  
Transfer

Position Transfer  
Function 

Closed-loop bandwidth 4000 rad/s 1000 rad/s
Steady-state error 0 0

Damping ratio, ζ 1.0 1.0

Root sensitivity, SK
r 0.92 1.2

Phase margin 93° 85°
Gain margin Infinite 76 dB

which is a large-bandwidth system. The actual bandwidth and root sensitivity are 
summarized in Table 12.5. Note that we have exceeded the specifications for the 
velocity transfer function.

We propose a phase-lead compensator for the position loop of the form

α
α

( ) =
+

+








G s K
K s
K

s
 

1

1  
,1 1

5

5

and we choose α = 2.0 and =K 0.01855  so that

( )
( )

=
+

+
G s

K s
s

54
108

.1
1

We then plot the root locus for the loop transfer function

( ) ( ) ( )= ⋅ ⋅L s G s T s
s
1

.1 2

If we use the approximate ( )T s2  of Equation (12.46), we have the root locus of 
Figure 12.23(a). Using the actual ( )T s ,2  we get the close-up of the root locus shown 
in Figure 12.23(b). We select KP 1000=  and achieve the actual results for the total 
system transfer function as recorded in Table 12.5. The total system has a high phase 
margin, has a low sensitivity, and is overdamped with a large bandwidth. This system 
is very robust. ■
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906 Chapter 12  Robust Control Systems

EXAMPLE 12.10 Digital audio tape controller

Consider the feedback control system shown in Figure 12.24, where

( ) = −G s ed
Ts .

The exact value of the time delay is uncertain, but is known to lie in the interval 
≤ ≤T T T .1 2  Define

( ) ( )= −G s e G sm
Ts .

Then

( )( ) ( ) ( ) ( ) ( )− = − = −− −G s G s e G s G s e G sm
Ts Ts 1 ,

300
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0

-100
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-300
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Im
ag
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Real axis
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-104

(a)

(b)

jv

s

FIGURE 12.23
The root locus for 

>K 01  for (a) 
overview and (b) 
close-up near origin 
of the s-plane.
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or
( )

( )
− = −−G s

G s
em Ts1 1.

If we define

( ) = −−M s e Ts 1,

then we have

 ( )( ) ( ) ( )= +G s M s G sm 1 . (12.47)

In the development of a robust stability controller, we would like to represent 
the time-delay uncertainty in the form shown in Figure 12.25 where we need to de-
termine a function ( )M s  that approximately models the time delay. This will lead 
to the establishment of a straightforward method of testing the system for stability 
robustness in the presence of the uncertain time-delay. The uncertainty model is 
known as a multiplicative uncertainty representation.

Since we are concerned with stability, we can consider ( ) =R s 0. Then we can ma-
nipulate the block diagram in Figure 12.25 to obtain the form shown in Figure 12.26.  
Using the small gain theorem, we have the condition that the closed-loop system is 
stable if

ω
ω ω

ω( )
( ) ( )

< +1
1

for all  .M j
G j G jc

R(s) Y(s)Gc(s) G(s)

Controller

e-Ts

Time delay

+

-

Process

FIGURE 12.24
A feedback system 
with a time delay in 
the loop.

R(s) Y(s)Gc(s) G(s)

Controller

+

+

+

-

Process
M(s)

z e

FIGURE 12.25
Multiplicative 
uncertainty 
representation.

M(s)

z e

1 + Gc(s)G(s)

-Gc(s)G(s)

FIGURE 12.26
Equivalent block 
diagram depiction 
of the multiplicative 
uncertainty.
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908 Chapter 12  Robust Control Systems

The challenge is that the time delay T is not known exactly. One approach to 
solving the problem is to find a weighting function, denoted by ( )W s , such that

 e W j T Tj T 1 for all   and T .1 2ω ω( )− < ≤ ≤ω−  (12.48)

If ( )W s  satisfies the inequality in Equation (12.48), it follows that

 M j W j .ω ω( ) ( )<  

Therefore, the robust stability condition can be satisfied by

 W j
G j G jc

1
1

for all  .ω
ω ω

ω( )
( ) ( )

< +  (12.49)

This is a conservative bound. If the condition in Equation (12.49) is satisfied, then sta-
bility is guaranteed in the presence of any time delay in the range ≤ ≤T T T1 2  [5, 32].  
If the condition is not satisfied, the system may or may not be stable.

Suppose we have an uncertain time delay that is known to lie in the range 
≤ ≤T0.1 1. We can determine a suitable weighting function ( )W s  by plotting  

the magnitude of −ω−e j T 1, as shown in Figure 12.27 for various values of  
T in  the range ≤ ≤T T T .1 2  A reasonable weighting function obtained by trial 
and error is

( ) =
+

W s
s

s
2.5

1.2 1
.

10-2 10-1 100 101 102 103
0

0.5

1

1.5

2

2.5

Frequency (rad/s)

M
ag

ni
tu

de

T = 0.1 s

T = 0.5 sT = 1 s

0W( jv) 0

FIGURE 12.27
Magnitude plot 
of 1−ω−e j T  for 

=T 0.1,  0.5,  
and 1.
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Section 12.8 Design Examples 909

This function satisfies the condition

e W jj T 1 .ω( )− <ω−

Keep in mind that the selection of the weighting function is not unique.
A digital audio tape (DAT) stores 1.3 gigabytes of data in a package the size 

of a credit card—roughly nine times more than a half-inch-wide reel-to-reel tape 
or quarter-inch-wide cartridge tape. A DAT sells for about the same amount 
as a floppy disk, even though it can store 1000 times more data. A DAT can 
record for two hours (longer than either reel-to-reel or cartridge tape), which 
means that it can run longer unattended and requires fewer changes and hence 
fewer interruptions of data transfer. DAT gives access to a given data file within 
20 seconds, on the average, compared with several minutes for either cartridge or 
reel-to-reel tape [2].

The tape drive electronically controls the relative speeds of the drum and tape 
so that the heads follow the tracks on the tape, as shown in Figure 12.28. The con-
trol system is complex because motors have to be accurately controlled: capstan, 
take-up and supply reels, drum, and tension control. The elements of the design 
process emphasized in this example are highlighted in Figure 12.29.

Consider the speed control system shown in Figure 12.30. The motor and load 
transfer function varies because the tape moves from one reel to the other. The 
transfer function is

 
( )( )

( ) =
+ +

G s
K

s p s p
m ,

1 2
 (12.50)

where nominal values are 4, 1,1= =K pm  and =p 4.2  However, the range of vari-
ation is 3 5,  0.5 1.5,1≤ ≤ ≤ ≤K pm  and ≤ ≤p3.5 4.5.2  Thus, the process belongs 
to a family of processes, where each member corresponds to different values of 

,   ,1K pm  and p .2  The design goal is

Design Goal
Control the DAT speed to the desired value in the presence of significant 
process uncertainties.

Take-up
reel

Supply
reel

Write
head

Guide roller (out)

Guide roller (in)

Fixed post

Capstan

Guide roller

Fixed post
Pinch
roller

Fixed post

Tension post

Fixed post

Tape

Read
head

Rotary drum
y(t)

FIGURE 12.28
Digital audio tape 
driver mechanism.
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910 Chapter 12  Robust Control Systems

See Equation (12.50).

See Equation (12.51).

See Figures 12.32–12.34.

Establish the system configuration

Obtain a model of the process, the
actuator, and the sensor

If the performance meets the specifications,
then finalize the design.

If the performance does not meet the
specifications, then iterate the configuration. 

Identify the variables to be controlled

Establish the control goals

Topics emphasized in this example

Write the specifications

Optimize the parameters and
analyze the performance

Describe a controller and select key
parameters to be adjusted

Control the DAT speed
to the desired value

in the presence of significant
plant uncertainties.

DAT speed, Y(s).

Design specifications:
   DS1: P.O. 6 13% and Ts 6 2s
   DS2: Robust stability

See Figures 12.28 and 12.30.

FIGURE 12.29 Elements of the control system design process emphasized in this digital audio 
tape speed control design.

R(s) Y(s)Gc(s) G(s)

Controller

+

-

Motor and load

FIGURE 12.30
Block diagram of 
the digital audio 
tape speed control 
system.

Associated with the design goal we have the variable to be controlled defined as

Variable to Be Controlled
DAT speed ( )Y s .

The design specifications are

Design Specifications

DS1  Percent overshoot of P.O. ≤ 13% and settling time of Ts ≤ 2 s for a unit 
step input.

DS2  Robust stability in the presence of a time delay at the plant input. The time 
delay value is uncertain but known to be in the range ≤ ≤T0 0.1.
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Section 12.8 Design Examples 911

Design specification DS1 must be satisfied for the entire family of plants. Design speci-
fication DS2 must be satisfied by the nominal process ( )= = =K p pm 4,   1,   4 .1 2

The following constraints on the design are given:

	❏ Fast peak time requires that an overdamped condition is not acceptable.

	❏ Use a PID controller:

 G s K
K
s

K sc P
I

D .( ) = + +  (12.51)

	❏ K Km D 20≤  when Km 4.=

The key tuning parameters are the PID gains:

Select Key Tuning Parameters
K KP I,   ,  and KD.

Since we are constrained to have K Km D 20≤  when Km 4,=  we must select 
≤KD 5. We will design the PID controller using nominal values for K pm,   ,1  and 

p .2  We then analyze the performance of the controlled system for the various val-
ues of the process parameters, using a simulation to check that DS1 is satisfied. The 
nominal process is given by

( )
( )( )

=
+ +

G s
s s

4
1 4

.

The closed-loop transfer function is

T s
K s K s K

s K s K s K
D P I

D P I

4 4 4
5 4 4 4 4

.
2

3 2( )
( ) ( )

=
+ +

+ + + + +

If we choose KD 5,=  then we write the characteristic equation as

s s s K s KP I25 4 4 0,3 2 ( )+ + + + =

or

1
4

25 4
0.

2

K s K K

s s s
P I P

( )
( )

+
+

+ +
=

Per specifications, we try to place the dominant poles in the region defined by 
ζω >n 2 and ζ > 0.55. We need to select a value of K KI P ,τ =  and then we can 
plot the root locus with the gain KP4  as the varying parameter. After several iter-
ations, we choose a reasonable value of τ = 3. The root locus is shown in Figure 
12.31. We determine that KP4 120=  represents a valid selection since the roots lie 
inside the desired performance region. We obtain KP 30,=  and K KI P 90.τ= =  
The PID controller is then given by

 ( ) = + +G s
s

sc 30
90

5 .  (12.52)

The step response (for the process with nominal parameter values) is shown in 
Figure 12.32. A family of responses is shown in Figure 12.33 for various values of 
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Root locus for 
the DAT system 
with =KD 5  and 
τ = =K KI P 3.
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FIGURE 12.32
Unit step  response for 
the DAT system with 

= =K KP D30, 5,   
and =KI 90.
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Section 12.8 Design Examples 913

K pm ,   ,1  and p .2  None of the responses suggests a percent overshoot over the spec-
ified value of P.O. = 13%, and the settling times are all under the Ts ≤ 2 s spec-
ification as well. As we can see in Figure 12.33, all of the tested processes in the 
family are adequately controlled by the single PID controller in Equation (12.52). 
Therefore DS1 is satisfied for all processes in the family.

Suppose the system has a time delay at the input to the process. The actual 
time delay is uncertain but known to be in the range ≤ ≤T0 0.1 s. Following the 
method discussed previously, we determine that a reasonable function ( )W s  which 
bounds the plots of −ω−e j T 1  for various values of T is

( ) =
+

W s
s

s
0.29

0.28 1
.

To check the stability robustness property, we need to verify that

 W j
G j G jc

1
1

for all  .ω
ω ω

ω( )
( ) ( )

< +  (12.53)

The plot of both W jω( )  and 
G j G jc

1
1

ω ω( ) ( )
+  is shown in Figure 12.34. It can be 

seen that the condition in Equation (12.53) is indeed satisfied. Therefore, we expect 
that the nominal system will remain stable in the presence of time-delays up to 0.1 
seconds. ■
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0.6

0.8
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1.4
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FIGURE 12.33
A family of step 
responses for the 
DAT system for 
 various values 
of the process 
 parameters  
K pm,   ,1  and p .2
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914 Chapter 12  Robust Control Systems

12.9 THE PSEUDO-QUANTITATIVE FEEDBACK SYSTEM

Quantitative feedback theory (QFT) uses a controller, as shown in Figure 12.35, to 
achieve robust performance. The goal is to achieve a wide bandwidth for the closed-
loop transfer function with a high loop gain K. Typical QFT design methods use 
graphical and numerical methods in conjunction with the Nichols chart. Generally, 
QFT design seeks a high loop gain and large phase margin so that robust perfor-
mance is achieved [24–26, 28].

In this section, we pursue a simple method of achieving the goals of QFT with 
an s-plane, root locus approach to the selection of the gain K and the compensator
G sc( ). This approach, dubbed pseudo-QFT, follows these steps:

1. Place the n poles and m zeros of ( )G s  on the s-plane for the nth order ( )G s . Also, add 
any poles of G sc( ).

2. Starting near the origin, place the zeros of G sc( ) immediately to the left of each of the 
( )−n 1  poles on the left-hand s-plane. This leaves one pole far to the left of the left-
hand side of the s-plane.

3. Increase the gain K so that the roots of the characteristic equation (poles of the closed-
loop transfer function) are close to the zeros of G sc( ) ( )G s .

This method introduces zeros so that all but one of the root loci end on fi-
nite zeros. If the gain K is sufficiently large, then the poles of ( )T s  are almost 
equal to the zeros of G sc( ) ( )G s . This leaves one pole of ( )T s  with a significant 
partial fraction residue and the system with a phase margin of approximately 90° 
(actually about 85°).

10210110010-110-2
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M
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0W( jv) 0

Gc( jv)G( jv)
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1 P+PP

FIGURE 12.34
Stability  robustness 
to a time delay 
of uncertain 
magnitude.
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Section 12.9 The Pseudo-Quantitative Feedback System 915

EXAMPLE 12.11 Design using the pseudo-QFT method

Consider the system of Figure 12.35 with

( )( )
( ) =

+ +
G s

s p s p
1

,
1 2

where the nominal case is =p 11  and =p 2,2  with ±50% variation. The worst case 
is with =p 0.51  and =p 1.2  We wish to design the system for zero steady-state 
error for a step input, so we use the PID controller

G s
s z s z

s
c( ) ( )( )

=
+ +

.1 2

We then invoke the internal model principle, with ( ) =R s s1  incorporated within
( ) ( )G s G sc . Using Step 1, we place the poles of on the s-plane, as shown in Figure 

12.36. There are three poles (at = −s 0,   1,  and −2), as shown. Step 2 calls for plac-
ing a zero to the left of the pole at the origin and at the pole at = −s 1, as shown in 
Figure 12.36.

The compensator is thus

 G s
s s

s
c( ) ( )( )

=
+ +0.8 1.8

.  (12.54)

R(s) Y(s)K Gc(s) G(s)
-

+

FIGURE 12.35
Feedback system.

-2-3 -1

jv

s
-1.8 -0.8

FIGURE 12.36
Root locus for

( ) ( )KGc s G s .
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916 Chapter 12  Robust Control Systems

We select =K 100, so that the roots of the characteristic equation are close to the 
zeros. The closed-loop transfer function is

 ( )
( )( )

( )( )( )
=

+ +
+ + +

≈
+

T s
s s

s s s s
100 0.80 1.80
0.798 1.797 100.4

100
100

. (12.55)

This closed-loop system provides a fast response and possesses a phase margin 
of P.M. = 85°. When the worst-case conditions are realized ( =p 0.51  and )=p 12 , 
the performance remains essentially unchanged. Pseudo-QFT design  results in very 
robust systems. ■

12.10 ROBUST CONTROL SYSTEMS USING CONTROL DESIGN SOFTWARE

In this section, we investigate robust control systems using control design software. 
In particular, we will consider the commonly used PID controller in the feedback 
control system shown in Figure 12.16. Note that the system has a prefilter ( )G sp .

The objective is to choose the PID parameters KP, KI, and KD to meet 
the performance specifications and have desirable robustness properties. 
Unfortunately, it is not immediately clear how to choose the parameters in the 
PID controller to obtain certain robustness characteristics. An illustrative exam-
ple will show that it is possible to choose the parameters iteratively and verify 
the robustness by simulation. Using the computer helps in this process, because 
the entire design and simulation can be automated using scripts and can easily be 
executed repeatedly.

EXAMPLE 12.12 Robust control of temperature

Consider the feedback control system in Figure 12.16, where

( )
( )

=
+

G s
s c

1
,

0
2

and the nominal value is =c 1,0  and G sp 1.( ) =  We can design a compensator 
based on =c 10  and check robustness by simulation. Our design specifications are

1. A settling time (with a 2% criterion) ≤Ts 0.5 s, and

2. An optimum ITAE performance for a step input.

For this design, we will not use a prefilter to meet specification (2), but will 
instead show that acceptable performance (i.e., low percent overshoot) can be 
 obtained by increasing a cascade gain.

The closed-loop transfer function is

 T s
K s K s K

s K s K s K
D P I

D P I2 1
.

2

3 2( )
( ) ( )

=
+ +

+ + + + +
 (12.56)

M12_DORF2374_14_GE_C12.indd   916M12_DORF2374_14_GE_C12.indd   916 15/09/21   9:47 AM15/09/21   9:47 AM



Section 12.10 Robust Control Systems Using Control Design Software 917

The associated root locus equation is

+
+ +







 =K

s as b
s

1 ˆ 0,
2

3

where

K K a
K
K

b
K

K
D

P

D

I

D

ˆ 2,
1
2

, and
2

.= + =
+
+

=
+

The settling time requirement <Ts 0.5 s  leads us to choose the roots of + +s as b2  
to the left of the ζω= − = −s n 8 line in the s-plane, as shown in Figure 12.37, to 
ensure that the locus travels into the required s-plane region. We have chosen 

=a 16 and =b 70  to ensure the locus travels past the = −s 8  line. We select a 
point on the root locus in the performance region, and using the rlocfind function, 
we find the associated gain K̂  and the associated value of ωn.  For our chosen 
point, we find that

=K̂ 118.

Then, with K̂, a, and b, we can solve for the PID coefficients as follows:

K KD
ˆ 2 116,  = − =

K a KP D2 1 1887,  ( )= + − =
K b KI D2 8260.( )= + =

To meet the overshoot performance requirements for a step input, we will use a 
cascade gain K that will be chosen by iterative methods using the step function, 
as illustrated in Figure 12.38. The step response corresponding to =K 5 has an 

-15 -10 -5 0 5

Im
ag

in
ar

y 
ax

is

Real axis

Selected roots

s = -8

-20

-15

-10

-5

0

5

10

15

20

Triple
pole

FIGURE 12.37
Root locus for the 
PID-compensated 
temperature 
 controller as K̂  
varies.
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918 Chapter 12  Robust Control Systems

acceptable percent overshoot of P.O. = 2%. With the addition of the gain =K 5, 
the final PID controller is

 G s K
K s K s K

s
s s

s
c

D P I 5
116 1887 8260

.
2 2

( ) =
+ +

=
+ +

 (12.57)

We do not use the prefilter. Instead, we increase the cascade gain K to obtain sat-
isfactory transient response. Now we can consider the question of robustness to 
changes in the plant parameter c0.

The investigation into the robustness of the design consists of a step response 
analysis using the PID controller given in Equation (12.57) for a range of plant 
parameter variations of ≤ ≤c0.1 10.0  The results are displayed in Figure 12.39. 
The script is written to compute the step response for a given c0. It can be conve-
nient to place the input of c0 at the command prompt level to make the script more 
interactive.

The simulation results indicate that the PID design is robust with respect to 
changes in c .0  The differences in the step responses for ≤ ≤c0.1 100  are barely dis-
cernible on the plot. If the results showed otherwise, it would be possible to iterate 
on the design until an acceptable performance was achieved. The interactive capa-
bility of the m-file allows us to check the robustness by simulation. ■

0 0.05 0.1 0.15 0.2 0.25 0.3

A
m

pl
itu

de

Time (s)

Gain from uncompensated
root locus.

Increase system gain
to reduce overshoot.

PID gains.

0

0.2

0.4

0.6

0.8

1

1.2 K = 1

K = 2

K = 5

FIGURE 12.38
Step response of 
the PID temperature 
controller.
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Section 12.11 Sequential Design Example: Disk Drive Read System 919

12.11 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

In this section, we design a PID controller to achieve the desired system response. 
Many disk drive head control systems use a PID controller and use a command 
signal ( )r t  that utilizes an ideal velocity profile at the maximum allowable velocity 
until the head arrives near the desired track, when ( )r t  is switched to a step-type 
input. Thus, we want zero steady-state error for a ramp (velocity) signal and a step 
signal. Examining the system shown in Figure 12.40, we note that the forward path 
possesses two pure integrations, and we expect zero steady-state error for a velocity 
input ( ) = >r t At t,   0.

The PID controller is

G s K
K
s

K s
K s z s z

s
c P

I
D

D ˆ
.1 1( )

( )
( )

= + + =
+ +

The motor field transfer function is

( )
( )

=
+

≈G s
s

5000
1000

5.1

0 0.05 0.1 0.15 0.2 0.25 0.3

A
m

pl
itu

de

Time (s)

0

0.2

0.4

0.6

0.8

1

1.4

1.2

0.1 … c0 … 10 

Specify process parameter.

FIGURE 12.39
Robust PID 
 controller analysis 
with variations in c0.
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920 Chapter 12  Robust Control Systems

The second-order model uses ( ) =G s 5,1  and the design is determined for this model.
We use the second-order model and the PID controller for the s-plane design 

technique illustrated in Section 12.6. The poles and zeros of the system are shown in 
the s-plane in Figure 12.41 for the second-order model and ( ) =G s 5.1  Then we have 
the loop transfer function

L s G s G s G s
K s z s z

s s
c

D5 ˆ

20
.1 2

1 1
2

( )
( ) ( ) ( ) ( )

( )
( )

= =
+ +

+

We select − = − +z j120 401  and determine KD5  so that the roots are to the left of 
the line = −s 100. If we achieve that requirement, then

<Ts
4

100
,

and the percent overshoot to a step input is (ideally) P.O. … 2% since ζ  of the 
complex roots is approximately 0.8. Of course, this sketch is only a first step. As a 

+

-

+

+
R(s) Y(s)

PID controller Motor coil

G1(s)

Td(s)
Load

G2(s) = 
1

s(s + 20)Gc(s) =
KD(s + z1)(s + z1)

s

FIGURE 12.40 Disk drive feedback system with a PID controller.
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-60-80-120 -100-140 -40 -20
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-z1
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s

-z1NFIGURE 12.41
A sketch of a 
root locus at KD 
increases for 
estimated root 
locations with a 
desirable system 
response.
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Section 12.12 Summary 921

second step, we determine KD.  We then obtain the actual root locus as shown in 
Figure 12.42 with KD 800.=  The system response is recorded in Table 12.6. The 
system meets all the specifications.

12.12 SUMMARY

The design of highly accurate control systems in the presence of significant plant 
uncertainty requires the designer to seek a robust control system. A robust control 
system exhibits low sensitivities to parameter change and is stable over a wide range 
of parameter variations.

The PID controller was considered as a compensator to aid in the design of 
robust control systems. The design issue for a PID controller is the selection of 
the gain and two zeros of the controller transfer function. We used three design 
methods for the selection of the controller: the root locus method, the frequency 
response method, and the ITAE performance index method. An operational ampli-
fier circuit used for a PID controller is shown in Figure 12.43. In general, the use of 
a PID controller will enable the designer to attain a robust control system.

-200-300-400 -100 -0 100 200

Im
ag

in
ar

y 
ax

is

Real axis

-200

-150

-100

-50

0

50

100

150

200

KD = 800

Double
poleThird

root

FIGURE 12.42
Actual root locus 
for the second- 
order model.

Table 12.6  Disk Drive Control System Specifications 
and Actual Performance

Performance 
Measure

Desired  
Value

Response for 
Second-Order 
Model

Percent overshoot 5%< 4.5%

Settling time for 
 step input

50 ms< 6 ms

Maximum response for  
 a unit step disturbance

5 10 3< × − 7.7 10 7× −
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922 Chapter 12  Robust Control Systems

The internal model control system with state variable feedback and a controller 
( )G sc  was used to obtain a robust control system. Finally, the robust nature of a 

pseudo-QFT control system was demonstrated.

R1

C1 C2

+

-

+
-

+
-

+

-

V0(s)

V1(s)

R4R2(R1C1s + 1)(R2C2s + 1)

R3R1(R2C2s)
Gc(s) =    =

R2

R3

R4

v1(t)
v0(t)FIGURE 12.43

Operational 
 amplifier circuit 
used for PID 
controller.

High

Very high

Moderate

Low
Low Moderate High

M
ac

hi
ne

 in
te

lli
ge

nc
e 

re
qu

ir
ed

Uncertainty of parameters and disturbances

Open-loop system
(without feedback)

Adaptive
system

Autonomous
system

Feedback
system

Robust
system

Very high

FIGURE 12.44
Intelligence 
 required versus 
uncertainty for 
modern control 
systems.

A robust control system provides stable, consistent performance as 
 specified by the designer in spite of the wide variation of plant parameters 

and  disturbances. It also provides a highly robust response to command inputs 
and a steady-state tracking error equal to zero.

For systems with uncertain parameters, the need for robust systems will require the 
incorporation of advanced machine intelligence, as shown in Figure 12.44.
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Skills Check 923

SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or False, 
Multiple Choice, and Word Match. To obtain direct feedback, check your answers with the 
answer key provided at the conclusion of the end-of-chapter problems. Use the block diagram 
in Figure 12.45 as specified in the various problem statements.

-

+
R(s) G(s) Y(s)

Prefilter

Gp(s) Gc(s)

Controller Process

FIGURE 12.45 Block diagram for the Skills Check.

In the following True or False and Multiple Choice problems, circle the correct answer.

1. A robust control system exhibits the desired performance in the 
presence of significant plant uncertainty. True or False

2. For physically realizable systems, the loop gain ( ) ( ) ( )=L s G s G sc  
must be large for high frequencies. True or False

3. The PID controller consists of three terms in which the output is the 
sum of a proportional term, an integrating term, and a differentiating 
term, with an adjustable gain for each term. True or False

4. A plant model will always be an inaccurate representation of the 
actual physical system. True or False

5. Control system designers seek small loop gain ( )L s  in order to 
minimize the sensitivity ( )S s . True or False

6. A closed-loop feedback system has the third-order characteristic equation

( ) = + + + =q s s a s a s a 0,3
2

2
1 0

where the nominal values of the coefficients are =a 32 , =a 61 , and =a 110 . The 
 uncertainty in the coefficients is such that the actual values of the coefficients can lie in 
the intervals

≤ ≤ ≤ ≤ ≤ ≤a a a2 4, 4 9, 6 17.2 1 0

Considering all possible combinations of coefficients in the given intervals, the system is:

a. Stable for all combinations of coefficients.

b. Unstable for some combinations of coefficients.

c. Marginally stable for all combinations of coefficients.

d. Unstable for all combinations of coefficients.

In Problems 7 and 8, consider the unity feedback system in Figure 12.45, where

( )
( )

=
+

G s
s

2
3

.
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924 Chapter 12  Robust Control Systems

7. Assume that the prefilter is 1G sp( ) = . The proportional-plus-integral (PI) controller, 
( )G sc , that provides optimum coefficients of the characteristic equation for ITAE  

(assuming ω =n 12 and a step input) is which of the following:

a. G s
sc 72

6.9( ) = +

b. G s
sc 6.9

72( ) = +

c. G s
sc 1
1( ) = +

d. G s sc 14 10( ) = +

8. Considering the same PI controller as in Problem 7, a suitable prefilter, G sp( ), which 
 provides optimum ITAE response to a step input is:

a. ( ) =
+

G s
sp

10.43
12.5

b. 12.5
12.5

G s
s

p( ) =
+

c. ( ) =
+

G s
sp

10.43
10.43

d. ( ) =
+

G s
sp

143
143

9. Consider the closed-loop system block-diagram in Figure 12.45, where

1
8

and 1.
2

G s
s s s

G sp( )
( ) ( )=

+
=

Determine which of the following PID controllers results in a closed-loop system possessing 
two pairs of equal roots.

a. ( )
( )

=
+

G s
s

sc
22.5 1.11 2

b. ( )
( )

=
+

G s
s

sc
10.5 1.11 2

c. ( )
( )

=
+

G s
s

sc
2.5 2.3 2

d. None of the above

10. Consider the system in Figure 12.45 with 1G sp( ) = ,

( ) =
+ +

G s
b

s as b
,

2

and ≤ ≤a1 3 and ≤ ≤b7 11. Which of the following PID controllers yields a robustly 
stable system?

a. ( )
( )

=
+

G s
s

sc
13.5 1.2 2

b. ( )
( )

=
+

G s
s

sc
2 40 2
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Skills Check 925

c. ( )
( )

=
+

G s
s

sc
0.1 10 2

d. None of the above

11. Consider the system in Figure 12.45 with 1G sp( ) =  and loop transfer function

( ) ( ) ( )
( )

= =
+

L s G s G s
K

s sc 5
.

The sensitivity of the closed-loop system with respect to variations in the parameter K is

a. S
s s

s s KK
T 3

32
( )

=
+

+ +

b. S
s

s s KK
T 5

52
=

+
+ +

c. S
s

s s KK
T

52
=

+ +

d. S
s s

s s KK
T 5

52
( )

=
+

+ +

12. Consider the feedback control system in Figure 12.45 with plant

( ) =
+

G s
s

1
2

.

A proportional-plus-integral (PI) controller and prefilter pair that results in a settling time 
<Ts 1.8 s and an optimum ITAE step response are which of the following:

a. 3.2
13.8

and  
13.8

3.2 13.8
G s

s
G s

s
c p( ) ( )= + =

+

b. 10
10

and  
1

1
G s

s
G s

s
c p( ) ( )= + =

+

c. 1
5

and  
5

5
G s

s
G s

s
c p( ) ( )= + =

+

d. 12.5
500

and  
500

12.5 500
G s

s
G s

s
c p( ) ( )= + =

+

13. Consider a unity negative feedback system with a loop transfer function (with nominal 
values)

( ) ( ) ( )
( )( ) ( )( )

= =
+ +

=
+ +

L s G s G s
K

s s a s b s s sc
4.5
1 2

.

Using the Routh–Hurwitz stability analysis, it can be shown that the closed-loop system is 
nominally stable. However, if the system has uncertain coefficients such that

≤ ≤ ≤ ≤ ≤ ≤a b K0.25 2,  1 4, and 4 5,

the closed-loop system may exhibit instability. Which of the following situations is true:

a. Unstable for =a 1, =b 2, and =K 4.

b. Unstable for =a 2, =b 4,  and =K 4.5.

c. Unstable for =a 0.25, =b 3, and =K 5.

d. Stable for all a, b, and K in the given intervals.
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926 Chapter 12  Robust Control Systems

14. Consider the feedback control system in Figure 12.45 with 1G sp( ) =  and ( ) =G s
Js
1

.
2

The nominal value of =J 5, but it is known to change with time. It is thus necessary to 
 design controller with sufficient phase margin to retain stability as J changes. A  suitable 
PID controller such that the phase margin is greater than >P M. . 40° and bandwidth 
ω <b 20  rad/s is which of the following:

a. 
( )

( ) =
+ +

G s
s s

sc
50 10 262

b. 
( )

( ) =
+ +

G s
s s

sc
5 2 22

c. 
( )

( ) =
+ +

G s
s s

sc
60 20 2002

d. None of the above

15. A feedback control system has the nominal characteristic equation

( ) = + + + = + + + =q s s a s a s a s s s3 2 3 0.3
2

2
1 0

3 2

The process varies such that

≤ ≤ ≤ ≤ ≤ ≤a a a2 4, 1 3, 1 5.2 1 0

Considering all possible combinations of coefficients a2, a1, and a0  in the given intervals, 
the system is:

a. Stable for all combinations of coefficients.

b. Unstable for some combinations of coefficients.

c. Marginally stable for all combinations of coefficients.

d. Unstable for all combinations of coefficients.

 In the following Word Match problems, match the term with the definition by writ-
ing the correct letter in the space provided.

a. Root sensitivity A system that exhibits the desired performance in the 
presence of significant plant uncertainty.

b.  Additive 
perturbation

A controller with three terms in which the output is 
the sum of a proportional term, an integrating term, 
and a differentiating term, with an adjustable gain for 
each term.

c.  Complementary 
sensitivity function

A transfer function that filters the input signal prior 
to the calculation of the error signal.

d.  Robust control 
system

A system perturbation model expressed in the additive 
form Gc s G s A s( ) ( ) ( )= +  where ( )G s  is the nominal 
plant, ( )A s  is the perturbation that is bounded in mag-
nitude, and G sc( ) is the family of perturbed plants.

e. System sensitivity The function G s G s G s G s G sc c c( ) ( ) ( ) + ( ) ( )=  
−

1
1 that 

satisfies the relationship ( ) ( )+ =C s S s 1, where ( )S s  
is the sensitivity function.

f.  Multiplicative 
perturbation

The principle that states that if G s sGc( ) ( ) contains the 
input ( )R s , then the output ( )y t  will track the input 
asymptotically (in the steady state) and the tracking 
is robust.
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Exercises 927

g. PID controller A system perturbation model expressed in the multi-
plicative form Gm(s) = G(s) [1 + M(s)] where G(s)  
is the nominal plant, M(s) is the perturbation that 
is bounded in magnitude, and Gm(s) is the family of 
perturbed plants.

h.  Robust stability 
criterion

A test for robustness with respect to multiplicative 
perturbations.

i. Prefilter A measure of the sensitivity of the roots (that is, 
the poles and zeros) of the system to changes in a 
parameter.

j.  Sensitivity 
function

The function that S(s) = [1 + Gc(s) G(s)]−1 that 
satisfies the relationship C(s) + S(s) = 1, where  
C(s) is the complementary sensitivity function.

k.  Internal model 
principle

A measure of the system sensitivity to changes in a 
parameter.

E12.1 Consider a system of the form shown in Figure E12.1, 
where

G s
s( )

( ) =
+
5

5
.

Using the ITAE performance method for a step input, 
determine the required ( )G sc .  Assume nω = 25 for 

Table 5.6. Determine the step response with and with-
out a prefilter .G sp( )

E12.2 For the ITAE design obtained in Exercise 
E12.1, determine the response due to a disturbance 
T s sd ( ) = 0.5 .

EXERCISES

FIGURE E12.1
Closed-loop control 
system. (a) Signal 
flow graph.  
(b) block diagram. (b)

Td (s)

(a)

Td (s)

Y(s)
G(s)

1

1

Gc(s)

N(s)

-1

1

1

R(s)

+

-

+

+

Controller

Gc(s)

+

+
N(s)

R(s) Y(s)

Process

G(s)
Ea(s)
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928 Chapter 12  Robust Control Systems

U(s)
Gc(s)

Controller
R(s)

Desired
input

Y(s)
Output

Td(s)
Disturbance

G(s)Gp(s)

-

+ +

+
FIGURE E12.6
System with 
controller.

E12.3 A closed-loop unity feedback system has the loop 
transfer function

L G s G s
s s bc

22
.( ) ( )

( )
= =

+

where b is normally equal to 4. Determine Sb
T , and plot 

20log10 T jω( )  and 20log10 S jω( )  on a Bode plot.

Answer: S
bs

s bsb
T =

−
+ + 222

E12.4 A PID controller is used in a unity feedback sys-
tem where

( )
( )( )

=
+ +

G s
s s

1
10 25

.

The gain KD  of the controller

G s K K s
K
sc p D
I( ) = + +

is limited to 500. Select a set of compensator zeros 
so that the pair of closed-loop roots is approximately 
equal to the zeros. Find the step response for the 
approximation

   T s
K

s K
D

D
( ) ≅

+

and the actual response, and compare them.

E12.5 A system has a process function 

G s
K

s s s
( )

( )( )
=

+ +4 7

with K = 50  and unity feedback with a PD 
compensator

.G s K K sc p D( ) = +

The objective is to design ( )G sc  so that the percent 
overshoot to a step is ≤P O. . 10%, and the settling 
time (with a 2% criterion) is ≤Ts 3 s. Find a suitable 

( )G sc .  What is the effect of decreasing process gain 
from K K50 to 25= =  on the percent overshoot and 
settling time?

E12.6 Consider the control system shown in Figure 
E12.6 when G s s( ) ( )= +2 3 ,2  and select a PID 

controller so that the settling time (with a 2% crite-
rion) is less than 1.5 second for an ITAE step response. 
Plot ( )y t  for a step input ( )r t  with and without a pre-
filter. Determine and plot ( )y t  for a step disturbance. 
Discuss the effectiveness of the system.

Answer: One possible controller is

G s
s s

sc( ) =
+ +2.25 34.2 108

.
2

E12.7 For the control system of Figure E12.6 with 
G s s( ) ( )= +1 6 ,2  select a PID controller to achieve 
a settling time (with a 2% criterion) of less than  
1.0 second for an ITAE step response. Plot ( )y t  for a 
step input ( )r t  with and without a prefilter. Determine 
and plot ( )y t  for a step disturbance. Discuss the effec-
tiveness of the system. 

E12.8 Repeat Exercise 12.6, striving to achieve a min-
imum settling time while adding the constraint 
that ( ) <u t 20 for >t 0  for a unit step input, 
r t t( ) = ≥1,   1.

Answer: G s
s

sc( ) =
+20 16

E12.9 A system has the form shown in Figure E12.6 with

G s
K

s s s( )
( )

( )
=

+ +5 8
,

where =K 1. Design a PD controller such that the 
dominant closed-loop poles possess a damping ratio 
of ζ = 0.6.  Determine the step response of the sys-
tem. Predict the effect of a change in K of ±50%, on 
the percent overshoot. Estimate the step response of 
the worst-case system. 

E12.10 A system has the form shown in Figure E12.6 with

G s
K

s s s
( )

( )( )
=

+ +2 7
,

where =K 1. Design a PI controller so that the 
dominant roots have a damping ratio ζ = 0.65. 
Determine the step response of the system. Predict 
the effect of a change in K of ±50% on the percent 
overshoot. Estimate the step response of the worst-
case system.
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For a nominal value of p = 20, what is the range of 
the system damping ratio? Plot the root locus with 
variation of k. If the system is required to have a 
percent overshoot of less than 10%, a controller is 
added to improve damping capability by increasing 
parameter k. What is the minimum value of k to 
maintain the required percent overshoot?

E12.12 Consider the second-order system

t
a b

t
c

c
u t( ) ( ) ( )=

− −











 +

















0 1 1

2
x x�

y t t u t[ ]( ) ( ) [ ] ( )= +1 0 0 .x

The parameters a, b, c ,1  and c2  are unknown a pri-
ori. Under what conditions is the system completely 
 controllable? Select valid values of a, b, c ,1  and c2  to 
ensure controllability and plot the step response.

P12.1 Consider the uncrewed underwater vehicle 
(UUV) problem. The control system is shown in 
Figure P12.1, where ( ) =R s 0,  the desired roll 
angle, and ( ) =T s sd 1 . (a) Plot T j20 log ω( )  and 

S jK
T20 log ω( ) . (b) Evaluate S jK

T ω( )  at ω ωB B, ,/2  
and ωB ./4

P12.2 Consider the control system is shown in Figure 
P12.2, where τ = 10 ms1  and τ = 1 ms.2  
(a) Select K so that Mp =ω 1.39.  (b) Plot 

ω( )20 log  T j  and ω( )20 log S jK
T  on one Bode plot. 

(c) Evaluate S jK
T ω( )  at ω ωB B,   ,/2  and ωB ./4  (d) Let 

( ) =R s 0 , and determine the effect of ( ) =T s sd 1  
for the gain K of part (a) by plotting ( )y t .

P12.3 Magnetic levitation (maglev) trains may replace 
airplanes on routes shorter than 200 miles. The 

maglev train developed by a German firm uses elec-
tromagnetic attraction to propel and levitate heavy 
vehicles, carrying up to 400 passengers at 300-mph 
speeds. But the -inch1

4  gap between car and track is 
difficult to maintain [7, 12, 17].
 The block diagram of the air-gap control system 
is shown in Figure P12.3. The compensator is

G s
K s

sc( )
( )

( )
=

−
+

3
0.06

.

(a) Find the range of K for a stable system. (b) Select 
a gain so that the steady-state error of the system is 
less than 0.2 for a step input command. (c) Find ( )y t  
for the gain of part (b). (d) Find ( )y t  when K varies 
±15% from the gain of part (b).

PROBLEMS

E12.11 Consider a second-order system with the following 
state space representation

t t u t�x Ax B( ) ( ) ( )= +

y t tCx( ) ( )= ,

where A =
− −

















> >
p k

p k
0 1

, 0, 0,  B C [ ]=










 =0

1
, and 1 0 .

B C [ ]=










 =0

1
, and 1 0 .

a.  What are the system’s natural frequency ωn and 
damping ratio ζ as functions of system parameters  
p and k?

b.  Given the parameter values of p and k vary in 
 intervals of 5 ≤ p ≤ 50  and 1 ≤ k ≤ 10, what will 
be the ranges of variation of ωn and ζ?

-

+ ++

Td(s)

R(s) = 0 6(s + 5)
Y(s)
Roll
angle

1
s

1
sFIGURE P12.1

Control of an 
 underwater 
vehicle [13].

K
-

+ ++

Td(s)

Y(s)R(s) = 0
1

t1s + 1

1

s (t2s + 1)
FIGURE P12.2
Remote-controlled 
TV camera.
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930 Chapter 12  Robust Control Systems

P12.4 An automatically guided vehicle is shown in Figure 
P12.4(a) and its control system is shown in Figure 
P12.4(b). The goal is to track the guide wire ac curately, 
to be insensitive to changes in the gain K ,1  and to 
 reduce the effect of the disturbance [15, 22]. The gain 
K1  is normally equal to 1 and 1 10.τ =

a. Select a compensator ( )G sc  so that the percent over-
shoot to a step input is P O ≤. . 15%, and the settling 
time (with a 2% criterion) is 0.5 sTs ≤ .

b. For the compensator selected in part (a), de-
termine the sensitivity of the system to small 
changes in K1  by determining SK

T .
1

c. If K1  changes to 2 while ( )G sc  of part (a) remains 
unchanged, find the step response of the system 
and compare selected performance figures with 
those obtained in part (a).

p. Determine the effect of ( ) =T s sd 1  by plotting 
( )y t  when ( ) =R s 0.

P12.5 A roll-wrapping machine (RWM) receives, wraps, 
and labels large paper rolls produced in a paper mill 
[9, 16]. The RWM consists of several major stations: 

positioning station, waiting station, wrapping sta-
tion, and so forth. We will focus on the positioning 
station shown in Figure P12.5(a). The positioning 
station is the first station that sees a paper roll. This 
station is responsible for receiving and weighing the 
roll,  measuring its diameter and width, determining 
the  desired wrap for the roll, positioning it for down-
stream  processing, and finally ejecting it from the 
station.
 Functionally, the RWM can be categorized as 
a complex operation because each functional step 
(e.g., measuring the width) involves a large number 
of field device actions and relies upon a number of 
accompanying sensors.
 The control system for accurately positioning 
the width-measuring arm is shown in Figure P12.5(b). 
The pole p of the positioning arm is normally equal 
to 2, but it is subject to change because of loading 
and misalignment of the machine. (a) For =p 2,  
design a compensator so that the P.O. ≤ 20% and 
Ts 1 s≤  to a unit step input. (b) Plot ( )y t  for a step 
input ( ) =R s s1 .  (c) Plot ( )y t  for a disturbance 

(b)

(a)

R(s)
Guide

wire signal
Gc(s)

+

-

Controller
Actuator

and wheels

Y(s)
Direction
of travel

K1

s(ts + 1)
Error

+

+

Td(s)

In floor
transponder "tag"

Side View

Top View

AGV

Component bin

Transponder
antenna

Battery bay

Steerable
wheel

Steerable
wheel

Transponder
antenna

Idler
wheels

FIGURE P12.4
Automatically 
guided vehicle.

R(s)
Desired

gap
Gc(s)

+

-

Y(s)
Air gap

Coil current s - 4

(s + 2)2

Controller
Vehicle and

levitation coil

FIGURE P12.3
Maglev train 
control.
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(b)

(a)

R(s) Gc(s)
+

-
Y(s)

Td(s)

1
s(s + p)+

-

Diameter measuring arm

Width measuring arm

Positioning arm

Laser

Paper roll

Front view

1 to 9 ft

3 to 7 ft

FIGURE P12.5
Roll-wrapping 
 machine control.

( ) =T s sd 1 , with ( ) =R s 0. (d) Repeat parts (b) 
and (c) when p changes to 1 and ( )G sc  remains as 
designed in part (a) and compare.

P12.6 The function of a steel plate mill is to roll reheated 
slabs into plates of scheduled thickness and dimen-
sion [5, 10]. The final products are of rectangular 
plane view shapes having a width of up to 3300 mm 
and a thickness of 180 mm.
 A schematic layout of the mill is shown in Figure 
P12.6(a). The mill has two major rolling stands, de-
noted No. 1 and No. 2. These are equipped with large 
rolls (up to 508 mm in diameter), which are driven 
by high-power electric motors (up to 4470 kW). Roll 
gaps and forces are maintained by large hydraulic 
cylinders.

 Typical operation of the mill can be described 
as follows. Slabs coming from the reheating furnace 
initially go through the No. 1 stand, whose function is 
to reduce the slabs to the required width. The slabs 
proceed through the No. 2 stand, where finishing 
passes are carried out to produce the required slab 
thickness. Finally, they go through the hot plate lev-
eller, which gives each plate a smooth finish.
 One of the key systems controls the thickness of 
the plates by adjusting the rolls. The block diagram 
of this control system is shown in Figure P12.6(b).
 The controller is a PID with two equal real 
zeros. (a) Select the PID zeros and the gains so that 
the closed-loop system has two pairs of equal roots. 

R(s)
Desired

thickness
Gp(s) Gc(s) Y(s)

Thickness

(b)

(a)

+

+-

-

Disturbance Td(s)

U(s)

Furnace

Hot plate
leveller

Slab

No. 2 stand No. 1 stand

Plate 1 2 3 4

1

s(s2 + 4s + 5)

FIGURE P12.6
Steel-rolling mill 
control.
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932 Chapter 12  Robust Control Systems

(b) For the design of part (a), obtain the step response 
without a prefilter 1 .G sp( )( ) =  (c) Repeat part (b)  
for an appropriate prefilter. (d) For the system, deter-
mine the effect of a unit step disturbance by evaluat-
ing ( )y t  with ( ) =r t 0.

P12.7 A motor and load with negligible friction and a 
voltage-to-current amplifier Ka  is used in the feed-
back control system, shown in Figure P12.7. A designer 
selects a PID controller

G s K
K
s

K sc P
I

D( ) = + + ,

where 5,   500,K KP I= =  and 0.0475.KD =
(a) Determine the appropriate value of Ka  so that 
the phase margin of the system is =P M. . 30°. (b) For  
the gain ,Ka  plot the root locus of the system and 
determine the roots of the system for the Ka  of 
part  (a). (c) Determine the maximum value of ( )y t  
when ( ) =T s sd 1  and ( ) =R s 0  for the Ka  of part (a). 
(d) Determine the response to a step input ( )r t , with 
and without a prefilter.

P12.8 A unity feedback system has a nominal character-
istic equation

q s s s s( ) = + + + =2 4 5 0.3 2

The coefficients vary as follows:

a a a≤ ≤ ≤ ≤ ≤ ≤1 3, 2 5, 4 6.2 1 0

Determine whether the system is stable for these 
 uncertain coefficients.

P12.9 Future astronauts may drive on the Moon in a pres-
surized vehicle, shown in Figure P12.9(a), that would 
have a long range and could be used for missions of 
up to six months. Engineers first analyzed the Apollo-
era  Lunar Roving Vehicle, then designed the new 
vehicle, incorporating improvements in radiation and 
thermal protection, shock and vibration control, and 
lubrication and sealants.
 The steering control of the moon buggy is 
shown in Figure P12.9(b). The objective of the con-
trol  design is to achieve a step response to a steering 
command with zero steady-state error, a percent over-
shoot of ≤P O. . 20%, and a peak time of 1TP ≤  s.  
It is also necessary to determine the effect of a step 

disturbance ( ) =T s sd 1  when ( ) =R s 0, in order to 
ensure the reduction of moon surface effects. Using (a) 
a PI controller and (b) a PID controller, design an ac-
ceptable controller. Record the results for each design 
in a table. Compare the performance of each design.

P12.10 A satellite system can be modeled as a double 

integrator with a plant transfer function G s
s
10

.
2

( ) =  

We want to use a PID controller and a prefilter with 
unity feedback for the system to achieve the require-
ments of P.O. = 2% and settling time Ts = 2  sec. The 
desired characteristic poles for third-order systems 
as per ITAE and Bessel polynomials normalized at  
ωn = 1 rad/s are given as:

R(s) Ka

V(s) I (s)

Td(s)

Y(s)Gp(s) 10
1

s2
Gc(s)

-

+ -

+

PID
controller

FIGURE P12.7
PID controller for 
the motor and load 
system.

+ + −

+ + −

ITAE:

Bessel:
s + s + s

s + s + s

( 0.7081)( 0.5210 1.0681)( 0.5210 1.0681)

( 0.9420)( 0.7455 0.7112)( 0.7455 0.7112).

j j

j j

Design the PID and the prefilter. Plot the step 
 response of the system.

P12.11 Consider the three dimensional cam shown in 
Figure P12.11 [18]. The control of x may be achieved 
with a DC motor and position feedback of the form 
shown in Figure P12.11.
 Assume ≤ ≤K1 5  and ≤ ≤p2 5. Normally 

=K 1 and =p 3.  Design a PID controller so that 
the settling time response to a step input is ≤Ts 3 s 
for all p and K in the ranges given.

P12.12 Consider a control system with the plant’s model 

t t u t�x Ax B( ) ( ) ( )= +

y t tCx( ) ( )= ,

where =
− − −



















=



















A B
0 1 0
0 0 1
9 6 4

,
0
0
1

, and

C = 



0 1 0 .

The system uses output feedback u(t) = r(t) − Ky(t), 
where r(t) is the reference input. Plot the root locus. 
Derive the transfer function of the closed-loop system 
and its sensitivity to variations in parameter K.
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(b)

(a)

Gc(s)
U(s)R(s)

Steering
commands

Y(s)
Angle

of steering

Td(s)
Disturbance

2e-0.2s

0.15s + 1-

+

+

+
Dynamics

FIGURE P12.9
(a) A moon vehicle. 
(b) Steering  control 
for the moon 
vehicle.

R(s) Y(s)
-

+ K1
sKP + KDS + 

K

s(s + p)(s + 10)
FIGURE P12.11
An x-axis control 
system of a three 
dimensional cam.

AP12.1 To minimize vibrational effects, a telescope is 
magnetically levitated. This method also eliminates 
friction in the azimuth magnetic drive system. The 
photodetectors for the sensing system require electri-
cal connections. The system block diagram is shown 
in Figure AP12.1. Design a PID controller so that 
the maximum percent overshoot for a step input is 

. . 20% and the 1 sP O Ts≤ ≤ .

AP12.2 One promising solution to traffic gridlock is a 
magnetic levitation (maglev) system. Vehicles are sus-
pended on a guideway above the highway and guided 
by magnetic forces instead of relying on wheels or 
aerodynamic forces. Magnets provide the propulsion 
for the vehicles [7, 12, 17]. Ideally, maglev can offer the 
environmental and safety advantages of a high-speed 
train, the speed and low friction of an airplane, and 

ADVANCED PROBLEMS
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934 Chapter 12  Robust Control Systems

-

+
R(s) Y(s)

1

100s2 + 1

Process
dynamics

Gc(s)FIGURE AP12.1
Magnetically 
 levitated telescope 
position control 
system.

the convenience of an automobile. All these shared  
attributes notwithstanding, the maglev system is truly 
a new mode of travel and will enhance the other 
modes of travel by relieving congestion and provid-
ing connections among them. Maglev travel would be 
fast, operating at 150 to 300 miles per hour.
 The tilt control of a maglev vehicle is illustrated 
in Figures AP12.2(a) and (b). The dynamics of the 
plant ( )G s  are subject to variation so that the poles 
will lie within the boxes shown in Figure AP12.2(c), 
and ≤ ≤K1 2.
 The objective is to achieve a robust system with 
a step response possessing a percent overshoot of 

≤P O. . 10%, as well as a settling time (with a 2% cri-
terion) of ≤Ts 2  s when u t 100.( ) ≤  Obtain a de-
sign with a PI, PD, and PID controller and compare 
the results. Use a prefilter G sp( ) if necessary.

AP12.3 Antiskid braking systems present a challenging 
control problem, since brake/automotive system pa-
rameter variations can vary significantly (e.g., due to 
the brake-pad coefficient of friction changes or road 
slope variations) and environmental influences (e.g., 
due to adverse road conditions). The objective of the 
antiskid system is to regulate wheel slip to maximize 
the coefficient of friction between the tire and road for 
any given road surface [8]. As we expect, the braking 
coefficient of friction is greatest for dry asphalt, slightly 
reduced for wet asphalt, and greatly reduced for ice.
 A unity feedback simplified model of the brak-
ing system is represented by a plant transfer function 

( )G s  with

( )
( )
( ) ( )( )

= =
+ +

G s
Y s
U s s a s b

1
,

where normally =a 1 and =b 4.

a. Using a PID controller, design a very robust 
system where, for a step input, the percent over-
shoot is ≤P O. . 4% and the settling time (with a 
2% criterion) is ≤Ts 1 s. The steady-state error 
must be less than 1% for a step. We expect a and 
b to vary by ±50%.

b. Design a system to yield the specifications of part 
(a) using an ITAE performance index. Predict the 
percent overshoot and settling time for this design.

AP12.4 A robot has been designed to aid in hip- 
replacement surgery. The device, called RoBoDoc, is 
used to precisely orient and mill the femoral cavity for 
acceptance of the prosthetic hip implant. Clearly, we 
want a very  robust surgical tool control, because there 
is no  opportunity to redrill a bone [21, 27]. The unity 
feedback  control  system has

( ) =
+ +

G s
b

s as b
,

2

where ≤ ≤a1 2,  and ≤ ≤b4 12.
 Select a PID controller so that the system is ro-
bust. Use the s-plane root locus method. Select the ap-
propriate ( )G sp  and plot the response to a step input.

AP12.5 The plant of a driverless car is modeled as 

( )
( )

=
+

G s
K

s s 10
,  where K 1=  under nominal con-

ditions. The system has unity feedback with a control-
ler Gc (s). To increase the system’s robustness, a phase  
margin of P M =. . 50° is required. Design a PID con-
troller for Gc (s), and determine the effect of param-
eter variations when the system gain K changes by 
±50%. Plot the step response of the controlled system.

AP12.6 Consider a unity feedback system with

τ
( ) =

+
G s

K
s s( 1)

,1

where =K 1.51  and τ = 0.001 s. Select a PID con-
troller so that the settling time (with a 2% criterion) 
for a step input is ≤Ts 1 s and the percent overshoot 
is ≤P O. . 10%. Also, the effect of a disturbance at the 
output must be reduced to less than 5% of the magni-
tude of the disturbance.

AP12.7 Consider a unity feedback system with

( ) =G s
s
1

.

The goal is to select a PI controller using the ITAE de-
sign criterion while constraining the control signal as 

( ) ≤u t 1 for a unit step input. Determine the appro-
priate PI controller and the settling time (with a 2% 
criterion) for a step input. Use a prefilter, if necessary.
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(b)

(a)

(c)

R(s)
Desired

tilt
angle

+

-

-3

j2

j1

- j1

- j2

-2 -1

+

-
Y(s)

Tilt angle
K

s2 + as + b
Gp(s) Gc(s)

U(s)

Td(s)

Region for
poles of

G(s)

Windings for propulsion and suspension

Superconducting coils

Support pier

Air gap

Pivot

G(s)

FIGURE AP12.2
(a) and (b) tilt 
 control for a maglev 
vehicle. (c) plant 
dynamics.
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936 Chapter 12  Robust Control Systems

AP12.8 A machine tool control system is shown in 
Figure AP12.8. The transfer function of the power 
amplifier, prime mover, moving carriage, and tool  
bit is

( )
( )( )( )

=
+ + +

G s
s s s s

50
1 4 5

.

The goal is to have a percent overshoot of ≤P O. .  25% 
for a step input while achieving a peak time of 3Tp ≤  s.  
Determine a suitable controller using (a) PD control, (b) 
PI control, and (c) PID control. (d) Then  select the best 
controller.

AP12.9 The position control of a suspension system 
can be represented by a unity feedback system with 
controller Gc(s). The plant has a gain K and vis-

cous friction coefficient b, G s
K

s bs K
.

2
( ) =

+ +
 

The system has its gain varying in a large range, 
K≤ ≤4 25, with low damping, b≤ ≤0.5 2. The  

desired 2% criterion applies to this system with 
a settling time Ts ≤ 0.5 s as per an ITAE index. 
Design a PID controller for Gc (s) so that in the 
worst case, the system still maintains the control 
performance. At the smallest damping coefficient,  

b = 0.5, plot the root locus for the controlled system 
with the obtained PID controller, and comment on its 
performance.

AP12.10 A system of the form shown in Figure 12.1 has

( )( )
( ) =

+
+ +

G s
s r

s p s q
,

where ≤ ≤ ≤ ≤p q3 5,  0 1,  and ≤ ≤r1 2. We will 
use a compensator

G s
K s z s z

s p s pc ( )( )
( )( )

( ) =
+ +

+ +
,1 2

1 2

with all real poles and zeros. Select an appropriate 
compensator to achieve robust performance.

AP12.11 A unity feedback system has a plant

( )
( )( )( )

=
+ + +

G s
s s s

1
2 4 6

.

We want to attain a steady-state error for a step input. 
Select a compensator ( )G sc  using the pseudo-QFT 
method, and determine the performance of the system 
when all the poles of ( )G s  change by −50%. Describe 
the robust nature of the system.

Gc(s)

Di�erential
amplifier

Power
amplifier

External
energy
source

Gear
box

Moving tool
carriage

Lead
Screw

Prime
mover

Position feedback

Tool
bit

Rotating
cam

FIGURE AP12.8
A machine tool 
control system.

CDP12.1 Design a PID controller for the capstan-slide 
system of Figure CDP4.1. The percent overshoot 
should be ≤P O. . 3% and the settling time should be 
(with a 2% criterion) ≤Ts 250 ms for a step input ( )r t .  
Determine the response to a disturbance for the de-
signed system.

DP12.1 A position control system for a large turntable 
is shown in Figure DP12.1(a), and the block diagram 
of the system is shown in Figure DP12.1(b) [11, 14]. 
This system uses a large torque motor with Km 15.=  
The objective is to reduce the steady-state effect of 
a step change in the load disturbance to 5% of the 
magnitude of the step disturbance while maintaining 

DESIGN PROBLEMS
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Design Problems 937

a fast response to a step input command ( )R s ,  
with ≤P O. . 5%. Select K1  and the compensator 
when (a) G s Kc( ) =  and (b) G s K K sc P D( ) = + . 
Plot the step response for the disturbance and the 
input for both compensators. Determine whether a 
prefilter is required to meet the percent overshoot 
requirement.

DP12.2 Consider the closed-loop system depicted in 
Figure DP12.2. The process has a parameter K that is 
nominally =K 1. Design a controller that results in a 
percent overshoot ≤P O. . 20% for a unit step input 
for all K in the range ≤ ≤K1 4.

(b)

(a)

TL

Input Controller

Position signal

Turntable

Torque motor

Velocity sensor

Position sensor

u0

-+ -

+

-

+
R(s) Y(s)Gc

K1

Tm(s)

TL(s)

1

s + 2

-

1
s

v(s)

-

+ -+
Km

FIGURE DP12.1
Turntable control.

FIGURE DP12.3
Special hand 
 device to train 
robot hands.

FIGURE DP12.2
A unity feedback 
system with a 
 process with 
 varying parameter 
K.

-

+
R(s)

Controller Process

K
s(s + 10)

Gc(s) Y(s)

Gc(s)

-

+
R(s)

Y(s)
Joint
angle

Controller
Motor and

joint

Km

s(s + 5)(s + 10)

DP12.3 Many university and government laboratories 
have constructed robot hands capable of grasping and 
manipulating objects. But teaching the artificial devices 
to perform even simple tasks required formidable com-
puter programming. However, a special hand device 
can be worn over a human hand to record the side-to-
side and bending motions of finger joints. Each joint is 
fitted with a sensor that changes its signal depending on 
position. The signals from all the sensors are translated 
into computer data and used to operate robot hands [1].
 The joint angle control system is shown in 
part Figure DP12.3. The normal value of Km is 1.0. 
The goal is to design a PID controller so that the 
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938 Chapter 12  Robust Control Systems

steady-state error for a ramp input is zero. Also, the 
settling time (with a 2% criterion) must be ≤Ts 3  s 
for the ramp input. We want the controller to be

G s
K s s

sc
D( )

( ) =
+ +6 18

.
2

(a) Select KD  and obtain the ramp response. Plot the 
root locus as KD  varies. (b) If Km  changes to one-half 
of its normal value and ( )G sc  remains as designed 
in part (a), obtain the ramp response of the system. 
Compare the results of parts (a) and (b) and discuss 
the robustness of the system.

DP12.4 Objects smaller than the wavelengths of visible 
light are a staple of contemporary science and tech-
nology. Biologists study single molecules of protein or 
DNA; materials scientists examine atomic-scale flaws 
in crystals; microelectronics engineers lay out circuit 
patterns only a few tenths of atoms thick. Until recently, 
this minute world could be seen only by cumbersome, 
often destructive methods, such as electron microscopy 
and X-ray diffraction. It lay beyond the reach of any 
instrument as simple and direct as the familiar light 
microscope. New microscopes, typified by the scanning 
tunneling microscope (STM), are now available [3].
 The precision of position control required is in 
the order of nanometers. The STM relies on piezoelec-
tric sensors that change size when an electric voltage 

across the material is changed. The “aperture” in the 
STM is a tiny tungsten probe, its tip ground so fine that 
it may consist of only a single atom and measure just 
0.2 nanometer in width. Piezoelectric controls maneu-
ver the tip to within a nanometer or two of the surface 
of a conducting specimen—so close that the electron 
clouds of the atom at the probe tip and of the near-
est atom of the specimen overlap. A feedback mech-
anism senses the variations in tunneling current and 
varies the voltage applied to a third, z-axis, control. 
The z-axis piezoelectric moves the probe vertically to 
stabilize the current and to  maintain a constant gap 
between the microscope’s tip and the surface. The 
control system is shown in Figure DP12.4(a), and the 
block diagram is shown in Figure DP12.4(b).
(a) Use the ITAE design method to determine Gc(s).  
(b) Determine the step response of the system 
with and without a prefilter Gp(s). (c) Determine 
the response of the system to a disturbance when 

( ) =T s sd 1 . (d) Using the prefilter and of Gc(s) parts 
(a) and (b), determine the actual response when the 
process changes to

( )
( ) =

+ +
G s

s s s
16000
40 1600

.
2

DP12.5 The system described in DP12.4 is to be designed 
using the frequency response techniques. Select 

(b)

z-axis control

Piezoelectric
control

y-axis
x-axis

Sensor
voltage

Reference
signal

Probe

Display

z-axis

Controller

(a)

-

+
Controller Process

++
Gp(s)

R(s)
Desired

gap

Y(s)
Gap

Td(s)

s

K(t1s + 1)(t2s + 1)

s(s2+ 59.4s + 1764)

17640

FIGURE DP12.4
Microscope control.
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the coefficients of Gc(s) so that the phase margin is 
=P M. . 45°. Obtain the step response of the system 

with and without a prefilter Gp(s).

DP12.6 The use of control theory to provide insight into 
neurophysiology has a long history. As early as the 
beginning of the last century, many investigators de-
scribed a muscle control phenomenon caused by the 
feedback action of muscle spindles and by sensors 
based on a combination of muscle length and rate of 
change of muscle length.
 This analysis of muscle regulation has been based 
on the theory of single-input, single-output control 
systems. An example is a proposal that the stretch re-
flex is an experimental observation of a motor control 
strategy, namely, control of individual muscle length 
by the spindles. Others later proposed the regula-
tion of individual muscle stiffness (by sensors of both 
length and force) as the motor control strategy [30].
 One model of the human standing-balance mech-
anism is shown in Figure DP12.6. Consider the case of 
a paraplegic who has lost control of his standing mech-
anism. We propose to add an artificial controller to en-
able the person to stand and move his legs. (a) Design 

a controller when the normal values of the parameters 
are = =K a10,   12, and =b 100, in order to achieve 
a step response with percent overshoot of ≤P O. . 10%, 
steady-state error of ess ≤ 5%, and a settling time (with 
a 2% criterion) of ≤Ts 2 s. Try a controller with pro-
portional gain, PI, PD, and PID. (b) When the person is 
fatigued, the parameters may change to = =K a15,   8,  
and =b 144. Examine the performance of this system 
with the controllers of part (a). Prepare a table contrast-
ing the results of parts (a) and (b).

DP12.7 The goal is to design an elevator control sys-
tem so that the elevator will move from floor to 
floor rapidly and stop accurately at the selected floor 
(Figure DP12.7). The elevator will contain from one 
to three occupants. However, the weight of the ele-
vator should be greater than the weight of the occu-
pants; you may assume that the elevator weighs 1000 
pounds and each occupant weighs 150 pounds. Design 
a system to accurately control the elevator to within 
one centimeter. Assume that the large DC motor is 
field-controlled. Also, assume that the time constant 
of the motor and load is one second, the time constant 
of the power amplifier driving the motor is one-half 

-

+
Gp(s) Gc(s)

K

s2 + as + b

Artificial controller

R(s)
Desired

leg angle

Nerves Y(s)
Leg

angle

Biosensors

Muscle dynamics
and nervous system

FIGURE DP12.6
Artificial control of 
standing and leg 
articulation.

u(t), v(t)

Motor

Belt

Drum

Cable

v(t)
Command

from computer

Third floor

Second floor

First floor

10 ft.

z(t)

Elevator
shaft

Elevator

FIGURE DP12.7
Elevator position 
control.
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940 Chapter 12  Robust Control Systems

R(s)
Desired

flow
rate

Gc(s)Gp(s)
+

-
G(s) = e-sT

Y(s)
Blood

flow rate

V(s)
Motor
voltage

Motor, pump, and
blood sacController

FIGURE DP12.8
Feedback control 
system for an 
electric ventricular 
assist device.

second, and the time constant of the field is negligible. 
We seek a percent overshoot of ≤P O. . 6% and a set-
tling time (with a 2% criterion) of ≤Ts 4 s.

DP12.8 A model of the feedback control system is shown 
in Figure DP12.8 for an electric ventricular assist 
device. This problem was introduced in AP9.11. The 
motor, pump, and blood sac can be modeled by a 
time delay with =T 1 s. The goal is to achieve a step 
response with less than 5% steady-state error and 

≤P O. . 10%. Furthermore, to prolong the batteries, 
the voltage is limited to 30 V [26]. Design a controller 
using (a) ( ) =G s K sc ,  (b) a PI controller, and (c) a 
PID controller. In each case, also design the pre-filter. 
Compare the results for the three controllers by re-
cording in a table the percent overshoot, peak time, 
settling time (with 2% criterion) and the maximum 
value of ( )v t .

DP12.9 One arm of a space robot is shown in Figure 
DP12.9(a). The block diagram for the control of the 
arm is shown in Figure DP12.9(b).

(a) If ( ) =G s Kc ,  determine the gain necessary for a 
percent overshoot of =P O. . 4.5%, and plot the step 

response. (b) Design a proportional plus derivative 
(PD) controller using the ITAE method and ω =n 10. 
Determine the required prefilter Gp(s). (c) Design a 
PI controller and a prefilter using the ITAE method. 
(d) Design a PID controller and a prefilter using the 
ITAE method with ω =n 10. (e) Determine the effect 
of a unit step disturbance for each design. Record the 
maximum value of ( )y t  and the final value of ( )y t  for 
the disturbance input. (f) Determine the overshoot, 
peak time, and settling time (with a 2% criterion) step 

( )R s  for each design above. (g) The process is subject 
to variation due to load changes. Find the magnitude 

of the sensitivity at ω ( )= 5,   5 ,S jG
T  where

T s
G s G s

G s G s
c

c
( )

( ) ( )
( ) ( )

=
+1

.

(h) Based on the results of parts (e), (f), and (g), select 
the best controller.

DP12.10 A photovoltaic system is mounted on a space 
station in order to develop the power for the station. 
The photovoltaic panels should follow the Sun with 

(b)

(a)

Gc(s)Gp(s)
+ +

+-
R(s)

Td(s)

Y(s)

ArmController

1

s(s + 9)

FIGURE DP12.9
Space robot 
control.
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good accuracy in order to maximize the energy from 
the panels. The unity feedback control system uses a 
DC motor, so that the transfer function of the panel 
mount and the motor is

G s
s s b

( )
( )

=
+
1

,

where b = 10. Design a controller ( )G sc  assuming that 
an  optical sensor is available to accurately track the 
sun’s position.
 The goal is to design G sc( ) so that (1) the per-
cent overshoot to a unit step is ≤P O. . 15% and (2)  
the settling time is Ts ≤ 0.75 s. Examine the robust-
ness of the system when b varies by ± 10%.

DP12.11 Electromagnetic suspension systems for air- 
cushioned trains are known as magnetic levitation 
(maglev) trains. One maglev train uses a supercon-
ducting magnet system [17]. It uses superconducting 
coils, and the levitation distance ( )x t  is inherently 
unstable. The model of the levitation is

τ ω( )( )
( )

( )
( )

= =
+ −

G s
X s
V s

K
s s1

,
1

2
1

2

where V(s) is the coil voltage; τ1 is the magnet time 
constant; and ω1 is the natural frequency. The sys-
tem uses a position sensor with a negligible time 
constant. A train traveling at 250 km/hr would have 
τ = 0.75 s1  and ω = 75rad s.1  Determine a con-
troller in a unity feedback system that can maintain 
steady, accurate levitation when disturbances occur 
along the railway.

DP12.12 A benchmark problem consists of the mass– 
spring system shown in Figure DP12.12, which rep-
resents a flexible structure. Let = =m m 11 2  and 

k0.5 2.0  29 .[ ]≤ ≤  It is possible to measure ( )x t1  and 
( )x t2  and use a controller prior to ( )u t . Obtain the 

system description, choose a control structure, and de-
sign a robust system. Determine the response of the 
system to a unit step disturbance. Assume that the 
output ( )x t2  is the variable to be controlled.

u(t)

Input

k

x1(t) x2(t)

m2m1
d(t)

Disturbance
FIGURE DP12.12
Two-mass cart 
system.

+

-
R(s) Y(s)

Plant

K
6

s(s + 3)

FIGURE CP12.1 Closed-loop feedback system with 
gain K.

CP12.1 A closed-loop feedback system is shown in Figure 
CP12.1. Use an m-file to obtain a plot of S jK

T ω( )  ver-
sus ω. Plot T jω( )  versus ω,  where ( )T s  is the closed-
loop transfer function.

where p depends on the aircraft. Obtain a family of 
step responses for the aileron system in the feedback 
configuration shown in Figure CP12.2.
The nominal value of =p 15.  Compute reasonable 
values of Kp and KI so that the step response (with 

=p 15 ) has ≤ ≤P O Ts. . 20% and 0.5 s. Then, use an 
m-file to obtain the step responses for p12 18< <  
with the controller as determined above. Plot the set-
tling time as a function of p.

COMPUTER PROBLEMS

+

-
R(s) Y(s)

Aileron

KP + KI /s
p

s + p

FIGURE CP12.2 Closed-loop control system for the 
aircraft aileron.

CP12.2 An aircraft aileron can be modeled as a first-order 
system

( ) =
+

G s
p

s p
,
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942 Chapter 12  Robust Control Systems

R(s) Y(s)Gc(s)

-

+ 1

Js2

FIGURE CP12.3 A feedback control system with 
compensation.

CP12.3 Consider the control system in Figure CP12.3. 
The value of J is known to change slowly with time, 
although, for design purposes, the nominal value is 
chosen to be =J 28.

(a) Design a PID controller (denoted by G sc( )) to 
achieve a phase margin ≥P M. . 45° and a bandwidth 
ω ≤B 4 rad/s. (b) Using the PID controller designed 
in part (a), develop an m-file script to generate a plot 
of the phase margin as J varies from 10 to 40. At what 
J is the closed-loop system unstable.

-

+
R(s) Y(s)

1

s2 + bs + a

PlantController

KFIGURE CP12.4
A feedback control 
system with uncer-
tain parameter b.

-

+
R(s) Y(s)

Controller

K

Plant

1

s2 + 10s + 2

Delay

e-TsFIGURE CP12.6
An industrial 
 controlled process 
with a time delay in 
the loop.

CP12.4 Consider the feedback control system in Figure 
CP12.4. The exact value of parameter b is unknown; 
however, for design purposes, the nominal value is 
taken to be =b 4.  The value of =a 8 is known very 
precisely.

a. Design the proportional controller K so that the 
closed-loop system response to a unit step input 
has a settling time (with a 2% criterion) of ≤Ts 5  
s and a percent overshoot of ≤P O. . 10%. Use the 
nominal value of b in the design.

b. Investigate the effects of variations in the pa-
rameter b on the closed-loop system unit step 
response. Let =b 0,  1,  4, and 40, and co-plot 
the step response associated with each value of 
b. In all cases, use the proportional controller 
from part (a). Discuss the results.

CP12.5 A model of a flexible structure is given by

G s
k s s

s s s
n n n

n n

1 2

2
,

2 2 2

2 2 2

ω ζω ω

ζω ω
( )

( )
( ) =

+ + +

+ +

where ωn  is the natural frequency of the flexible 
mode, and ζ  is the corresponding damping ratio. In 
general, it is difficult to know the structural damp-
ing precisely, while the natural frequency can be 
predicted more accurately using well-established 
modeling techniques. Assume the nominal values of 
ω ζ= =n 2  rad s,   0.005,  and =k 0.1.

a. Design a lead compensator to meet the following 
specifications: (1) a closed-loop system response 
to a unit step input with a settling time (with a 2% 
criterion) ≤Ts 200 s and (2) a percent overshoot 
of ≤P O. . 50%.

b. With the controller from part (a), investigate 
the closed-loop system unit step response with 
ζ = 0,  0.005,  0.1,  and 1. Co-plot the various unit 
step responses and discuss the results.

c. From a control system point of view, is it preferable 
to have the actual flexible structure damping less 
than or greater than the design value? Explain.

CP12.6 The industrial process shown in Figure CP12.6 is 
known to have a time delay in the loop. In practice, it 
is often the case that the magnitude of system time de-
lays cannot be precisely determined. The magnitude of 
the time delay may change in an unpredictable manner 
depending on the process environment. A robust con-
trol system should be able to operate satisfactorily in 
the presence of the system time delays.

a. Develop an m-file script to compute and plot the 
phase margin for the industrial process in Figure 
CP12.6 when the time delay, T, varies between 
0 and 5 seconds. Use the pade function with a 
second-order approximation to approximate the 
time delay. Plot the phase margin as a function of 
the time delay.

b. Determine the maximum time delay allowable 
for system stability. Use the plot generated in 
part (a) to compute the maximum time delay 
approximately.
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CP12.7 A unity feedback control system has the loop 
transfer function

L s G s G s
a s
s s

c
0.5

0.15
.

2
( ) ( ) ( )

( )
= =

+
+

We know from the underlying physics of the prob-
lem that the parameter a can vary only between 

< <a0 1. Develop an m-file script to generate the 
following plots:

a. The unit step response for the range of a given.
b. The percent overshoot, P.O., due to the unit step 

input versus parameter a.
c. The gain margin versus the parameter a.
d. Based on the results in parts (a)–(c), comment 

on the robustness of the system to changes in pa-
rameter a in terms of stability and transient time 
response.

CP12.8 The Gamma-Ray Imaging Device (GRID) is a 
NASA experiment to be flown on a long-duration, 
high-altitude balloon during the coming solar maxi-
mum. The GRID on a balloon is an instrument that 
will qualitatively improve hard X-ray imaging and 
carry out the first gamma-ray imaging for the study 
of solar high-energy phenomena in the next phase 
of peak solar activity. From its long-duration bal-
loon platform, GRID will observe numerous hard 
X-ray bursts, coronal hard X-ray sources, “superhot” 

thermal events, and microflares [2]. Figure CP12.8(a) 
depicts the GRID payload attached to the balloon. 
The major components of the GRID experiment con-
sist of a 5.2-meter canister and mounting gondola, a 
high-altitude balloon, and a cable connecting the gon-
dola and balloon. The instrument–sun pointing re-
quirements of the experiment are 0.1 degree pointing 
accuracy and 0.2 arcsecond per 4 ms pointing stability.
 An optical sun sensor provides a measure of the 
sun–instrument angle and is modeled as a first-order 
system with a DC gain and a pole at = −s 500. A 
torque motor actuates the canister/gondola assem-
bly. The azimuth angle control system is shown in 
Figure CP12.8(b). The PID controller is selected by 
the design team so that

G s
K s as b

sc
D( )

( ) =
+ +

,
2

where a and b are to be selected. A prefilter is used 
as shown in Figure CP12.8(b). Determine the value 
of KD, a, and b so that the dominant roots have a 
damping ratio ζ = 0.8 and the percent overshoot to 
a step input is ≤P O. .  3%. Develop a simulation to 
study the control system performance. Use a step re-
sponse to confirm the percent overshoot meets the 
specification.

FIGURE CP12.8
The GRID device. (b)

(a)

-

+
Controller
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Motor

Gc(s)Gp(s)
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1
s + 2

1
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balloon GRID payload
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944 Chapter 12  Robust Control Systems

ANSWERS TO SKILLS CHECK

True or False: (1) True; (2) False; (3) True; (4) True; (5) 
False

Multiple Choice: (6) b; (7) b; (8) c; (9) d; (10) a; (11) d; 
(12) a; (13) c; (14) a; (15) b

Word Match (in order, top to bottom): d, g, i, b, c, k, f, h, 
a, j, e

TERMS AND CONCEPTS

Additive perturbation A system perturbation model ex-
pressed in the additive form G s G s A sa( ) ( ) ( )= + , 
where ( )G s  is the nominal process function, ( )A s  is 
the perturbation that is bounded in magnitude, and 
G sa( ) is the family of perturbed process functions.

Complementary sensitivity function The function 

C s
G s G s

G s G s
c

c
( )

( ) ( )
( ) ( )

=
+

 
1

 that satisfies the relationship 

  1,S s C s( ) ( )+ =  where ( )S s  is the sensitivity function. 

Internal model principle The principle that states that 
if G s G sc( ) ( ) contains the input ( )R s , then the output 

( )y t  will track ( )R s  asymptotically (in the steady-
state) and the tracking is robust.

Multiplicative perturbation A system perturba-
tion model expressed in the multiplicative form 
G s G s M sm ( )( ) ( ) ( )= +1 , where ( )G s  is the nominal 
process function, ( )M s  is the perturbation that is 
bounded in magnitude, and G sm( ) is the family of per-
turbed process functions.

PID controller A controller with three terms in which the 
output is the sum of a proportional term, an integrat-
ing term, and a differentiating term, with an adjust-
able gain for each term.

Prefilter A transfer function G sp( ) that filters the input 
signal ( )R s  prior to the calculation of the error signal.

Process controller See PID controller.

Robust control system A system that maintains accept-
able performance in the presence of significant model 
uncertainty, disturbances, and noise.

Robust stability criterion A test for robustness with re-
spect to multiplicative perturbations in which stabil-

ity is guaranteed if M j
G j

1
1

,ω
ω

( )
( )

< +  for all ω,  

where ( )M s  is the multiplicative perturbation.

Root sensitivity A measure of the sensitivity of the roots 
(i.e., the poles and zeros) of the system to changes in 

a parameter defined by ,S
rr ii

α α
=

∂
∂α  where α is the 

parameter and ri  is the root.

Sensitivity  function The function  S s G s G sc[ ]( ) ( ) ( )= + −1   1 
that satisfies the relationship 1,S s C s( ) ( )+ =  where 
C s( ) is the complementary sensitivity function.

System sensitivity A measure of the system sensitivity 

to changes in a parameter defined by 
α α

=
∂
∂α ,S
T TT  

where α is the parameter and T is the system transfer 
function.
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PREVIEW

A digital computer often hosts the controller algorithm in a feedback control 
 system. Since the computer receives data only at specific intervals, it is necessary 
to develop a method for describing and analyzing the performance of computer 
control systems. In this chapter, we provide an introduction to the topic of digital 
control systems. The notion of a sampled-data system is presented followed by a 
discussion of the z-transform. We may use the z-transform of a transfer function 
to analyze the stability and transient response of a system. The basics of closed-
loop stability with a digital controller in the loop are covered with a short presen-
tation on the role of root locus in the design process. This chapter concludes with 
the design of a digital controller for the Sequential Design Example: Disk Drive 
Read System.

DESIRED OUTCOMES

Upon completion of Chapter 13, students should be able to:

	❏ Explain the role of digital computers in control system design  
and application.

	❏ Describe the z-transform and sampled-data systems.

	❏ Design digital controllers using root locus methods.

	❏ Identify the potential issues of implementing digital controllers.
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946 Chapter 13  Digital Control Systems

13.1 INTRODUCTION

The use of digital computer compensator (controller) devices continues to increase 
as the price and reliability of digital computers improves [1, 2]. A block diagram of 
a single-loop digital control system is shown in Figure 13.1. The digital computer in 
this system configuration receives the error in digital form and performs calculations 
in order to provide an output in digital form. The computer may be programmed 
to provide an output so that the performance of the process is near or equal to the 
desired performance. Many computers are able to receive and manipulate several 
inputs, so a digital computer control system can often be a multivariable system.

A digital computer receives and operates on signals in digital (numerical) form, 
as contrasted to continuous signals [3]. A digital control system uses digital signals 
and a digital computer to control a process. The measurement data are converted 
from analog form to digital form by means of the analog-to-digital converter shown 
in Figure 13.1. After processing the inputs, the digital computer provides an output 
in digital form. This output is then converted to analog form by the digital-to-analog 
converter shown in Figure 13.1.

13.2 DIGITAL COMPUTER CONTROL SYSTEM APPLICATIONS

A digital computer consists of a central processing unit (CPU), input–output units, 
and a memory unit. The size and power of a computer will vary according to the size, 
speed, and power of the CPU, as well as the size, speed, and organization of the mem-
ory unit. Powerful but inexpensive computers, called microcomputers are everywhere. 
These systems use a microprocessor as a CPU. Therefore, the nature of the control 
task, the extent of the data required in memory, and the speed of calculation required 
will dictate the selection of the computer within the range of available computers.

The size of computers and the cost for the active logic devices used to construct 
them have both declined exponentially. The active components per cubic centime-
ter have increased so that the actual computer can be reduced in size to the point 
where relatively inexpensive, powerful laptop computers are providing mobile 
high-performance computational capability to students and professionals alike, and 
are, in many instances, replacing traditional desktop microcomputers. The speed 
of computers has also increased exponentially. The transistor density (a measure 
of computational performance) on microprocessor integrated circuits has increased 
exponentially over the last 40 years, as illustrated in Figure 13.2. In  fact, accord-
ing to “Moore’s law,” the transistor density doubles every year, and will probably 

Reference
input

(digital)

(digital) (analog)

(digital) (analog)

Actuator Process

Measurement
sensor

Output
(analog)

Digital-
to-analog
converter

Analog-
to-digital
converter

Digital
computerFIGURE 13.1

A block diagram 
of a computer 
control system, 
including the signal 
 converters. The 
 signal is indicated 
as digital or analog.
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Section 13.2 Digital Computer Control System Applications 947

continue to do so. Significant progress in computation capability has been and will 
 continue to be made. Clearly, improvements in computational capability have revo-
lutionized the application of control theory and design in the modern era.

Digital control systems are used in many applications: for machine tools, 
 metal-working processes, biomedical, environmental, chemical processes, aircraft 
control, and automobile traffic control, and many others [4–8]. An example of a com-
puter control system used in the aircraft industry is shown in Figure 13.3. Automatic 
computer-controlled systems are used for purposes as diverse as measuring the 
 objective refraction of the human eye and controlling the engine spark timing or 
air–fuel ratio of automobile engines.

The advantages of using digital control include improved measurement sensitiv-
ity; the use of digitally coded signals, digital sensors and transducers, and micropro-
cessors; reduced sensitivity to signal noise; and the capability to easily reconfigure 

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Year
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5,000

4,000
M
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f 
tr

an
si

st
or

s

FIGURE 13.2
The development 
of  microprocessors 
measured in 
 millions of 
transistors.

FIGURE 13.3
The flight deck of 
the Boeing 787 
Dreamliner features 
digital control elec-
tronics. The aircraft 
is equipped with 
a complete suite 
of navigation and 
communication 
avionics. (Courtesy 
of Craig F. Walker/
Getty Images.)
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948 Chapter 13  Digital Control Systems

the control algorithm in software. Improved sensitivity results from the low-energy 
signals required by digital sensors and devices. The use of digitally coded signals 
permits the wide application of digital devices and communications. Digital sensors 
and transducers can effectively measure, transmit, and couple signals and devices. 
In addition, many systems are inherently digital because they send out pulse signals.

13.3 SAMPLED-DATA SYSTEMS

Computers used in control systems are interconnected to the actuator and the pro-
cess by means of signal converters. The output of the computer is processed by a 
digital-to-analog converter. We will assume that all the numbers that enter or leave 
the computer do so at the same fixed period T, called the sampling period. Thus, for 
example, the reference input shown in Figure 13.4 is a sequence of sample values 
r(kT). The variables r(kT), m(kT), and u(kT) are discrete signals in contrast to m(t) 
and y(t), which are continuous functions of time.

Sampled data (or a discrete signal) are data obtained for the system variables 
only at discrete intervals and are denoted as x(kT).

A system where part of the system acts on sampled data is called a sampled-data 
system. A sampler is basically a switch that closes every T seconds for one instant of 
time. Consider an ideal sampler, as shown in Figure 13.5. The input is r(t), and the 
output is ( )* ,r t  where nT is the current sample time, and the current value of ( )*r t  
is r(nT). We then have δ= −( ) ( )( )* ,r t r nT t nT  where δ  is the impulse function.

Let us assume that we sample a signal r(t), as shown in Figure 13.5, and obtain 
( )* .r t  Then, we portray the series for ( )*r t  as a string of impulses starting at t 0,=  

spaced at T seconds, and of amplitude r(kT). For example, consider the input signal 
r(t) shown in Figure 13.6(a). The sampled signal is shown in Figure 13.6(b) with an 
impulse represented by a vertical arrow of magnitude r(kT).

A digital-to-analog converter serves as a device that converts the sampled sig-
nal ( )r t*  to a continuous signal p(t). The digital-to-analog converter can usually be 

Digital-
to-analog
converter

Analog-
to-digital
converter

Digital
computer

r (kT )
Reference y(t)

Output

Actuator
and

process

u(kT )

m(kT ) m(t)

p(t)

FIGURE 13.4
A digital control 
system.

r(t) r*(t)

Sampler

Continuous
signal

Sampled
signal

FIGURE 13.5
An ideal sampler  
with an input r(t).
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Section 13.3 Sampled-Data Systems 949

represented by a zero-order hold circuit, as shown in Figure 13.7. The zero-order 
hold takes the value r(kT) and holds it constant for kT t k T1 ,( )≤ < +  as shown in 
Figure 13.8 for k 0.=  Thus, we use r(kT) during the sampling period.

A sampler and zero-order hold can accurately follow the input signal if T is 
small compared to the transient changes in the signal. The response of a sampler 
and zero-order hold for a ramp input is shown in Figure 13.9. Finally, the response 
of a sampler and zero-order hold for an exponentially decaying signal is shown in 
Figure 13.10 for two values of the sampling period. Clearly, the output p(t) will 
approach the input r(t) as T approaches zero, meaning that we sample frequently.

r(kT )

(b)

r(T )

r(2T )

r(3T )

r(4T )

0 T 2T 3T 4T

Time (kT )

r(t)

0 T 2T 3T 4T
t

(a)

FIGURE 13.6
(a) An input 
 signal r(t). 
(b) The  sampled 
signal r*(t) = 

δ( ) ( )Σ −= r kT t kTk
x   .0  

The vertical arrow 
represents an 
impulse.

0
Time

1

p(t)

T

FIGURE 13.8
The response of 
a zero-order hold 
to an  impulse 
input r(kT), which 
equals unity 
when =k 0  and 
equals zero when 

≠k 0,  so that 
δ( ) ( ) ( )=r t r t* 0 .

Sampler

r*(t)
r(t) p(t)

Zero-order
hold

G0(s)

FIGURE 13.7
A sampler and 
zero-order hold 
circuit.
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950 Chapter 13  Digital Control Systems

Time
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6

r(
t)

 a
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(t

)

r(t)

p(t)

FIGURE 13.9
The response of 
a sampler and 
 zero-order hold 
for a ramp input 
( ) =r t t.

0.5
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r(
t)
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(t
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0 1 2 3 4

p(t)

Time (s)

(a)  T = 0.5 s

0

0.5

1.0

r(
t)

 a
nd

 p
(t

)

1 2 3 4

Time (s)

r(t)

(b)  T = 0.2 s

p(t)

r(t)FIGURE 13.10
The response of 
a sampler and 
 zero-order hold to 
an input ( ) = −r t e t  
for two values of 
sampling period T.

The impulse response of a zero-order hold is shown in Figure 13.8. The transfer 
function of the zero-order hold is

 G s
s s

e
e
s

sT
sT1 1

 
1

.0 ( ) = − =
−−

−
 (13.1)
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 Section 13.4  The z-Transform 951

The precision of the digital computer and the associated signal converters is limited. 
Precision is the degree of exactness or discrimination with which a quantity is stated. 
The precision of the computer is limited by a finite word length. The precision of the 
analog-to-digital converter is limited by an ability to store its output only in digital logic 
composed of a finite number of binary digits. The converted signal m(kT) is then said 
to include an amplitude quantization error. When the quantization error and the error 
due to the computer finite word size are small relative to the amplitude of the signal 
[13, 16], the system is sufficiently precise, and the precision limitations can be neglected.

13.4 THE z-TRANSFORM

Because the output of the ideal sampler, ( )* ,r t  is a series of impulses with values 
r(kT), we have

 * ,
0

r t r kT t kT
k
∑ δ( ) ( ) ( )= −
=

∞
 (13.2)

for a signal for t 0.>  Using the Laplace transform, we have

 * .
0

r t r kT e
k

ksT∑{ }( ) ( )=
=

∞
−l  (13.3)

We now have an infinite series that involves multiples of esT  and its powers. We 
define

 z esT ,=  (13.4)

where this relationship involves a conformal mapping from the s-plane to the z-plane. 
We then define a new transform, called the z-transform, so that

 * .
0

Z r t Z r t r kT z
k

k∑{ } { }( ) ( ) ( )= =
=

∞
−  (13.5)

As an example, let us determine the z-transform of the unit step function u(t) (not 
to be confused with the control signal u(t)). We obtain

 ,
0 0

Z u t u kT z z
k

k

k

k∑ ∑{ }( ) ( )= =
=

∞
−

=

∞
−  (13.6)

since u kT 1( ) =  for k 0.≥  This series can be written in closed form as1

 U z
z

z
z

1
1 1

.
1( ) =

−
=

−−  (13.7)

In general, we will define the z -transform of a function f(t) as

 Z f t F z f kT z
k

k .
0

∑{ }( ) ( ) ( )= =
=

∞
−  (13.8)

1 Recall that the infinite geometric series may be written 1 1 ,
1 2 3

bx bx bx bx …( ) ( ) ( )− = + + + +
−

  
if 1.bx <
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952 Chapter 13  Digital Control Systems

EXAMPLE 13.1 Transform of an exponential

Let us determine the z-transform of f t e at( ) = −  for t 0.≥  Then

 .
0 0

Z e F z e z zeat

k

akT k

k

aT k∑ ∑{ } ( )( )= = =−

=

∞
− −

=

∞
+ −

 (13.9)

Again, this series can be written in closed form as

 
1

1
.1F z

ze

z

z eaT aT( )
( ) =

−
=

−
− −

 (13.10)

In general, we may show that

Z e f t F e zat aT .{ } ( )( ) =−  ■

EXAMPLE 13.2 Transform of a sinusoid

Let us determine the z-transform of f t tsin ω( ) ( )=  for t 0.≥  We can write tsin ω( ) as

 t
e

j
e

j

j T j T
sin

2 2
.ω( ) = −

ω ω−
 (13.11)

Then, it follows that

 F z
j

z
z e

z
z e j

z e e

z z e ej T j T

j T j T

j T j T
1
2

   
1
2

 
12

( )
( )

( ) =
−

−
−







 =

−

− + +











ω ω

ω ω

ω ω−

−

−
 

(13.12)

 
z T

z z T
 sin

2  cos 1
.

2
ω

ω
( )

( )
=

− +
 ■

A table of z-transforms is given in Table 13.1 and at the MCS website. Note that 
we use the same letter to denote both the Laplace and z-transforms, distinguishing 
them by the argument s or z. A table of properties of the z-transform is given in 
Table 13.2. As in the case of Laplace transforms, we are ultimately interested in the 
output y(t) of the system. Therefore, we must use an inverse transform to obtain 
y(t) from Y(z). We may obtain the output by (1) expanding Y(z) in a power series, 
(2) expanding Y(z) into partial fractions and using Table 13.1 to obtain the inverse 
of each term, or (3) obtaining the inverse z-transform by an inversion integral. We 
will limit our methods to (1) and (2) in this limited discussion.

EXAMPLE 13.3 Transfer function of an open-loop system

Consider the system shown in Figure 13.11 for T 1.=  The transfer function of the 
zero-order hold is

G s
e
s

sT1
.0 ( ) =

− −

Therefore, the transfer function ( ) ( )/Y s R s*  is

 
( )
( )

( ) ( ) ( )
( )

= = =
−

+

−Y s
R s

G s G s G s
e

s s
p

sT

*
1

1
.0 2
 (13.13)
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 Section 13.4  The z-Transform 953

Expanding into partial fractions, we have

 G s e
s s s

sT1
1 1 1

1
,

2( )( ) = − − +
+









−  (13.14)

and the z-transform is

 G z Z G s z Z
s s s

1
1 1 1

1
.1

2( ){ }( ) ( )= = − − +
+









−  (13.15)

Table 13.1 z-Transforms

( )x t ( )X s ( )X z

1
, ,   0

0 otherwise

t
t( )









δ =
< →

∈
∈ ∈ 1 —

1
, ,   0

0 otherwise
t a

a t a
δ( )− =

< < + →









∈
∈ ∈

−e as —

1 0,
0 ,   0o t

t
t kT k

δ ( ) =
=
= ≠








— 1

δ ( )− =
=
≠







1 ,
0

o t kT
t kT
t kT

— −z k

 ( )u t , unit step 1 s

− 1
z

z
t 1 2s

( )− 1 2
Tz

z
−e at

+
1

s a − −
z

z e aT

− −1 e at

( )+
1

s s a

( )
( )( )

−

− −

−

−

1

1

e z

z z e

aT

aT

ω( )sin t ω
ω+2 2s

ω
ω

( )
( )− +

 sin
2  cos 12

z T

z z T

ω( )cos t
ω+2 2

s
s

ω
ω

( )( )
( )

−

− +

cos

2  cos 12

z z T

z z T

ω( )− sine tat ω

ω( )+ +2 2s a

sin

2 cos2 2

ze T

z ze T e

aT

aT aT

ω

ω
( )( )

( )− +

−

− −

ω( )− cose tat

ω( )
+

+ +2 2

s a

s a

ω
ω

( )
( )

−
− +

−

− −
cos

2 cos

2

2 2

z ze T

z ze T e

aT

aT aT

M13_DORF2374_14_GE_C13.indd   953M13_DORF2374_14_GE_C13.indd   953 15/09/21   10:02 AM15/09/21   10:02 AM



954 Chapter 13  Digital Control Systems

Using the entries of Table 13.1 to convert from the Laplace transform to the corre-
sponding z-transform of each term, we have

G z z
Tz

z

z
z

z
z e T

1
1 1

1
2( )( )

( )
= −

−
−

−
+

−

















−
−

ze z Tz e Te

z z e

T T T

T

1

1
.

( ) ( )
( )( )

=
− + + − −

− −

− − −

−

When T 1,=  we obtain

 G z
ze e
z z e

z
z z

1 2
1

0.3678 0.2644
1.3678 0.3678

.
1 1

1 2( )
( )

( )
=

+ −
− −

=
+

− +

− −

−
 (13.16)

The response of this system to a unit impulse is obtained for R z 1( ) =  so that 
Y z G z 1.( ) ( )= ⋅  We obtain Y(z) by dividing the denominator into the numerator:

)
0.3678 0.7675 0.9145

1.3678 0.3678 0.3678 0.2644

0.3678 0.5031 0.1353

0.7675 0.1353

0.7675 1.0497 0.2823

0.9145 0.2823

1 2 3

2

1

1

1 2

1 2

…z z z Y z

z z z

z z

z

z z

z z

( )+ + + =

− + +

− +

+ −

+ − +

−

− − −

−

−

− −

− −

 (13.17)

Table 13.2 Properties of the z-Transform

( )x t ( )X z

1. k ( )x t ( )kX z

2. ( ) ( )+1 2x t x t ( ) ( )+1 2X z X z

3. ( )+x t T ( ) ( )− 0zX z zx

4. ( )tx t ( )
−Tz

dX z

dz

5. ( )−e x tat ( )X zeaT

6. ( )0x , initial value ( )
→∞
lim X z

z
 if the limit exists

7. ,x( )∞  final value ( ) ( )−
→

lim 1
1

z X z
z

 if the limit exists and the system is stable;  

 that is, if all poles of ( ) ( )− 1z X z  are inside the unit  
 circle z 1=  on z-plane.

r*(t)
r(t)

p(t)

Zero-order
hold

G0(s) y(t)

Process

1
s(s + 1)

Gp(s) = 
T = 1

FIGURE 13.11
An open-loop, 
 sampled-data 
system (without 
feedback).
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Section 13.5 Closed-Loop Feedback Sampled-Data Systems 955

This calculation yields the response at the sampling instants and can be carried as 
far as is needed for Y(z). From Equation (13.5), we have

Y z y kT z
k

k .
0

∑( ) ( )=
=

∞
−

In this case, we have obtained y(kT) as follows: y y T y T0 0,   0.3678,   2( ) ( ) ( )= = = 
0.7675, and y T3 0.9145.( ) =  Note that y(kT) provides the values of y(t) at t kT .=  ■

We have determined Y(z), the z-transform of the output sampled signal. 
The z-transform of the input sampled signal is R(z). The transfer function in the  
z- domain is

 
Y z
R z

G z .
( )
( )

( )=  (13.18)

Since we determined the sampled output, we can use an output sampler to depict 
this condition, as shown in Figure 13.12; this represents the system of Figure 13.11 
with the sampled input passing to the process. We assume that both samplers have 
the same sampling period and operate synchronously. Then

 Y z G z R z ,( ) ( ) ( )=  (13.19)

as required. We may represent Equation (13.19), which is a z-transform equation, 
by the block diagram of Figure 13.13.

13.5 CLOSED-LOOP FEEDBACK SAMPLED-DATA SYSTEMS

In this section, we consider closed-loop, sampled-data control systems. Consider the 
system shown in Figure 13.14(a). The sampled-data z-transform model of this figure  
with a sampled-output signal Y(z) is shown in Figure 13.14(b). The closed-loop 
transfer function (using block diagram reduction) is

 
Y z
R z

T z
G z

G z1
.

( )
( )

( ) ( )
( )

= =
+

 (13.20)

Here, we assume that the G(z) is the z-transform of ( ) ( ) ( )=G s G s G sp ,0  where 
G s0 ( ) is the zero-order hold, and ( )G sp  is the process transfer function.

r(t)
R(z)

Y(z)G(z)
FIGURE 13.12
System with 
 sampled output.

R(z) Y(z)
G(z)

FIGURE 13.13
The z-transform 
transfer function in 
block diagram form.
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956 Chapter 13  Digital Control Systems

A digital control system with a digital controller is shown in Figure 13.15(a). 
The z-transform block diagram model is shown in Figure 13.15(b). The closed-loop 
transfer function is

 
Y z
R z

T z
G z D z

G z D z1
.

( )
( )

( ) ( ) ( )
( ) ( )

= =
+

 (13.21)

EXAMPLE 13.4 Response of a closed-loop system

Consider the closed-loop system shown in Figure 13.16. We have obtained the 
z-transform model of this system, as shown in Figure 13.14. Therefore, we have

 
Y z
R z

G z
G z1

.
( )
( )

( )
( )

=
+

 (13.22)

(b)

E(z)
Y(z)G(z)R(z)

-

+

(a)

E(z)
Y(z)

Y(z)

G(z)
R(z)

-

+
r(t)

FIGURE 13.14
Feedback control 
system with unity 
feedback. G(z) is 
the z-transform 
 corresponding 
to G(s), which 
 represents the  
process and the  
zero-order hold.

(a)

Y(z)

+ -
Y(z)G(z)D(z)

R(z)
r(t)

Digital
controller

(b)

E(z)
Y(z)G(z)D(z)R(z)

-

+ U(z)

FIGURE 13.15
(a) Feedback 
control system 
with a digital 
 controller. (b) Block 
diagram model. 
Note that G(z) =

{ }( ) ( )Z G s G sp .0
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Section 13.5 Closed-Loop Feedback Sampled-Data Systems 957

In Example 13.3, we obtained G(z) as Equation (13.16) when T 1 s= . Substituting 
G(z) into Equation (13.22), we obtain

 
Y z
R z

z
z z

0.3678 0.2644
0.6322

.
2

( )
( )

=
+

− +
 (13.23)

Since the input is a unit step,

 R z
z

z 1
,( ) =

−
 (13.24)

it follows that

Y z
z z

z z z
z z

z z z
0.3678 0.2644
1 0.6322

0.3678 0.2644
2 1.6322 0.6322

.
2

2

3 2( )
( ) ( )

( )
=

+
− − +

=
+

− + −

Completing the division, we have

 Y z z z z z z0.3678 1.4 1.4 1.147 .1 2 3 4 5( ) = + + + + …− − − − −  (13.25)

The values of y(kT) are shown in Figure 13.17, using the symbol .�  The complete 
response of the sampled-data, closed-loop system is shown and contrasted to the re-
sponse of a continuous system (when T 0= ). The overshoot of the sampled system 
is 45%, in contrast to 17% for the continuous system. Furthermore, the settling time 
of the sampled system is twice as long as that of the continuous system. ■

-

+
r(t)

Zero-order
hold

G0(s)
1

s(s + 1)

Gp(s)

e(t) e*(t)
y(t)

T = 1FIGURE 13.16
A closed-loop, 
sampled-data 
system.

1.6

1.4

1.2

1.0

.8

.6

.4

.2

0 1 2 3 4 5 6 7

(a)  Continuous, unsampled system

(b)  Sampled system

y(t)

Time (s)

FIGURE 13.17
The response 
of a second- 
order  system: 
(a)  continuous  
( =T 0 ), not sam-
pled; (b) sampled 
system, =T 1 s.
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958 Chapter 13  Digital Control Systems

A linear continuous feedback control system is stable if all poles of the closed-loop 
transfer function T(s) lie in the left half of the s-plane. The z-plane is related to the 
s-plane by the transformation

 z e esT j T .= = σ ω( )+  (13.26)

We may also write this relationship as

z e T= σ

and

 ω=z T .  (13.27)

In the left-hand s-plane, 0;σ <  therefore, the related magnitude of z varies be-
tween 0 and 1. Thus, the imaginary axis of the s-plane corresponds to the unit circle 
in the z-plane, and the inside of the unit circle corresponds to the left half of the 
s-plane [14].

Therefore, we can state that the stability of a sampled-data system exists if all 
the poles of the closed-loop transfer function T(z) lie within the unit circle of the 
z-plane.

EXAMPLE 13.5 Stability of a closed-loop system

Let us consider the system shown in Figure 13.18 when T 1=  and

 G s
K

s s
p

1
.( )

( )
=

+
 (13.28)

Recalling Equation (13.16), we note that

 G z
K z

z z
K az b

z a z a
0.3678 0.2644

1.3678 0.3678 1
,

2 2( ) ( ) ( )
( )

=
+

− +
=

+
− + +

 (13.29)

where a 0.3678=  and b 0.2644.=
The poles of the closed-loop transfer function T(z) are the roots of the equation 
G z1 0.( )+ =  We call q z G z1 0( ) ( )= + =  the characteristic equation. Therefore, 

we obtain

 q z G z z a z a Kaz Kb1 1 0.2( ) ( ) ( )= + = − + + + + =  (13.30)

-

+
r(t)

Zero-order
hold

G0(s)
e(t) e*(t)

y(t)Gp(s)

Process

FIGURE 13.18
A closed-loop 
 sampled system.
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Section 13.6 Performance of a Sampled-Data, Second-Order System 959

When K 1,=  we have

= − +( ) 0.63222q z z z

 0.50 0.6182 0.50 0.6182 0.z j z j( )( )= − + − − =  (13.31)

Therefore, the system is stable because the roots lie within the unit circle. When 
K 10,=  we have

q z z z2.310 3.0122( ) = + +

 z j z j1.155 1.295 1.155 1.295 ,( )( )= + + + −  (13.32)

and the system is unstable because both roots lie outside the unit circle. This sys-
tem is stable for K0 2.39.< <  The locus of the roots as K varies is discussed in 
Section 13.8.

We notice that a second-order sampled system can be unstable with increas-
ing gain where a second-order continuous system is stable for all values of gain 
(assuming both the poles of the open-loop system lie in the left half s-plane). ■

13.6 PERFORMANCE OF A SAMPLED-DATA, SECOND-ORDER SYSTEM

Consider the performance of a sampled second-order system with a zero-order 
hold, as shown in Figure 13.18, when the process is

 
τ

( )
( )

=
+

G s
K

s s
p

1
.  (13.33)

We then obtain G(z) for the sampling period T as

 G z
K z E T z z

z z E

1 1

1
,

2τ τ{ }[ ]
( )

( ) ( ) ( )

( )( )
=

− − − + −

− −
 (13.34)

where E e T .= τ−  The stability of the system is analyzed by considering the charac-
teristic equation

q z z z K T E E K E TE E1 1 1 0.2 τ τ{ }[ ] [ ]( ) ( ) ( ) ( )= + − − − + + − − + =
(13.35)

Because the polynomial q(z) is a quadratic and has real coefficients, the necessary 
and sufficient conditions for q(z) to have all its roots within the unit circle are

q q q0 1, 1 0, and 1 0.( ) ( ) ( )< > − >

These stability conditions for a second-order system can be established by mapping 
the z-plane characteristic equation into the s-plane and checking for positive coef-
ficients of q(s). Using these conditions, we establish the necessary conditions from 
Equation (13.35) as

 K
E

E T E
1

1
,τ

τ( )
<

−
− −

 (13.36)
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960 Chapter 13  Digital Control Systems

 K
E

T E E
2 1

1 2 1
,τ

τ( )
( )

( ) ( )
<

+
+ − −

 (13.37)

and K T0,   0.> >  For this system, we can calculate the maximum gain permissible 
for a stable system. The maximum gain allowable is given in Table 13.3 for several 
values of τT . It is possible to set T 0.1τ =  and vary K to obtain system characteris-
tics approaching those of a continuous (nonsampled) system. The maximum percent 
overshoot of the second-order system for a unit step input is shown in Figure 13.19.

The integral squared error performance criterion can be written as

 ∫τ
( )=

∞
I e t dt

1
.2

0
 (13.38)

The loci of this criterion are given in Figure 13.20 for constant values of I. For a 
given value of τT , we can determine the minimum value of I and the required 

Table 13.3 Maximum Gain for a Second-Order Sampled System

T τ 0 0.1 0.5 1 2

Maximum τK ∞ 20.4 4.0 2.32 1.45

2.5

2.0

1.5

1.0

0.5

0 0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0

Kt

T/t

P.O. = 10%
30%

50%

70%

100%

Stability limit

FIGURE 13.19
The maximum 
percent overshoot 
for a second-order 
sampled system for 
a unit step input.

2.5

2.0

1.5

1.0

0.5

0 0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0

Kt

T>t

2.4

2.0

1.0

I = 1.5

I = 2.4

I = 1.5
2.0

Optimal curve

FIGURE 13.20
The loci of integral 
squared error for 
a second-order 
sampled system for 
constant values of I.
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Section 13.7 Closed-Loop Systems with Digital Computer Compensation 961

value of K .τ  The optimal curve shown in Figure 13.20 indicates the required Kτ  
for a specified T τ  that minimizes I. For example, when T 0.75,τ =  we require 
K 1τ =  in order to minimize the performance criterion I.

The steady-state error for a unit ramp input =( )r t t  is shown in Figure 13.21. 
For a given τT , we can reduce the steady-state error, but then the system yields a 
greater overshoot and settling time for a step input.

EXAMPLE 13.6 Design of a sampled system

Consider a closed-loop sampled system as shown in Figure 13.18 when

 G s
K

s s
p

0.1 1
.( )

( )
=

+
 (13.39)

We seek to select T and K for suitable performance. We use Figures 13.19–13.21 to 
select K and T for 0.1τ = . Limiting the percent overshoot to P.O. = 30% for the 
step input, we select T 0.25,τ =  yielding K 1.4.τ =  For these values, the steady-
state error for a unit ramp input is approximately ess = 0.6 (see Figure 13.21).

Because 0.1,τ =  we then set T 0.025 s=  and K 14.=  The sampling rate is 40 
samples per second. The percent overshoot to the step input and the steady-state 
error for a ramp input may be reduced if we set T τ  to 0.1. The percent overshoot 
to a step input will be P.O. = 25% for K 1.6.τ =  Using Figure 13.21, we estimate 
that the steady-state error for a unit ramp input is ess = 0.55 for K 1.6.τ =  ■

13.7 CLOSED-LOOP SYSTEMS WITH DIGITAL COMPUTER COMPENSATION

A closed-loop, sampled system with a digital computer used to improve the perfor-
mance is shown in Figure 13.15. The closed-loop transfer function is

 
Y z
R z

T z
G z D z

G z D z1
.

( )
( )

( ) ( ) ( )
( ) ( )

= =
+

 (13.40)

2.5

2.0

1.5

1.0

0.5

0 0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0

Kt

T/t

ess = 2.0

1.0

0.5

0.25
0.1 0.0

Nonstable zone

FIGURE 13.21
The steady-
state error of a 
 second-order 
sampled system for 
a unit ramp input 

( ) = >r t t t,   0.
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962 Chapter 13  Digital Control Systems

The transfer function of the computer is represented by

 D z
U z
E z

.( ) ( )
( )

=  (13.41)

In our prior examples, D(z) was represented by a gain K. As an illustration of 
the power of the computer as a compensator, we consider again the second-order 
system with a zero-order hold and process

G s
s s

Tp
1

1
 when  1.( )

( )
=

+
=

Then (see Equation 13.16)

 G z
z

z z
0.3678 0.7189

1 0.3678
.( ) ( )

( )( )
=

+
− −

 (13.42)

If we select

 D z
K z

z r
0.3678

,( ) ( )
=

−
+

 (13.43)

we cancel the pole of G(z) at z 0.3678=  and have to set two parameters, r and K. 
If we select

 D z
z

z
1.359 0.3678

0.240
,( ) ( )

=
−

+
 (13.44)

we have

 G z D z
z

z z
0.50 0.7189

1 0.240
.( ) ( ) ( )

( )( )
=

+
− +

 (13.45)

If we calculate the response of the system to a unit step, we find that the out-
put is equal to the input at the fourth sampling instant and thereafter. The responses 
for both the uncompensated and the compensated system are shown in Figure 13.22. 
The overshoot of the compensated system is 4%, whereas the percent overshoot of 
the  uncompensated system is P.O. = 45%. It is beyond the objective of this book 

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0 T 2T 3T 4T 5T 6T 7T

Time (s)

y(
t)

Uncompensated

Compensated

FIGURE 13.22
The response of 
a sampled-data 
 second-order 
 system to a unit 
step input.
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Section 13.7 Closed-Loop Systems with Digital Computer Compensation 963

to discuss all the extensive methods for the analytical selection of the parameters of 
D(z); other texts [2–4] can provide further information. However, we will consider 
two methods of compensator design: (1) the Gc(s)-to-D(z) conversion method (in the 
following paragraphs) and (2) the root locus z-plane method (in Section 13.8).

One method for determining D(z) first determines a controller Gc(s) for a 
given process Gp(s) for the system shown in Figure 13.23. Then, the controller is 
converted to D(z) for the given sampling period T. This design method is called the 
Gc(s)-to-D(z) conversion method. It converts the Gc(s) of Figure 13.23 to D(z) of 
Figure 13.15 [7].

We consider a first-order compensator

 G s K
s a
s b

c ( ) =
+
+

 (13.46)

and a digital controller

 D z C
z A
z B

.( ) =
−
−

 (13.47)

We determine the z-transform corresponding to Gc(s) and set it equal to D(z) as

 Z G s D zc .{ }( ) ( )=  (13.48)

Then the relationship between the two transfer functions is A e B eaT bT,   ,= =− −  
and when s 0,=  we require that

 C
A
B

K
a
b

1
1

.
−
−

=  (13.49)

EXAMPLE 13.7 Design to meet a phase margin specification

Consider a system with a process

 ( )
( )

=
+

G s
s s

p
1740

0.25 1
.  (13.50)

We will design Gc(s) so that we achieve a phase margin of P M. . 45°=  with a cross-
over frequency c 125  rad s.ω =  Using the Bode plot of Gp(s), we find that the 
phase margin is P M. . 2°= . Consider the phase-lead compensator

 G s
K s

s
c

50
275

.( ) ( )
=

+
+

 (13.51)

Y(s)R(s)
-

+
Controller

Gc(s) Gp(s)
FIGURE 13.23
The continuous 
system model of a 
sampled system.
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964 Chapter 13  Digital Control Systems

We select K in order to yield G j G jc20  log 010 ω ω( ) ( ) =  when c 125  rad sω ω= =  
yielding K 5.0.=  The compensator Gc(s) is to be realized by D(z), so we solve 
the relationships with a selected sampling period. Setting T 0.003 s,=  we have

A e B e C0.86, 0.44, and 3.66.0.15 0.827= = = = =− −

Then we have

 D z
z

z
3.66 0.86

0.44
.( ) ( )

=
−

−
 (13.52)

Of course, if we select another value for the sampling period, then the coefficients 
of D(z) would differ. ■

In general, we select a small sampling period so that the design based on the 
continuous system will accurately carry over to the z-plane. However, we should 
not select too small a T, or the computation requirements may be more than nec-
essary. In general, we use a sampling period T fB1 10 ,( )≈  where fB B 2 ,ω π( )=  
and Bω  is the bandwidth of the closed-loop continuous system. The bandwidth of 
the system designed in Example 13.7 is B 208  rad sω =  or fB 33.2 Hz.=  Thus, we 
select a  period T 0.003 s.=

13.8 THE ROOT LOCUS OF DIGITAL CONTROL SYSTEMS

Consider the transfer function of the system shown in Figure 13.24. Recall that 
.0G s G s G sp( ) ( ) ( )=  The closed-loop transfer function is

 
Y z
R z

KG z D z
KG z D z1

.
( )
( )

( ) ( )
( ) ( )

=
+

 (13.53)

The characteristic equation is

KG z D z1 0.( ) ( )+ =

Thus, we can plot the root locus for the characteristic equation of the sampled sys-
tem as K varies. The rules for obtaining the root locus are summarized in Table 13.4.

EXAMPLE 13.8 Root locus of a second-order system

Consider the system shown in Figure 13.24 with D z 1( ) =  and 1 .2G s sp( ) =  Then 
we obtain

KG z
T K z

z2
 

1

1
.

2

2( )
( )

( )
=

+

−

-

+
R(s) Y(s)D(z) KGp(s)

Zero-
order
holdFIGURE 13.24

Closed-loop  system 
with a digital 
controller.
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Section 13.8 The Root Locus of Digital Control Systems 965

Let T 2=  and plot the root locus. We now have

KG z
K z

z

1

1
,

2
( ) ( )

( )
=

+

−

and the poles and zeros are shown on the z-plane in Figure 13.25. The characteristic 
equation is

KG z
K z

z
1 1

1

1
0.

2
( ) ( )

( )
+ = +

+

−
=

Let z σ=  and solve for K to obtain

K F
1
1

.
2σ

σ
σ

( )
( )= −

−
+

=

Then obtain the derivative dF d 0σ σ( ) =  and calculate the roots as 31σ = −  and 
1.2σ =  The locus leaves the two poles at 12σ =  and reenters at 3,1σ = −  as shown 

in Figure 13.25. The unit circle is also shown in Figure 13.25. The system always  
has two roots outside the unit circle and is always unstable for all K 0.>

We now turn to the design of a digital controller D(z) to achieve a specified 
response utilizing a root locus method. We will select a controller

D z
z a
z b

.( ) =
−
−

Table 13.4 Root Locus in the z-Plane

1. The root locus starts at the poles and progresses to the zeros.
2. The root locus lies on a section of the real axis to the left of an odd number of poles 

and zeros.
3. The root locus is symmetrical with respect to the horizontal real axis.
4. The root locus may break away from the real axis and may reenter the real axis. The 

breakaway and entry points are determined from the equation

( )
( )

( )= − =K
N z

D z
F z ,

with σ=z .  Then obtain the solution of 
σ

σ
( )

=
dF

d
0.

5. Plot the locus of roots that satisfy

( ) ( )+ =KG z D z1 0,

or

( ) ( ) =KG z D z 1

and

( ) ( ) = ± =G z D z k k180° 360°, 0, �1, �2,. . .
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966 Chapter 13  Digital Control Systems

We then use z a−  to cancel one pole at G(z) that lies on the positive real axis of the 
z-plane. Then we select z b−  so that the locus of the compensated system will give 
a set of complex roots at a desired point within the unit circle on the z-plane.

EXAMPLE 13.9 Design of a digital compensator

Let us design a compensator D(z) that will result in a stable system when G sp ( ) is 
as described in Example 13.8. With D z 1,( ) =  we have an unstable system. Select

D z
z a
z b

( ) =
−
−

so that

( ) ( )
( )( )

( ) ( )
=

+ −

− −
KG z D z

K z z a

z z b

1

1
.

2

If we set a 1=  and b 0.2,=  we have

KG z D z
K z

z z
1

1 0.2
.( ) ( )

( )
( )( )

=
+

− −

Using the equation for F ,σ( )  we obtain the entry point as z 2.56,= −  as shown in 
Figure 13.26. The root locus is on the unit circle at K 0.8.=  Thus, the system is sta-
ble for K 0.8.<  If we select K 0.25,=  we find that the step response has a percent 
overshoot of P.O. = 20% and a settling time (with a 2% criterion) Ts = 8.5 s. ■

We can draw lines of constant ζ  on the z-plane. The mapping between the  
s-plane and the z-plane is obtained by the relation =z esT. The lines of constant ζ  
on the s-plane are radial lines with

tan  tan sin
1

.1
2

σ
ω

θ ζ
ζ

ζ
( )= − = − = −

−
−

K increasing

Root locus
Unit
circle

One zero
at z = -1

2 poles at
z = 1

-2 -1 0 +1

Im{z}

Re{z}-3

FIGURE 13.25
Root locus for 
Example 13.8.
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Section 13.8 The Root Locus of Digital Control Systems 967

Since s j ,σ ω= +  we have

z e eT j T ,= σ ω

where

1
  .

2
σ

ζ

ζ
ω= −

−

The plot of these lines for constant ζ  is shown in Figure 13.27 for a range of T. A com-
mon value of ζ  for many design specifications is 1 2 .ζ =  Then we have σ ω= −  and

θ= =ω ω ω− −z e e e ,T j T T

where T .θ ω=

K increasing

Root locus

Unit circle

-1 0 0.2 +1

K = 0.8

Entry point at
z = -2.56

Breakaway
point at
z = 0.55

Im{z}

Re{z}

FIGURE 13.26
Root locus for 
Example 13.9.
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circle
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FIGURE 13.27
Curves of constant 
ζ  on the z-plane.
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968 Chapter 13  Digital Control Systems

13.9 IMPLEMENTATION OF DIGITAL CONTROLLERS

Consider the PID controller with an s-domain transfer function

 .
U s
X s

G s K
K
s

K sc P
I

D
( )
( )

( )= = + +  (13.54)

We can determine a digital implementation of this controller using a discrete ap-
proximation for the derivative and integration. For the time derivative, we use the 
backward difference rule

 ( )( )( ) ( ) ( )= = − −
=

u kT
dx
dt T

x kT x k T
t kT

|
1

  1 .  (13.55)

The z-transform of Equation (13.55) is then

U z
z

T
X z

z
Tz

X z
1

 
1

  .
1

( ) ( ) ( )=
−

=
−−

The integration of x t( ) can be represented by the forward rectangular integration 
at t kT=  as

 u kT u k T Tx kT1 ,( )( ) ( ) ( )= − +  (13.56)

where u kT( ) is the output of the integrator at t kT .=  The z-transform of Equation 
(13.56) is

U z z U z TX z ,1( ) ( ) ( )= +−

and the transfer function is then
U z
X z

Tz
z 1

.
( )
( )

=
−

Hence, the z-domain transfer function of the PID controller is

 
1

1
.G z K

K Tz
z

K
z
Tz

c P
I

D( ) = +
−

+
−

 (13.57)

The complete difference equation algorithm that provides the PID controller is 
obtained by adding the three terms to obtain [we use x kT x k( ) ( )= ]

 1 1u k K x k K u k Tx k K T x k x kP I D[ ] [ ]( )( ) ( ) ( ) ( ) ( ) ( )= + − + + − −

            1 1 .K K T K T x k K Tx k K u kP I D D I( ) ( ) ( ) ( )= + +  − − + −  (13.58)

Equation (13.58) can be implemented using a digital computer or microprocessor. Of 
course, we can obtain a PI or PD controller by setting an appropriate gain equal to zero.

13.10 DESIGN EXAMPLES

In this section we present two illustrative examples. In the first example, two control-
lers are designed to control the motor and lead screw of a movable  worktable. Using 
a zero-order hold formulation, a proportional controller and a lead compensator 
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Section 13.10 Design Examples 969

are obtained and their performance compared. In the second example, a control 
system is designed to control an aircraft control surface as part of a fly-by-wire  
system. Using root locus methods, the design process focuses on the  design of 
a digital controller to meet settling time and percent overshoot performance 
specifications.

EXAMPLE 13.10 Worktable motion control system

An important positioning system in manufacturing systems is a worktable motion 
control system. The system controls the motion of a worktable at a certain location 
[18]. We assume that the table is activated in each axis by a motor and lead screw, 
as shown in Figure 13.28(a). We consider the x-axis and examine the motion control 
for a feedback system, as shown in Figure 13.28(b). The goal is to obtain a fast re-
sponse with a rapid rise time and settling time to a step command while not exceed-
ing a percent overshoot of P O. . 5%= .

The specifications are then (1) a percent overshoot equal to P O. . 5%=  and 
(2) a minimum settling time (with a 2% criterion) and rise time.

To configure the system, we choose a power amplifier and motor so that the 
system is described by Figure 13.29. Obtaining the transfer function of the motor 
and power amplifier, we have

 
1

10 20
.G s

s s s
p( )

( )( )
=

+ +
 (13.59)

We will initially use a continuous system and design G sc ( ) as described in Section 13.8. 
We then obtain D(z) from .G sc( )  Consider the controller

 .G s
K s a

s b
c( ) ( )

=
+

+
 (13.60)

(b)

D(z)

Gp(s)
ProcessGo(s)

-

+ 1

s (s + 10)(s + 20)
Zero-order

hold
R(s) X(s)

Computer

Sensor

WorktableMotor

Coupling Lead screw

(a)

r(t)
Position
command

Zero-order
hold

Actual
positionx(t)

FIGURE 13.28
A table motion 
 control system: 
(a) actuator and 
table; (b) block 
diagram.
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970 Chapter 13  Digital Control Systems

The root locus is shown in Figure 13.30 when a 30=  and b 25= . In Figure 13.30, 
the desired region for the pole placement is shown consistent with a targeted per-
cent overshoot P O. . 5%≤  (corresponding to 0.69ζ ≥ ). The selected point corre-
sponds to K 545= . The actual percent overshoot is P O. . 5%= , the settling time is 
Ts 1.18 s= , and the rise time Tr 0.4 s= , therefore, the performance specifications 
are satisfied. The final controller design is

545 30
25

.G s
s

s
c( ) ( )

=
+

+

The closed-loop system bandwidth is B 5.3  rad sω =  (or fB 0.85 Hz= ). Hence, 
the sampling frequency is selected to be T fB1 10  0.12 s( )= = . Following the de-
sign strategy in Section 13.7, we determine that

A e B e C K
a
b

B
A

aT bT0.03,   0.05,  and     
1
1

638.
( )
( )

= = = = =
−
−

=− −

R(s)

-

+

Controller Motor

Gc(s)

Power
amplifier

Y(s)
Wheel

position

1
s(s + 10)

1
s + 20FIGURE 13.29

Model of the wheel 
control for a work 
table.

Real axis
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Controller

u = 43.63°

Im
ag

in
ar

y 
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is K = 545

FIGURE 13.30
Root locus for L(s) = 

( ) ( )KG s G sc P  where 
( ) ( )= + /G s K s ac

(s + b), =a 30  and 
=b 25 .
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The digital controller is then given by

D z
z
z

638 
0.03
0.05

.( ) =
−
−

Using this D(z), we expect a response very similar to that obtained for the continu-
ous system model. ■

EXAMPLE 13.11 Fly-by-wire aircraft control surface

Increasing constraints on weight, performance, fuel consumption, and reliability 
created a need for the flight control system known as fly-by-wire. This approach im-
plies that particular system components are interconnected electrically rather than 
mechanically and that they operate under the supervision of a computer responsi-
ble for monitoring, controlling, and coordinating the tasks. The fly-by-wire princi-
ple allows for the implementation of totally digital and highly redundant control 
systems reaching a remarkable level of reliability and performance [19].

Operational characteristics of a flight control system depend on the dynamic 
stiffness of an actuator, which represents its ability to maintain the position of the 
control surface in spite of the disturbing effects of random external forces. One 
flight actuator system consists of a special type of DC motor, driven by a power am-
plifier, which drives a hydraulic pump that is connected to either side of a hydrau-
lic cylinder. The piston of the hydraulic cylinder is directly connected to a control 
surface of an aircraft through some appropriate mechanical linkage, as shown in 
Figure 13.31. The elements of the design process emphasized in this example are 
highlighted in Figure 13.32.

The process model is given by

 
1

1
.G s

s s
p( )

( )
=

+
 (13.61)

The zero-order hold is modeled by

 
1

.G s
e
s

o

sT
( ) =

− −
 (13.62)

Combining the process and the zero-order hold in series yields

 
1

1
.

2
G s G s G s

e
s s

o p

sT
( ) ( ) ( )

( )
= =

−
+

−
 (13.63)

The control goal is to design a compensator, D(z), so that the control surface angle 
Y s sθ( ) ( )=  tracks the desired angle, denoted by R s( ). We state the control goal as

Control Goal
Design a controller D(z) so that the control surface angle tracks the desired 
angle.

The variable to be controlled is the control surface angle t :θ( )

Variable to Be Controlled
Control surface angle t .θ( )
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972 Chapter 13  Digital Control Systems

The design specifications are as follows:

Design Specifications

DS1 Percent overshoot of P.O. … 5% to a unit step input.

DS2 Settling time of Ts … 1 s to a unit step input.

We begin the design process by determining G(z) from G s( ). Expanding G s( ) 
in Equation (13.63) in partial fractions yields

G s e
s s s

sT1
1 1 1

1
,

2( )( ) = − − +
+









−

and

G z Z G s
ze z Tz e Te

z z e

T T T

T

1
1

,
( )

{ }( ) ( )
( )

= =
− + + − −

− −

− − −

−

where Z{ }⋅  represents the z-transform. Choosing T 0.1,=  we have

 = +
− −( )( )

( )G z z
z z

0.004837 0.004679
1 0.9048

.  (13.64)

(b)

D(z)
-

+
R(s)

T = 0.1 s

Zero-order
hold

Process
dynamics

Angle, u(s)
1

s(s + 1)

(a)

Measured angle of
surface, u(s)

Control surface

Controller

u(t)

Actuator

Motor

Power
amplifier

Pump

R(s)
Desired angle

FIGURE 13.31
(a) Fly-by-wire 
 aircraft control 
 surface system and 
(b) block  diagram. 
The  sampling 
 period is 0.1 
second.
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Section 13.10 Design Examples 973

For a simple compensator, D z K,( ) =  the root locus is shown in Figure 13.33. 
For stability we require K 21.<  Using an iterative approach we discover that as 
K 21,→  the step response is very oscillatory, and the percent overshoot is too 
large; conversely, as K gets smaller, the settling time gets too long, although the 
percent overshoot decreases. In any case the design specifications cannot be sat-
isfied with a simple proportional controller, D z K.( ) =  We need to utilize a more 
sophisticated controller.

We have the freedom to select the controller type. As with control design for 
continuous-time systems, the choice of compensator is always a challenge and 
 problem-dependent. Here we choose a compensator with the general structure

 D z K
z a
z b

.( ) =
−
−

 (13.65)

Therefore, the key tuning parameters are the compensation parameters:

Select Key Tuning Parameters
K, a, and b.

See Figure 13.31.

Design specifications:
     DS1: P.O. 6 5%
     DS2: Ts 6 1 s

See Equation (13.65).

See Figures 13.33–13.36.

Control surface angle u(t).

See Equation (13.63).

Establish the system configuration

Obtain a model of the process, the
actuator, and the sensor

If the performance meets the specifications,
then finalize the design.

If the performance does not meet the
specifications, then iterate the configuration. 

Identify the variables to be controlled

Establish the control goals

Topics emphasized in this example

Write the specifications

Optimize the parameters and
analyze the performance

Describe a controller and select key
parameters to be adjusted

Design a controller D(z)
so that the control surface
angle tracks the desired

angle.

FIGURE 13.32
Elements of the 
control system 
design process 
emphasized in this 
fly-by-wire aircraft 
control surface 
example.
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974 Chapter 13  Digital Control Systems

For continuous systems we know that a design rule-of-thumb formula for the  
settling time is

Ts
n

4
,

ζω
=

where we use a 2% bound to define settling. This design rule-of-thumb is valid for 
second-order systems with no zeros. So to meet the Ts requirement, we want

 s
T

i n
s

Re
4

,ζω( )− = >  (13.66)

where =s ii,   1,  2 are the dominant complex-conjugate poles. In the definition of the 
desired region of the z-plane for placing the dominant poles, we use the transform

z e e e es T j T T j Ti
n n

n n .
1 12 2

= = =
ζω ω ζ ζω ω ζ( )( ) ( )− ± − − ± −

Computing the magnitude of z yields

r z eo
Tn .= = ζω−

To meet the settling time specification, we need the z-plane poles to be inside the 
circle defined by

 r eo
T T s ,

4
=

−
 (13.67)

where we have used the result in Equation (13.66).
Consider the settling time requirement Ts 1 s.<  In our case T 0.1 s.=  From 

Equation (13.67) we determine that the dominant z-plane poles should lie inside 
the circle defined by

r eo 0.67.0.4 1= =−
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y 
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Stability region

K = 21

FIGURE 13.33
Root locus for 

( ) =D z K.
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Section 13.10 Design Examples 975

As shown previously we can draw lines of constant ζ  on the z-plane. The lines of 
constant ζ  on the s-plane are radial lines with

 tan sin
1

  .1
2

σ ω ζ
ζ

ζ
ω( )= − = −

−
−

Then, with s jσ ω= +  and using the transform z esT,=  we have

 z e eT j T .= σω ω−  (13.68)

For a given ,ζ  we can plot Re(z) vs Im(z) for z given in Equation (13.68).
If we were working with a second-order transfer function in the s-domain, 

we would need to have the damping ratio associated with the dominant roots be 
greater than 0.69.ζ ≥  When 0.69,ζ ≥  the percent overshoot for a second-order 
system (with no zeros) will be P.O.  …  5%. The curves of constant ζ  on the z-plane 
will define the region in the z-plane where we need to place the dominant z-plane 
poles to meet the percent overshoot specification.

The root locus in Figure 13.33 is repeated in Figure 13.34 with the stability and 
desired performance regions included. We can see that the root locus does not lie 
in the intersection of the stability and performance regions. The question is how 
to select the controller parameters K, a, and b so that the root locus lies in the  
desired regions.

One approach to the design is to choose a such that the pole of G(z) at 
z 0.9048=  is cancelled. Then we must select b so that the root locus lies in the 
 desired region. For example, when a 0.9048= −  and b 0.25,=  the compensated 
root locus appears as shown in Figure 13.35. The root locus lies inside the perfor-
mance region, as desired.

0 0.5-0.5-1-1.5-2-2.5
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-1.5

-1
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2

1 1.5 2 2.5

Real axis

Im
ag
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ar

y 
ax

is

Stability region

Settling time region

Percent overshoot region

FIGURE 13.34
Root locus for 

( ) =D z K  with 
the stability and 
 performance 
 regions shown.
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976 Chapter 13  Digital Control Systems

A valid value of K is K 70.=  Thus the compensator is

D z
s
s

70
0.9048

0.25
.( ) =

−
+

The closed-loop step response is shown in Figure 13.36. Notice that the percent 
overshoot specification P O. . 5%( )≤  is satisfied, and the system response settles in less 
than 10 samples (10 samples 1 second=  because the sampling time is T  =  0.1 s). ■
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FIGURE 13.35
Compensated root 
locus.
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FIGURE 13.36
Closed-loop system 
step response.
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Section 13.11 Digital Control Systems Using Control Design Software 977

13.11 DIGITAL CONTROL SYSTEMS USING CONTROL DESIGN SOFTWARE

The process of designing and analyzing sampled-data systems is enhanced with 
the use of interactive computer tools. Many of the control design functions for 
 continuous-time control design have equivalent counterparts for sampled-data 
 systems. Discrete-time transfer function model objects are obtained with the tf func-
tion. Figure 13.37 illustrates the use of tf. Model conversion can be accomplished 
with the functions c2d and d2c, shown in Figure 13.37. The function c2d con-
verts continuous-time systems to discrete-time systems; the function d2c converts 
 discrete-time systems to continuous-time systems. For example, consider the process 
transfer function

1
1

.G s
s s

p( )
( )

=
+

For a sampling period of T 1 s,=  we have

 G z
z

z z
z

z z
0.3678 0.7189

1 0.3680
0.3679 0.2644

1.368 0.3680
.

2( )
( )

( )( )
=

+
− −

=
+

− +
 (13.69)

We can use an m-file script to obtain the G(z), as shown in Figure 13.38.

G(z) = sysd

Gp(s) = sysc

Gp(s) = sysc Convert to discrete-time
assuming a zero-order hold.

Convert to continuous-time
assuming a zero-order hold.

G(z) = sysd
Sampling time

Sampling time

G(z) = 
num
den

Ts = sample time
Discrete-time

transfer function
object

(a)

(b)

(c)
FIGURE 13.37
(a) The tf  function. 
(b) The c2d 
 function. (c) The 
d2c function.
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978 Chapter 13  Digital Control Systems

The functions step, impulse, and Isim are used for simulation of sampled-data 
systems. The unit step response is generated by step. The step function format 
is shown in Figure 13.39. The unit impulse response is generated by the function 
 impulse, and the response to an arbitrary input is obtained by the Isim function. 
The impulse and Isim functions are shown in Figures 13.40 and 13.41, respectively. 
These sampled-data system simulation functions operate in essentially the same 
manner as their counterparts for continuous-time (unsampled) systems. The output 
is y(kT) and is shown as y(kT) held constant for the period T.

EXAMPLE 13.12 Unit step response

In Example 13.4, we considered the problem of computing the step response of 
a closed-loop sampled-data system. In that example, the response, y(kT), was 

Zero-order hold

Sampling time

Output

FIGURE 13.38
Using the c2d 
function to convert 

( ) ( ) ( )=G s G s G sp0  
to G(z).

z

(z - 1)
R(z) = 

Step
input System

G(z)
Y(z)

T

y = output response
T = simulation time
       vector

T should be in the form
Ti:Ts:Tf , where Ts is

the sample time.
G(z) = sys

Output

[y,T]=step(sys,T)

FIGURE 13.39 The step function generates the  output y(kT) for a step input.
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Section 13.11 Digital Control Systems Using Control Design Software 979

computed using long division. We can compute the response y(kT) using the step 
function, shown in Figure 13.39. With the closed-loop transfer function given by

Y z
R z

z
z z

0.3678 0.2644
0.6322

,
2

( )
( )

=
+

− +

the associated closed-loop step response is shown in Figure 13.42. The discrete step 
response shown in this figure is also shown in Figure 13.17. To determine the actual 
continuous response y(t), we use the m-file script as shown in Figure 13.43. The 
 zero-order hold is modeled by the transfer function

1
.0G s

e
s

sT
( ) =

− −

In the m-file script in Figure 13.43, we approximate the e sT−  term using the 
pade function with a second-order approximation and a sampling time of T  =  1 s.  

R(z) = 1 System
G(z)

Y(z)

T

Impulse
input Output

y = output response
T = simulation time
       vector

T should be in the form
0:Ts:Tf , where Ts is

the sample time.
G(z) = sys

[y,T]=impulse(sys,T)

FIGURE 13.40
The impulse 
 function generates 
the output y(t) for an 
impulse input.

U(z) System
G(z)

Y(z)

T

Arbitrary
input Output

T

y = output response
T = simulation time
        vector

u: input should be
sampled at the same

rate as sys
G(z) = sys

[y,T]=lsim(sys,u)

FIGURE 13.41
The Isim function 
generates the 
output y(kT) for an 
arbitrary input.
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980 Chapter 13  Digital Control Systems

We then compute an approximation for G0(s) based on the Padé approximation  
of e sT .−  ■

The subject of digital computer compensation was discussed in Section 13.7. In 
the next example, we consider again the subject utilizing control design software.

EXAMPLE 13.13 Root locus of a digital control system

Consider

G z
z

z z
0.3678 0.7189

1 0.3680
,( )

( )
( )( )

=
+

− −

and the compensator

D z
K z

z
0.3678

0.2400
,( )

( )
=

−
+

0 5 10 15 20

No. of samples

A
m

pl
itu

de

Y(z) 0.3678z + 0.2644

z2 - z + 0.6322R(z)
 =

0

0.2

0.4

0.6

0.8

1

1.2

1.4

FIGURE 13.42 The discrete  response, y(kT), of a sampled  second-order  system  
to a unit step.

M13_DORF2374_14_GE_C13.indd   980M13_DORF2374_14_GE_C13.indd   980 15/09/21   10:03 AM15/09/21   10:03 AM



Section 13.11 Digital Control Systems Using Control Design Software 981
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1 - e-sT

s

Approximation of

1

s(s + 1)
Gp(s) =

0

0.5

1

1.5

FIGURE 13.43 The continuous response y(t) to a unit step for the system of 
Figure 13.16.

with the parameter K as a variable yet to be determined. The sampling time is 
T 1 s= . When

 G z D z K
z

z z
0.3678 0.7189

1 0.2400
,( ) ( )

( )
( )( )

=
+

− +
 (13.70)

we have the problem in a form for which the root locus method is directly 
 applicable. The rlocus function works for discrete-time systems in the same way 
as for  continuous-time systems. Using a m-file script, the root locus associated with 
Equation (13.70) is easily generated, as shown in Figure 13.44. Remember that 
the stability region is defined by the unit circle in the complex plane. The function 
rlocfind can be used with the discrete-time system root locus in exactly the same 
way as for continuous-time systems to determine the value of the system gain as-
sociated with any point on the locus. Using rlocfind, we determine that K 4.639=  
places the roots on the unit circle. ■
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982 Chapter 13  Digital Control Systems

13.12 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

In this chapter, we design a digital controller for the disk drive system. As the disk 
rotates, the sensor head reads the patterns used to provide the reference error 
 information. This error information pattern is read intermittently as the head reads 
the stored data, and then the pattern in turn. Because the disk is rotating at a  constant 
speed, the time T between position-error readings is a constant. This sampling 
 period is typically 100 μs to 1 ms [20]. Thus, we have sampled error  information. We 
may also use a digital controller, as shown in Figure 13.45, to achieve a satisfactory 
 system response. In this section, we will design D(z).

First, we determine

.0G z Z G s G sp( ) ( ) ( )= 





Since

 
5

20
,G s

s s
p( )

( )
=

+
 (13.71)
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FIGURE 13.44
The rlocus function 
for sampled-data 
systems.
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Section 13.12 Sequential Design Example: Disk Drive Read System 983

we have

1
 

5
20

.0G s G s
e
s s s

p

sT
( ) ( )

( )
=

−
+

−

We note that for s 20=  and T e sT1 ms, = −  = 0.98. Then we see that the pole 
at s 20= −  in Equation (13.71) has an insignificant effect. Therefore, we could 
approximate

0.25
.G s

s
p( ) ≈

Then we need

G z Z
e
s s

z Z
s

sT1
 
0.25

1 0.25
11
2( )( ) ( )=

−









 = −













−
−

z
Tz

z

T
z z

1 0.25
1

0.25
1

0.25 10
1

.1
2

3
( )( )

( )
= −

−
=

−
=

×
−

−
−

We need to select the digital controller D(z) so that the desired response is achieved 
for a step input. If we set D z K,( ) =  then we have

D z G z
K

z

0.25 10

1
.

3( )
( ) ( ) =

×

−

−

The root locus for this system is shown in Figure 13.46. When K 4000,=

D z G z
z

1
1

.( ) ( ) =
−

 Root when K = 4000

Unit
circle

-1 +1

FIGURE 13.46
Root locus.

+

-
R(z)

E(z)
Y(z)D(z) G(z)

FIGURE 13.45
Feedback control 
system with a 
digital controller. 
Note that G(z) = 

( ) ( )



Z G s G sp .0
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984 Chapter 13  Digital Control Systems

Therefore, the closed-loop transfer function is

T z
D z G z

D z G z z1
1

.( )
( ) ( )

( ) ( )
=

+
=

We expect a rapid response for the system. The percent overshoot to a step input is 
P O. . 0%= , and the settling time is Ts 2=  ms.

13.13 SUMMARY

The use of a digital computer as the compensation device for a closed-loop con-
trol system has grown during the past two decades as the price and reliability of 
computers have improved dramatically. A computer can be used to complete many 
calculations during the sampling interval T and to provide an output signal that is 
used to drive an actuator of a process. Computer control is used today for chemical 
processes, aircraft control, machine tools, and many common processes.

The z-transform can be used to analyze the stability and response of a sampled 
system and to design appropriate systems incorporating a computer. Computer con-
trol systems have become increasingly common as low-cost computers have become 
readily available.

SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or False, 
Multiple Choice, and Word Match. To obtain direct feedback, check your answers with the 
answer key provided at the conclusion of the end-of-chapter problems. Use the block diagram 
in Figure 13.47 as specified in the various problem statements.

-

+
R(s)

Zero-order
hold

Go(s)
e(t)

Y(s)Gp(s)

Process

FIGURE 13.47 Block diagram for the Skills Check.

In the following True or False and Multiple Choice problems, circle the correct answer.

1. A digital control system uses digital signals and a digital computer 
to control a process. True or False

2. The sampled signal is available only with limited precision. True or False

3. Root locus methods are not applicable to digital control system 
design and analysis. True or False
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Skills Check 985

4. A sampled system is stable if all the poles of the closed-loop 
transfer function lie outside the unit circle of the z-plane. True or False

5. The z-transform is a conformal mapping from the s-plane 
to the z-plane by the relation z esT= . True or False

6. Consider the function in the s-domain

Y s
s s s

10
2 6

.( )
( )( )

=
+ +

Let T be the sampling time. Then, in the z-domain the function Y s( )  is

a. Y z
z

z
z

z e
z

z eT T
5
6

 
1

5
4

 
5

12
 

2 6( ) =
−

−
−

+
−− −

b. Y z
z

z
z

z e
z

z eT T
5
6

 
1

5
4

 
5

12
 

6( ) =
−

−
−

+
−− −

c. Y z
z

z
z

z e
z

z eT T
5
6

 
1

5
12

 
6 2( ) =

−
−

−
+

−− −

d. Y z
z

z
z
e

z
eT T

1
6

 
1 1

5
6

 
12 6( ) =

−
−

−
+

−− −

7. The impulse response of a system is given by

Y z
z z

z z z
2 2

25 0.6
.

3 2

3 2( ) =
+ +

− +

Determine the values of y(nT) at the first four sampling instants.

a. y y T y T y T0 1,   27,   2 647,   3 660.05( ) ( ) ( ) ( )= = = =

b. y y T y T y T0 0,   27,   2 47,   3 60.05( ) ( ) ( ) ( )= = = =

c. y y T y T y T0 1,   27,   2 674.4,   3 16845.8( ) ( ) ( ) ( )= = = =

d. y y T y T y T0 1,   647,   2 47,   3 27( ) ( ) ( ) ( )= = = =

8. Consider a sampled-data system with the closed-loop system transfer function

T z K
z z

z z
 

2
0.2 0.5

.
2

2( ) =
+

+ −

This system is:

a. Stable for all finite K.

b. Stable for K0.5 .− < < ∞

c. Unstable for all finite K.

d. Unstable for K0.5 .− < < ∞

9. The characteristic equation of a sampled system is

q z z K z2 1.75 2.5 0,2( ) ( )= + − + =

where K 0> . The range of K for a stable system is:

a. K0 2.63< ≤

b. K 2.63≥

c. The system is stable for all K 0.>

d. The system is unstable for all K 0.>
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986 Chapter 13  Digital Control Systems

10. Consider the unity feedback system in Figure 13.47, where

0.2 1
G s

K
s sp( )
( )

=
+

with the sampling time T 0.4=  s. The maximum value for K for a stable closed-loop 
system is which of the following:

a. =K 7.27

b. K 10.5=

c. Closed-loop system is stable for all finite K.

d. Closed-loop system is unstable for all K 0> .

In Problems 11 and 12, consider the sampled data system in Figure 13.47 where

225
225

.
2

G s
sp( ) =

+

11. The closed-loop transfer function T(z) of this system with sampling at T 1=  s is

a. T z
z

z z
1.76 1.76

3.279 2.762( ) =
+

+ +

b. T z
z

z
1.76
2.762( ) =

+
+

c. T z
z

z z
1.76 1.76

1.519 12( ) =
+

+ +

d. T z
z

z 12( ) =
+

12. The unit step response of the closed-loop system is:

a. Y z
z

z z
1.76 1.76

3.279 2.762( ) =
+

+ +

b. Y z
z

z z z
1.76 1.76

2.279 0.5194 2.763 2( ) =
+

+ − −

c. Y z
z z

z z z
1.76 1.76

2.279 0.5194 2.76

2

3 2( ) =
+

+ − −

d. Y z
z z

z z
1.76 1.76

2.279 0.5194 2.76

2

2( ) =
+

− −

In Problems 13 and 14, consider the sampled data system with a zero-order hold where

20
9

.G s
s sp( )
( )

=
+

13. The closed-loop transfer function T(z) of this system using a sampling period of T 0.5= s  
is which of the following:

a. T z
z

z
1.76 1.76

2.762( ) =
+

+

b. T z
z

z z
0.87 0.23

0.14 0.242( ) =
+

− +

c. T z
z

z z
0.87 0.23

1.01 0.0112( ) =
+

− +

d. T z
z

z z
0.92 0.46

1.012( ) =
+

−
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Skills Check 987

14. The range of the sampling period T for which the closed-loop system is stable is:

a. T 1.12≤

b. The system is stable for all T 0.>

c. T1.12 10≤ ≤

d. T 4.23≤

15. Consider a continuous-time system with the closed-loop transfer function

T s
s

s s4 8
.

2( ) =
+ +

Using a zero-order hold on the inputs and a sampling period of T 0.02=  s, determine 
which of the following is the equivalent discrete-time closed-loop transfer function 
representation:

a. T z
z

z
0.019 0.019

2.762( ) =
−

+

b. T z
z

z z
0.87 0.23

0.14 0.242( ) =
+

− +

c. T z
z

z z
0.019 0.019

1.9 0.92( ) =
−

− +

d. T z
z

z
0.043 0.02

1.92312( ) =
−

+

In the following Word Match problems, match the term with the definition by writ-
ing the correct letter in the space provided.

a. Precision A system where part of the system acts on 
 sampled data (sampled variables).

b. Digital computer 
compensator

The stable condition exists when all the poles 
of the closed-loop transfer function T(z) are 
within the unit circle on the z-plane.

c. z-plane The plane with the vertical axis equal to the 
imaginary part of z and the horizontal axis 
equal to the real part of z.

d. Backward  difference 
rule

A control system using digital signals and a 
 digital computer to control a process.

e. Minicomputer Data obtained for the system variables only at 
discrete intervals.

f. Sampled-data system The period when all the numbers leave or enter 
the computer.

g. Sampled data A conformal mapping from the s-plane to the  
z-plane by the relation z = esT.

h. Digital control system The sampled signal available only with a  limited 
precision.

i. Microcomputer A system that uses a digital computer as the 
compensator element.

j. Forward  rectangular 
integration

A computational method of approximating the 
time derivative of a function.

k. Stability of a 
 sampled-data system

A computational method of approximating the 
integration of a function.
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988 Chapter 13  Digital Control Systems

l. Amplitude 
 quantization error

A small personal computer (PC) based on a 
microprocessor.

m. PID controller A stand-alone computer with size and 
 performance between a microcomputer and a 
large mainframe.

n. z-transform A controller with three terms in which the out-
put is the sum of a proportional term, an inte-
gral term, and a differentiating term.

o. Sampling period The degree of exactness or discrimination with 
which a quantity is stated.

p. Zero-order hold A mathematical model of a sample and data 
hold operation.

E13.1 State whether the following signals are discrete or 
continuous:
(a) Elevation contours on a map.
(b) Temperature in a room.
(c) Digital clock display.
(d) The score of a soccer game.
(e) The output of a loudspeaker.

E13.2 (a) Find the values y(kT) when

Y z
z

z z
2
4 32

( ) =
− +

for k 0=  to 3.
(b) Obtain a closed form of solution for y (kT) as a 

function of k.
Answer: ( ) ( ) ( ) ( ) ( )= = = = = −y y T y T y T y kT ek0 0,   2,   2 8,   3 26; 1.In3

( ) ( ) ( ) ( ) ( )= = = = = −y y T y T y T y kT ek0 0,   2,   2 8,   3 26; 1.In3

E13.3 Obtain the z-transform Y(z) for the response 
y kT kT( ) = , k 0,≥  where T is the sampling time,

(a) by using the definition X z x kT zk
k ,0( ) ( )= ∑ =

∞ −

(b) by applying the property of differentiation in 

z-domain, Z tx t zT
dX z

dz
,{ }( )

( )
= −  given that

Z u t
z

z 1
.{ }( ) =

−  

E13.4 We have a function

Y s
s s s

1
2 3

.( )
( )( )

=
+ +

Using a partial fraction expansion of Y s( )  and a 
table of z-transforms, find Y(z) when T 0.2 s.=

E13.5 The space shuttle, with its robotic arm, is shown in 
Figure E13.5(a). An astronaut controls the robotic arm 
and gripper by using a window and the TV cameras 
[9]. Discuss the use of digital control for this  system 
and sketch a block diagram for the system, including a 
computer for display generation and control.

E13.6 Computer control of a robot to spraypaint an auto-
mobile is shown by the system in Figure E13.6(a) [1].  
The system is of the type shown in Figure E13.6(b), 
where

G s
s sp

1
0.25 1

.
( )

( ) =
+

and we want a phase margin of P M. . =  45°. Using 
frequency response methods, a compensator was de-

veloped, given by 
0.508 0.15

0.015
G s

s

s
c( ) ( )

=
+

+
. Obtain 

the D(z) required when T 0.05 s,=

E13.7 Find the response for the first four sampling in-
stants for

Y z
z z

z z z
2 1

1.5 0.5
.

3 2

3 2
( ) =

+ +
− +

Then, find y(0), y(1), y(2), and y(3).

E13.8 Determine whether the closed-loop system with 
T(z) is stable when

T z
z

z z0.2 1.0
.

2
( ) =

+ −

Answer: unstable

E13.9 (a) Determine y(kT) for k 0=  to 3 when

Y z
z z
z

1.5 0.5
1

.
2

2
( ) =

+
−

(b) Obtain a closed form solution for y(kT) as a 
function of k.

E13.10 A system has

1
G s

K
s sp τ

( )
( )

=
+

,

with T 0.01 s=  and 0.008 s.τ =  (a) Find K so that 
the percent overshoot is P O. . 40%≤ . (b) Determine 
the steady-state error in response to a unit ramp input. 
(c) Determine K to minimize the integral squared error.

EXERCISES
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Exercises 989

(a)

SatelliteTV camera
and lights

TV camera

TV
camera

TV
camera

Robot
arm

(b)

TV
camera

TV
monitor

Window

FIGURE E13.5
(a) Space shuttle 
and robotic arm. 
(b) Astronaut 
 control of the arm.

Computer

Line conveyor

Hydraulic motor

Robot and tableTable encoder

Line encoder

Screw

Input

(a)

FIGURE E13.6
(a) Automobile 
spraypaint system. 
(b) Closed-loop 
system with digital 
controller.

Y(s)
-

+
R(s) D(z) KGp(s)

Zero-
order
hold

(b)
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990 Chapter 13  Digital Control Systems

E13.11 A system has a process transfer function

G s
sp

9
9

.
2

( ) =
+

(a) Determine G(z) for ( )G sp  preceded by a zero- 
order hold with T 0.15 s.=  (b) Determine whether 
the digital system is stable. (c) Plot the impulse re-
sponse of G(z) for the first 15 samples. (d) Plot the 
first 30 samples of the output response of G(z) when 
the input is a step of 0.5 unit.

E13.12 Find the z-transform of

X s
s

s s
1

5 62
( ) =

+
+ +

when the sampling period is T = 1 s.

E13.13 The characteristic equation of a sampled system is

z K z3 0.7 0.2 ( )+ − + =

Find the range of K so that the system is stable. 
Answer: K1.3 4.7< <

E13.14 A unity feedback system, as shown in Figure 
E13.10, has a plant

G s
K

s sp 2 1
,( )

( )
=

+

with T 0.5 s.=  Determine whether the system is sta-
ble when K 4.=  Determine the maximum value of 
K for stability.

E13.15 Consider the sampled-data system shown in 
Figure E13.15. Determine the transfer function G(z) 
when the sampling time T 1 s.=

E13.16 Consider the sampled-data system shown in 
Figure E13.16. Determine the transfer function G(z) 
and when the sampling time T 0.5 s.=

2

1
r(t)

Zero-order
hold

Go(s)
e(t)

y(t)Gp(s)

Process

e*(t)

FIGURE E13.10
A closed-loop 
 sampled system.

r(t)
T = 1

Zero-order
hold

G0(s)
3

(s + 1)(s + 2)

Gp(s)

r*(t)
y(t)

FIGURE E13.15
An open-loop 
 sampled-data 
 system with 
 sampling time 

=T 1 s.

r(t)
T = 0.5

Zero-order
hold

G0(s)
1

s(s + 2)

Gp(s)

r*(t)
y(t)

FIGURE E13.16
An open-loop 
 sampled-data 
 system with 
sampling time 

=T 0.5 s.

P13.1 The input to a sampler is r t tsin ,ω( ) ( )=  where 
1.5 .ω π=  Plot the input to the sampler and the out-

put ( )r t*  for the first 2 seconds when T 0.25 s.=

P13.2 The input to a sampler is r t tsin ,ω( ) ( )=  where 
2 .ω π=  The output of the sampler enters a zero- 

order hold. Plot the output of the zero-order hold 
p(t) for the first 2 seconds when T 0.125 s.=

P13.3 A unit ramp r t t t,   0,( ) = >  is used as an input to 
a process where G s s1 1 ,( ) ( )= +  as shown in Figure 

P13.3. Determine the output y(kT) for the first four 
sampling instants.

PROBLEMS

G(s)r(t)
r*(t)

y(t)

FIGURE P13.3 Sampling system.
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Problems 991

P13.4 A closed-loop system has a hold circuit and pro-
cess as shown in Figure E13.10. Determine G(z) 
when T 0.5 s=  and

G s
sp

3
3

.( ) =
+

P13.5 For the system in Problem P13.4, let r(t) be a unit 
step input and calculate the response of the system 
by synthetic division for five time steps.

P13.6 Consider the closed-loop system shown in Figure 

E13.10, where G s
sp
1

0.2 1
.( )

( )
=

+
 Given the sam-

pling period T 0.05 s,=  find the output Y(z) to a unit 
step input. Find the initial and final value directly 
from Y(z), and plot the unit step response.

P13.7 A closed-loop system is shown in Figure E13.10. 
This system represents the pitch control of an 
 aircraft. The process transfer function is ( ) =G sp    
K s s0.5 1 .[ ]( )+  Select a gain K and sampling period 
T so that the percent overshoot is limited to 0.3 for a 
unit step input and the steady-state error for a unit 
ramp input is less than 1.0.

P13.8 Consider the computer-compensated system 
shown in Figure E13.6(b) when T 1 s=  and

10
.KG s

K
s sp( )
( )

=
+

Select the parameters K and r of D(z) when

D z
z

z r
0.3678

.( ) =
−

+

Select within the range K1 2< <  and r0 1.< <
Determine the response of the compensated sys-

tem and compare it with the uncompensated system.

P13.9 A suspended, mobile, remote-controlled system 
to bring three-dimensional mobility to professional 
NFL football is shown in Figure P13.9. The camera 
can be moved over the field as well as up and down. 
The motor control on each pulley is represented by 
Figure E13.10 with

G s
s s s

10
1 10 1

.p ( )
( )

( )
=

+ / +

We wish to achieve a phase margin of P M. . 45°=  
using G sc .( )  Select a suitable crossover frequency and 
sampling period to obtain D(z). Use the G s D zc -to-( ) ( ) 
conversion method.

P13.10 Consider a system as shown in Figure P13.10 with 
a zero-order hold, a process

1
10

,G s
s sp( )
( )

=
+

and T 0.1 s.=  Note that .0G z Z G s G sp{ }( ) ( ) ( )=
(a) Let D z K( ) =  and determine the transfer 

function G(z) D(z). (b) Determine the characteris-
tic equation of the closed-loop system. (c) Calculate 
the maximum value of K for a stable system. 
(d)  Determine K such that the percent overshoot is 
P O. . 30%≤ . (e) Calculate the closed-loop trans-
fer function T(z) for K of part (d) and plot the step 
 response. (f) Determine the location of the closed-
loop roots and the percent overshoot if K is one-half 
of the value determined in part (c). (g) Plot the step 
response for the K of part (f).

P13.11  (a) For the system described in Problem P13.10, 
design a lag compensator G sc ( )  to achieve a per-
cent overshoot P O. . 30%≤  and a steady-state 
error of ess = 0.01 for a ramp input. Assume a con-
tinuous nonsampled system with .G sp( )

(b) Determine a suitable D(z) to satisfy the require-
ments of part (a) with a sampling period T 0.1 s.=  
Assume a zero-order hold and sampler, and use 
the G s D zc -to-( ) ( )  conversion method.

(c) Plot the step response of the system with the 
 continuous-time compensator G sc( ) of part (a) 
and of the digital system with the D(z) of part 
(b). Compare the results.

(d) Repeat part (b) for T 0.01 s=  and then repeat 
part (c).

(e) Plot the ramp response for D(z) with T 0.1 s=  
and compare it with the continuous-system 
response.

P13.12 The transfer function of a plant and a zero-order 
hold is

G z
K z

z z

0.45

3
.

( )
( )

( )
=

+
−

(a) Plot the root locus. (b) Determine the range of 
gain K for a stable system.

TV
camera

Motor and
pulley

FIGURE P13.9 Mobile camera for football field.

+

-
R(z)

E(z) U(z)
Y(z)D(z) G(z)

FIGURE P13.10 Feedback control system with a digital 
controller.

M13_DORF2374_14_GE_C13.indd   991M13_DORF2374_14_GE_C13.indd   991 15/09/21   10:03 AM15/09/21   10:03 AM



992 Chapter 13  Digital Control Systems

P13.13 The azimuth control system of an aircraft has a 

transfer function G s
s

s s
p

3

1
.2( )

( )

( )
=

+

+
 It is implemented  

with a sampler and hold as shown in Figure E13.10.

(a) Find the transfer function of the plant and 
 zero-order hold at a sampling rate 1 Hz.

(b) Plot the root locus, and determine the value of K 
so that the system is stable.

(c) Determine the value of K so that the system has 
two equal roots, and calculate all the roots in this 
case.

P13.14 A sampled-data system with a sampling period 
T 0.05 s=  is

G z
K z z z

z z z z

10.3614 9.758 0.8353

3.7123 5.1644 3.195 0.7408
.

3 2

4 3 2

( )
( ) =

+ + +

− + − +

(a) Plot the root locus. (b) Determine K when the two 
real poles break away from the real axis. (c) Calculate 
the maximum K for stability.

P13.15 A closed-loop system with a sampler and hold, as 
shown in Figure E13.10, has a process transfer function

G s
sp

17
3

.( ) =
−

Determine the first 6 samples of y(kT) when  
T 0.1 s.=  The input signal is a unit step.

P13.16 A closed-loop system as shown in Figure E13.10 has

G s
s sp

0.5
5

.
( )

( ) =
+

Calculate and plot y(kT) for k0 10≤ ≤  when 
T 1 s= , and the input is a unit step.

P13.17 A closed-loop system, as shown in Figure E13.10, has

G s
K

s sp 2.5( )
( ) =

+

and T = 1.5 s. Plot the root locus for K ≥ 0, and de-
termine the gain K that results in the two roots of the 
characteristic equation on the z-circle (at the stability 
limit).

P13.18 A unity feedback system, as shown in Figure 
E13.10, has

1
.G s

K
s sp( )
( )

=
+

If the system is continuous T 0 ,( )=  then K 1=  yields a 
step response with a percent overshoot of P O. . 16%=  
and a settling time (with a 2% criterion) of Ts 8=  s. 
Plot the response for T0 1.2,≤ ≤  varying T by incre-
ments of 0.2 when K 1.=  Complete a table recording 
the percent overshoot and the settling time versus T.

AP13.1 A closed-loop system, as shown in Figure E13.16, 
has a process

G s
K as

sp
1

,
2

( )
( )

=
+

where a is adjustable to achieve a suitable response. 
Plot the root locus when a 6.=  Determine the range 
of K for stability when T 0.5 s.=  

AP13.2 A manufacturer uses an adhesive to form a seam 
along the edge of the material, as shown in Figure 
AP13.2. It is critical that the glue be applied evenly to 
avoid flaws; however, the speed at which the material 
passes beneath the dispensing head is not constant. 
The glue needs to be dispensed at a rate proportional 
to the varying speed of the material. The controller ad-
justs the valve that dispenses the glue [12]. 

The system can be represented by the 
block diagram shown in Figure P13.10, where 
G s sp   5 0.04 1( ) ( )= +  with a zero-order hold G s .0 ( )  
Use a controller

( ) =
−

=
−−

D z
KT

z
KTz
z1 11

ADVANCED PROBLEMS

Glue

Conveyer
motor

Valve
control
motor

Direction
of travel

FIGURE AP13.2 A glue control system.
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that represents an integral controller. Determine G(z) 
D(z) for T 40 ms,=  and plot the root locus. Select an 
appropriate gain K, and plot the step response.

AP13.3 A system of the form shown in Figure P13.10 
has D z K( ) =  and

G s
s sp

10
5

.
( )

( ) =
+

When T 0.05 s,=  find a suitable K for a rapid step 
response with a percent overshoot of P O. . 10%≤ .

AP13.4 A system of the form shown in Figure E13.10 has

G s
sp

8
2

.( ) =
+

Determine the range of sampling period T for which 
the system is stable. Select a sampling period T so that 
the system is stable and provides a rapid response.

AP13.5 Consider the closed-loop sampled-data system 
shown in Figure AP13.5. Determine the acceptable 
range of the parameter K for closed-loop stability.

-
R(s)

Zero-order
hold

G0(s)
K

s(s + 3)

Gp(s)

Y(s)
T = 0.1

FIGURE AP13.5
A closed-loop 
 sampled-data 
 system with 
sampling time 

=T 0.1 s.

CDP13.1 Design a digital controller for the system using 
the second-order model of the motor-capstan-slide 
as described in CDP2.1 and CDP4.1. Use a sampling 
period of T 1 ms=  and select a suitable D(z) for the 
system shown in Figure P13.10. Determine the re-
sponse of the designed system to a step input r(t).

DP13.1 A temperature system, as shown in Figure 
P13.10, has a process transfer function

0.8
3 1

G s
sp( ) =

+

and a sampling period T of 0.5 s.
(a) Using D z K,( ) =  select a gain K so that the 

system is stable. (b) The system may be slow and 
overdamped, and thus we seek to design a phase-lead 
compensator. Determine a suitable compensator 
G sc ( ) and then calculate D(z). (c) Verify the design 
obtained in part (b) by plotting the step response of 
the system for the selected D(z).

DP13.2 A disk drive read-write head-positioning system 
has a system as shown in Figure P13.10 [11]. The pro-
cess transfer function is

9
0.85 788

.
2

G s
s sp( ) =

+ +
Accurate control using a digital compensator is 
 required. Let T 10 ms=  and design a compensa-
tor, D(z), using (a) the toG s D zc( ) ( )− −  conversion 
method and (b) the root locus method.

DP13.3 Vehicle traction control, which includes antiskid 
braking and antispin acceleration, can enhance vehi-
cle performance and handling. The objective of this 
control is to maximize tire traction by preventing the 
wheels from locking during braking and from spin-
ning during acceleration.

Wheel slip, the difference between the vehicle 
speed and the wheel speed (normalized by the ve-
hicle speed for braking and the wheel speed for ac-
celeration), is chosen as the controlled variable for 
most of the traction-control algorithm because of its 
strong influence on the tractive force between the 
tire and the road [17].

A model for one wheel is shown in Figure 
DP13.3 when y is the wheel slip. The goal is to mini-
mize the slip when a disturbance occurs due to road 

DESIGN PROBLEMS

K

-

+ ++R(z) = 0
Desired

slip

Controller

Disturbance

Y(z)
Slip

z + 1
(z - 1)(z - 0.5)

FIGURE DP13.3
Vehicle fraction 
control system.
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994 Chapter 13  Digital Control Systems

conditions. Design a controller D(z) so that the damp-
ing ratio of the system 1 2 ,ζ =  and determine the 
resulting K. Assume T 0.1 s.=  Plot the resulting step 
response, and find the percent overshoot and settling 
time (with a 2% criterion).

DP13.4 A machine-tool system has the form shown in 
Figure E13.6(b) with [10]

0.2
0.2

.KG s
s sp( )
( )

=
+

The sampling rate is chosen as T 1 s.=  We desire 
the step response to have a percent overshoot of 
P O. . 20%≤  and a settling time (with a 2% crite-
rion) of Ts 10 s≤ . Design a D(z) to achieve these 
specifications.

DP13.5 Plastic extrusion is a well-established method 
widely used in the polymer processing industry [12]. 
Such extruders typically consist of a large barrel di-
vided into several temperature zones, with a hopper at 
one end and a die at the other. Polymer is fed into the 
barrel in raw and solid form from the hopper and is 
pushed forward by a powerful screw. Simultaneously, 

it is gradually heated while passing through the var-
ious temperature zones set in gradually increasing 
temperatures. The heat produced by the heaters in 
the  barrel, together with the heat released from the 
friction  between the raw polymer and the surfaces of 
the barrel and the screw, eventually causes the melt-
ing of the polymer, which is then pushed by the screw 
out from the die, to be processed further for various 
purposes.

The output variables are the outflow from the die 
and the polymer temperature. The main controlling 
variable is the screw speed, since the response of the 
process to it is rapid.

The control system for the output polymer tem-
perature is shown in Figure DP13.5. Select a gain K 
and a sampling period T to obtain a percent overshoot 
of ≤P O. . 20%  and Ts ≤ 10 s for a unit step input.

DP13.6 A sampled-data system closed-loop block dia-
gram is shown in Figure DP13.6. Design D(z) to such 
that the closed-loop system response to a unit step 
response has a percent overshoot P O. . 12%≤  and a 
settling time Ts 20 s.≤

-

+

(b)

R(s)
Temperature

setting

Y(s)
Actual

temperature

Zero-order
hold

K
s(s + 4)

Heated barrel

Polymer

Die

Screw

v

(a)

FIGURE DP13.5
Control system for 
an extruder.

D(z)R(s)

Zero-order
hold

Y(s)
0.6

s(s + 0.02)T = 1 T = 1

Digital
controller

G0(s)

Gp(s)

FIGURE DP13.6
A closed-loop 
 sampled-data 
 system with 
 sampling time 

=T 1 s.

M13_DORF2374_14_GE_C13.indd   994M13_DORF2374_14_GE_C13.indd   994 15/09/21   10:03 AM15/09/21   10:03 AM



Computer Problems 995

CP13.1 Develop an m-file to plot the unit step response 
of the system

G z
z

z z
0.575 0.025

0.8 0.4
.

2
( ) =

+
− +

Verify graphically that the steady-state value of the 
output is 1.

CP13.2 Convert the following continuous-time trans-
fer functions to sampled-data systems using the c2d 
function. Assume a sample period of 1 second and a 
zero-order hold .0G s( )

(a) 
1

G s
sp( ) =

(b) G s
s

sp 22
( ) =

+

(c) G s
s
sp

4
3

( ) =
+
+

(d) G s
s sp

1
8

( )
( )

=
+

CP13.3 The closed-loop transfer function of a  sampled- 
data system is given by

( )
( )
( )

( )
= =

−
− +

T z
Y z

R z

z

z z

0.684 0.4419
0.7524 0.0552

.
2

(a) Compute the unit step response of the system 
using the dstep function, and assume a sampling 
period. of T 0.1 s.=  (b) Determine the continu-
ous-time transfer function equivalent of T(z) using 
the d2c function, and assume a sampling period of 
T 0.1 s.=  (c) Compute the unit step response of 
the continuous (nonsampled) system using the step 
function, and compare the plot with part (a).

CP13.4 Plot the root locus for the system

G z D z K
Z

z z 0.45
.

2
( ) ( ) =

− +

Find the range of K for stability.

CP13.5 Consider the feedback system in Figure CP13.5. 
Obtain the root locus, and determine the range of K 
for stability.

CP13.6 Consider the sampled-data system with the loop 
transfer function

G z D z K
z z

z z
1.5

1.2 0.1
.

2

2
( ) ( ) =

− +
− +

(a) Plot the root locus using the rlocus function.
(b) From the root locus, determine the range of K 

for stability.

CP13.7 An industrial grinding process is given by the 
transfer function [15]

10
5

.G s
s sp( )
( )

=
+

The objective is to use a digital computer to im-
prove the performance, where the transfer function 
of the computer is represented by D(z). The design 
specifications are (1) phase margin of P M. . 45°≥ , and 
(2) settling time (with a 2% criterion) of Ts 1 s≤ .
(a) Design a controller

G s K
s a
s bc( ) =

+
+

to meet the design specifications. (b) Assuming a 
sampling time of T 0.02 s,=  convert G sc ( ) to D(z). 
(c) Simulate the continuous-time, closed-loop sys-
tem with a unit step input. (d) Simulate the sam-
pled-data, closed-loop system with a unit step input. 
(e) Compare the results in parts (c) and (d) and 
comment.

COMPUTER PROBLEMS

+

-
R(s) Y(s)

ProcessController

z - 0.5
K (z - 0.2)

z - 1
z + 1.2

FIGURE CP13.5
Control system with 
a digital controller.
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996 Chapter 13  Digital Control Systems

Amplitude quantization error The sampled signal avail-
able only with a limited precision. The error between 
the actual signal and the sampled signal.

Backward difference rule A computational method of 
approximating the time derivative of a function given 

by x kT
x kT x k T

T

1
,� ( )

( )
( ) ( )

≈
− −

 where t kT ,=  T 

is the sample time, and …k 1,  2,   .=

Digital computer compensator A system that uses a dig-
ital computer as the compensator element.

Digital control system A control system using digital sig-
nals and a digital computer to control a process.

Forward rectangular integration A computational method  
of approximating the integration of a function given 
by x kT x k T Tx k T1 1 ,�( ) ( )( ) ( ) ( )≈ − + −  where 
t kT ,=  T is the sample time, and k 1,  2,   .= …

Microcomputer A small personal computer (PC) based 
on a microprocessor.

PID controller A controller with three terms in which 
the output is the sum of a proportional term, an in-
tegrating term, and a differentiating term, with an 
adjustable gain for each term, given by

1
1

.1
2

3G z K
K Ts
z

K
z
Tzc( ) = +

−
+

−

Precision The degree of exactness or discrimination 
with which a quantity is stated.

Sampled data Data obtained for the system variables 
only at discrete intervals. Data obtained once every 
sampling period.

Sampled-data system A system where part of the system 
acts on sampled data (sampled variables).

Sampling period The period when all the numbers leave 
or enter the computer. The period for which the sam-
pled variable is held constant.

Stability of a sampled-data system The stable condition 
exists when all the poles of the closed-loop transfer 
function T(z) are within the unit circle on the z-plane.

z-plane The plane with the vertical axis equal to the 
imaginary part of z and the horizontal axis equal to 
the real part of z.

z-transform A conformal mapping from the s-plane to 
the z-plane by the relation =z esT. A transform from 
the s-domain to the z-domain.

Zero-order hold A mathematical model of a sample 
and data hold operation whose input–output transfer 

function is represented by 
1

.G s
e
so

sT
( ) =

− −

TERMS AND CONCEPTS

ANSWERS TO SKILLS CHECK

True or False: (1) True; (2) True; (3) False; (4) False; 
(5) True

Multiple Choice: (6) a; (7) c; (8) a; (9) d; (10) a; (11) a; 
(12) c; (13) b; (14) a; (15) c

Word Match (in order, top to bottom): f, k, c, h, g, o, n, 
l, b, d, j, i, e, m, a, p
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A
Absolute stability, 395, 445
Acceleration error constant, 339, 393
Acceleration input, steady-state error, 339
Accelerometer, 107
Ackermann’s formula, 812, 823–824, 828, 833–834, 

859–860, 870
Across-variable, 81, 83
Active noise control system, 76
Actuator, 30, 100, 182
Additive perturbation, 888, 944
Advanced driver-assistance (ADAS) systems, 73
Agricultural systems, 45
AGV. See Automated guided vehicle (AGV)
Aircraft, 49

unmanned, 44–45
Aircraft attitude control, 355–356
Airplane control, 309
All-pass network, 565–566, 620
Alternative signal-flow graph, and block diagram 

models, 205–208
Ambler, 577
Amplidyne, 166
Amplifier, feedback, 263–264
Amplitude

decay, 480, 544
quantization error, 951, 996

Analogous variables, 85
Analog-to-digital converter, 946, 948
Analysis of robustness, 888–890
Analytical methods, 758–759
Anesthesia, blood pressure control during, 277–285
Angle of departure, 461–462, 465, 476, 543
Angle of the asymptotes, 454, 457, 543
Antiskid braking systems, 934
Arc welding, 434
Armature-controlled motor, 102, 103, 105, 117, 133, 

166, 178
Artificial hand, 41
Artificial intelligence (AI), 38, 45, 49
Assumptions, 80, 122–123, 182
Asymptote, 454, 543

centroid, 455, 543
of root locus, 454

Asymptotic approximation, 556
for a Bode diagram, 556

Automated guided vehicle (AGV), 798–799
Automated vehicles, 39–40
Automatic control, history of, 33–39
Automatic fluid dispenser, 251
Automation, 35, 78
Automobiles

hybrid fuel vehicles, 51, 78
steering control system, 39
velocity control, 496–502

Auxiliary polynomial, 403, 445
Avemar ferry hydrofoil, 794
Axis shift, 408

B
Backward difference rule, 968, 996
Bandwidth, 571, 620, 650, 727
Bellman, R., 36
Biological control system, 42
Biomedical engineering, 42–43
Black, H. S., 35, 169, 884
Block diagram

models, 107–112, 182, 194–204
alternative signal-flow graph, 205–208
signal-flow graphs, 194–204

transformations, 107–112
Blood pressure control and anesthesia, 277–285
Bode, H. W., 552, 884
Bode plot, 552–553, 591–592, 620, 622

asymptotic approximation, 556
boring machine system, 275–277

Boring machine system, 275–277
Bounded response, 395
Branch, 112
Breakaway point, 457–461
Break frequency, 557, 620

C
CAE. See Computer-aided engineering (CAE)
Camera control, 379
Canonical form, 196, 254
Capek, Karel, 41
Cascade compensators, 729, 731–735, 811
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Cauchy’s theorem, 623, 626–630, 727
CDP. See Continuous design problem (CDP)
Centroid, asymptote, 455, 543
Characteristic equation, 90, 182, 424
Circles, constant, 650
Closed epidemic system, 410–411
Closed-loop feedback control system, 31, 78
Closed-loop feedback sampled-data system, 

955–959
Closed-loop frequency response, 648, 727
Closed-loop system, 258, 320
Closed-loop transfer function, 110, 122, 182,  

385, 423
Command following, 835, 881
Compensation, 774

using analytical methods, 758–759
using a phase-lag network on the s-plane, 750
using a phase-lead network on the Bode  

diagram, 733–734
using a phase-lead network on the s-plane, 731
using integration networks, 788
using state-variable feedback, 812

Compensators, 527, 729, 811, 813
cascade, 731–735, 811
design, full-state feedback and observer, 831

Complementary sensitivity function, 888, 944
in cost of feedback, 274

Complexity of design, 46, 78
Components, 320

in cost of feedback, 274
Computer-aided engineering (CAE), 51
Computer control systems, 945, 946

for electric power plant, 41
Conditionally stable system, 707
Conformal mapping, 625, 727
Congress, 43
Constant M circles, 651
Constant N circles, 651
Continuous design problem (CDP), 75, 178, 252, 

313, 387, 441, 535, 615, 720, 804, 875, 936, 993
Contour map, 624–630
Control design software

digital control systems using, 977–982
state variable models using, 228–232
system performance using, 364–369

Control engineering, 30, 36–37, 39
Controllability, 813–819

matrix, 814, 881
Controllable system, 814, 881

Control system, 30, 78, 257
characteristics using m-files, 288
description of, 29–33
design, 47–50
future evolution of, 55–56
historical developments of, 38–39
modern examples, 39–45

Control system engineering, 30
Conv function, 139
Convolution signal, 324
Corner frequency. See Break frequency
Cost of feedback, 274
Coulomb damper, 83
Critical damping, 92, 157, 182

D
Damped oscillation, 94, 182
Dampers, 83
Damping ratio, 92, 182, 325–326, 328
dB. See Decibel (dB)
DC amplifier, 106
DC motor, 100

armature-controlled, 102, 117, 178
field controlled, 102

Deadbeat response, 762–764, 811
Decade, 554, 621

of frequencies, 554
Decibel (dB), 552, 621
Decoupled state variable model, 206
Design, 46–47, 78
Design gap, 46, 78
Design of control system, 729, 811

robot control, 441
in time-domain, 813
using a phase-lag network on the Bode diagram, 

753–758
using a phase-lag network on the s-plane, 750
using a phase-lead network on the Bode  

diagram, 733–734
using a phase-lead network on the s-plane, 741
using integration networks, 788
using state-feedback, 812

Design specifications, 322, 393
Detectable, 817, 881
Diagonal canonical form, 206, 254
Diesel electric locomotive control, 848–854
Differential equations, 80, 97, 182
Differential equations of physical systems, 80–85
Differential operator, 90
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Differentiating circuit, 104
Digital audio tape controller, 906–914
Digital computer compensator, 961–964, 996
Digital controllers, implementation of, 968
Digital control system, 945–996

using control design software, 977–982
Digital-to-analog converter, 948
Direct-drive arm, 707
Disk drive read system, 62–63, 232–235. See also 

Sequential design example
Disturbance, 32, 78

rejection property, 265–269
signal, 264–269, 320

Disturbance signals in feedback, 264–269
Dominant roots, 330, 393, 466, 543, 572, 587
Drebbel, Cornelis, 33
Drones, 44–45, 75
Dynamics of physical systems, 79

E
Economic systems, 43–44
Electric power industry, 41–42
Electric traction motor, 119, 132–134, 149–150

control, 132–134
Electric ventricular assist device (EVAD),  

719–720
Electrohydraulic actuator, 105, 167, 722–723
Electrohydraulic servomechanisms, 708
Embedded control, 53

systems, 53
Energy storage systems (green engineering), 55
Engineering design, 46–47, 78
English channel tunnel boring system, 275–277, 

288–291
Engraving machine, 587–589, 590
Environmental monitoring (green engineering), 55
Error

amplitude quantization, 951, 996
estimation, 825, 881
integral of absolute magnitude of the, 344
integral of square, 344
steady-state, 272–274, 339
tracking. See Error signal

Error constants
acceleration input, 339
position, 338
ramp, 338
velocity, 338

Error signal, 144, 182, 238, 258, 320
analysis, 259–260

Error-squared performance indices, 837
Error, steady-state, 272–274
Estimation error, 825, 881
EVAD. See Electric ventricular assist device (EVAD)
Evans, R., 447
Examples of control systems, 39–45
Exponential matrix function, 190
Extender, 247–248, 440–441, 800

F
Feedback, 32

amplifier, 263–264
control system, 32, 39, 774–781
cost of, 274
disturbance signals in, 264–269
full-state control design, 819–824
negative, 32, 35
positive, 69
of state variables, 837, 839, 881

Feedback amplifier, 263–264
Feedback control system, and disturbance signals, 

264–269
Feedback function, 144–147, 254

with unity feedback, 144
Feedback signal, 31, 78, 144
Feedback systems, history of, 31
Field current controlled motor, 101
Fifth-order system, 405
Final value, 92, 182

of response, 92
theorem, 92, 182

Flow graph. See Signal-flow graph
Fluid flow modeling, 122–132
Flyball governor, 34, 78
Fly-by-wire aircraft control surface, 971–976
Forward rectangular integration, 968, 996
Fourier transform, 548, 621

pair, 547–548, 621
Frequency response, 546, 621

closed-loop, 648
measurements, 569–571
plots, 548–569
using control design software, 584–589

Full-state feedback control law, 813, 881
Fundamental matrix. See Transition matrix
Future evolution of control systems, 55–56
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G
Gain margin, 642, 678–679, 686, 727
Gamma-Ray Imaging Device (GRID), 943
Gear train, 106
Generative design process, 49
Global navigation satellite services, 37
Global Positioning System (GPS), 36
GPS. See Global Positioning System (GPS)
Graphical evaluation of residues, 91
Gravity gradient torque, 216
Green engineering, 54–55

applications of, 54–55
principles of, 54

GRID. See Gamma-Ray Imaging Device (GRID)
Gun controllers, 36
Gyroscope, 247

H
Halo orbit, 879–880
Hand, robotic, 41
Helicopter control, 522, 530
High-fidelity simulations, 129
History of automatic control, 33–39
Home appliances, 53
Homogeneity, 85–86, 183
Hot ingot robot control, 667–676
Hot ingot robot mechanism, 667
Hubble telescope, 352–354
Human-in-the-loop control, 40
Hybrid fuel automobile, 51, 78
Hybrid fuel vehicles, 51–52
Hydraulic actuator, 105, 167, 866

I
IAE, 344
Impulse signal, 323
Index of performance, 344–349, 393
Industrial control systems, 45
Input feedforward canonical form, 201–202, 254
Input signals, 322–324
Instability, 320

in cost of feedback, 274
Insulin

delivery control system, 57, 60–61
injections, 377–378

Integral of absolute magnitude of the error, 344
Integral of square of error, 344
Integral of time

multiplied by absolute error, 344
multiplied by error squared, 344
optimum coefficient of T(s), 347–348

Integral operator, 90
Integrating filter, 104
Integration networks, 734, 788, 811
Integration-type compensator, 747
Intelligent vehicle/highway systems (IVHS), 497
Internal model design, 837, 845–848, 881
Internal model principle, 847, 900, 944
Internal Revenue Service, 43
The International Data Corporation, 37
Internet of Things (IoT), 37
Inverse Laplace transform, 88, 90, 92–93, 183
Inverted pendulum, 207–208, 822–824, 831–834, 

873, 874
IoT. See Internet of Things (IoT)
ISE, 344
ITAE, 344, 347–348
ITSE, 344
IVHS. See Intelligent vehicle/highway systems 

(IVHS)

J
Jordan canonical form, 206, 254

K
Kalman state-space decomposition, 814, 817, 881
Kirchhoff voltage laws, 187

L
Laboratory robot, 45
Lag compensator, 734
Lag network. See Phase-lag network
Laplace transform, 80, 88–95, 183, 185, 324
Laplace transform pair, 89, 547–548, 621
Lead compensator, 734

for second-order system, 738–741
for type-one system, 745–747
for type-two system, 736–738
using root locus, 742–745

Lead-lag network, 757–758, 811
Lead network. See Phase-lead network
LEM. See Lunar excursion module (LEM)
Linear approximation, 87, 183
Linear approximations of physical systems, 85–88
Linearized, 80, 183
Linear quadratic regulator, parameters, 845, 881
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Linear system, 85–86, 183
simplification of, 349–352, 367–368
transfer function of, 95–107

Liquid level control system, 683
Locus, 447, 543
Logarithmic magnitude, 558, 574, 621
Logarithmic (decibel) measure, 643, 727
Logarithmic plot. See Bode plot
Logarithmic sensitivity, 472, 543–544
Log-magnitude-phase diagram, 644
Loop, 113

gain, 259
on signal-flow graph, 113

Loss of gain, 320
in cost of feedback, 274

Low fidelity simulations, 129
Low-pass filter, 119, 134–136
lsim function, 231, 232
Lunar excursion module (LEM), 792

M
Machine, human versus automatic, 42
Magnetic levitation, 169, 875
Magnetic tape transport, 524
Manual control system, 41
Manual PID tuning, 479, 544
MAP. See Mean arterial pressure (MAP)
Mapping of contours in the s-plane,  

624–630
Marginally stable, 397, 445
margin function, 678, 809
Margin, gain, 642, 678–679, 686, 727

phase, 647, 678–679, 686, 727, 963–964
Mars rover vehicle, 441–442, 536
Mason, 112
Mason loop rule, 158, 183
Mason’s signal-flow gain formula, 112, 114, 117, 153, 

167, 196, 198, 210–212, 224, 235
Mathematical models, 79–80, 183

of systems, 79
MATLAB

Bode plot, 585
control system characteristics, 285
simulation of systems, 136–150
state variables and, 228–232
system performance and, 364–369

Matrix exponential function, 190, 255
Maximum overshoot, 328
Maximum power point tracking (MPPT), 119

Maximum value of the frequency response, 559, 
571, 621

Maxwell, J. C., 34, 38
M circles, 651
Mean arterial pressure (MAP), 281, 284
Measurement noise, 32, 78

attenuation, 267–269
Mechatronics, 50–53, 78
MEMS. See Microelectromechanical systems 

(MEMS)
Metallurgical industry, 45
Microcomputer, 946, 996
Microelectromechanical systems (MEMS), 51
Milling machine control system, 768–774
Minimum phase transfer function, 564, 621
Minorsky, N., 159
minreal function, 148–149
Mobile robot, 339–342
Model of, DC motor, 100

hydraulic actuator, 105, 164, 866
inverted pendulum and cart, 207–208, 822–824, 

831–834, 873, 874
MPPT. See Maximum power point tracking 

(MPPT)
Multiloop feedback control system, 32, 78
Multiloop reduction, 147–148
Multiple-loop feedback system, 111
Multiplicative perturbation, 888, 944
Multivariable control system, 32–33, 78

N
Natural frequency, 92, 183, 589, 621
N circles, 651
Necessary condition, 85, 183
Negative feedback, 32, 78, 431
Negative gain root locus, 488–493, 544
ngrid function, 678, 681
Nichols chart, 651–654, 678, 681–682, 687, 727, 914
nichols function, 678, 679
Nodes, 113

of signal flow graph, 113
Noise, 259, 264–265, 267–269, 274, 279, 280, 296, 

312–313
Nomenclature, 83
Nonminimum phase transfer functions, 562, 

565–566, 621
Nontouching, 113

loops, 113–114
Nonunity feedback systems, 342–343
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Nuclear reactor controls, 68–69, 793
Number of separate loci, 454, 544
Numerical experiments, 129
Nyquist, H., 623

contour, 632
criterion, 630–641, 655, 686
function, 678–679
stability criterion, 622, 623, 630–641, 655, 688, 727

O
Observability, 813–819

matrix, 817, 881
Observable system, 817, 881
Observer, 813, 881

design, 825–828
Octave, 555, 621

of frequencies, 555, 572
Op-amp circuit, transfer function of, 97–98
Open-loop control system, 31, 78
Open-loop system, 261–263, 320
Operational amplifier, 783, 784, 921
Operators, differential and integral, 90
Optimal control system, 393, 837–845, 881
Optimization, 47, 78
Optimize parameters, 47
Optimum coefficient of for ITAE, 347–349
Optimum control system, 344
Output equation, 189, 255
Overdamped, 137, 183
Overshoot, 278–279, 288–289

P
Padé approximation of a time delay, 657–659, 678
pade function, 678, 683, 942, 979
Papin, Dennis, 33
Parabolic input signal, 323
parallel function, 144
Parameter design, 467, 544
Parameter variations and system sensitivity, 

261–264
Parkinson, D. B., 36
Path, 113
PD controller. See Proportional plus derivative 

(PD) controller
Peak time, 326, 393
Pendulum oscillator, 87–88
Percent overshoot, 327, 393
Performance

of control system, 321

index, 344–349, 393
of sampled second-order system, 959–961
specifications in the frequency domain, 571–574

Phase-lag compensation, 734, 811
Phase-lag compensator, design of, 752–753, 

754–758
Phase-lag network, 734–735, 811

on Bode diagram, 734
on the s-plane, 750

Phase-lead compensation, 734, 783, 811
Phase-lead compensator, 732
Phase-lead network, 732, 811

on Bode diagram, 733, 735
on the s-plane, 741

Phase-lock loop (detector), 435
Phase margin, 643, 647, 678–679, 686, 727
Phase variable canonical form, 198
Phase variables, 198, 255

canonical form, 198, 255
Photovoltaic generators, 119–122, 575–577
Physical state variables, 186–187
Physical systems

differential equations of, 80–85
dynamics of, 79
linear approximations of, 85–88

Physical variables, 205–206, 255
PI controller. See Proportional plus integral (PI 

controller)
PID controller, 281, 282, 283, 284, 285, 477–488, 544

design of robust, 896–900, 944
in discrete-time, 977, 996
in frequency domain, 677
of wind turbines for clean energy, 660–663

PID tuning, 479, 544
Plant. See Process
Plants, power, 41
Plastic extrusion, 994
Plotting using MATLAB, 136–137
Pneumatica, 33
Polar plot, 549, 621
Poles, 90–91, 183

placement, 817, 881
Pole-zero map, 142
Political feedback model, 44
Political systems, 43–44
poly function, 139, 424, 444, 879
polyval function, 137, 140
Polzunov, I., 34
Pontryagin, L. S., 36
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Position error constant, 338, 393
Positive feedback, 69, 78

loop, 111
Potentiometer, 106
Power flow, 58
Power plants, 41
Power quality monitoring (green engineering), 55
Precision, 951, 996

speed control system, 525
Prefilter, 759–762, 811, 899–900, 944
Principle of superposition, 85, 183
Principle of the argument. See Cauchy’s theorem
Printer belt drive modeling, 222–228
Process, 31, 78

controller. See PID controller
Productivity, 35, 78
Proportional plus derivative (PD) controller, 477, 

544, 811
Proportional plus integral (PI controller), 477, 544, 

747–748, 811
Prosthetic arm, 43–44
Pseudo-quantitative feedback system, 914–916
pzmap function, 140–141, 181

Q
QFT. See Quantitative feedback theory (QFT)
Quantitative feedback theory (QFT), 914
Quarter amplitude decay, 480, 544

R
Rack and pinion, 103, 107
Radio-based navigation system, 37
Ramp input, 348

steady-state error, 338–339
test signal equation, 323

Reaction curve, 483
Reduced sensitivity, 261–262
Reference input, 144, 149, 183, 835–837
Regulator problem, 144, 820, 835, 837, 881, 948
Regulatory bodies, 43
Relative stability, 395, 407, 445

by the Nyquist criterion, 641–648
by the Routh–Hurwitz criterion, 407

Remotely controlled vehicle, 664–667, 683–686
Remote manipulators, 797
Residues, 91, 93, 94, 183
Resonant frequency, 559–560, 571–572, 621
Rise time, 326, 393
Risk, 46, 78

Robot, 41, 78
controlled motorcycle, 413–418
control system, 536
mobile, steering control, 365–368

Robot-controlled motorcycle, 413–418
Robust control system, 882–944

using control design software, 916–919
Robust PID control, 896–900
Robust stability criterion, 888–889, 944
Roll-wrapping machine (RWM), 930, 931
Root contours, 471, 544
Root locus, 447–451, 544, 689, 964–967

angle of departure, 461
asymptote, 454
breakaway point, 457
concept, 447–451
of digital control systems, 964–967
plot, obtaining, 503–508
segments on the real axis, 453, 455, 544
sensitivity and, 472–477, 508
steps in sketching, 463
using control design software, 502–508
in the z-plane, 965–966

Root locus method, 446–466, 544
parameter design, 466–471

Root sensitivity, 472, 544
to parameters, 884, 944

Roots function, 139, 142, 420, 424
Rotating disk speed control, 59–60
Rotor winder control system, 765–767, 774–781
Routh–Hurwitz criterion, 399–407, 411, 419, 

434–435, 445
Routh–Hurwitz stability, 394
R.U.R. (play), 40–41
RWM. See Roll-wrapping machine (RWM)

S
Sampled data, 948, 996
Sampled-data system, 948–951, 996
Sampling period, 948, 996
Scanning tunneling microscope (STM), 938
Second-order system, 330, 824

performance of, 325–330
response, 330–335
response, effect of third pole and zero, 330–335

Self-healing process, 58
Sensitivity. See also System sensitivity

of control systems to parameter variations, 
261–264
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of root control systems, 473
root locus and, 472–477, 508

Sensitivity function, 260, 265, 268, 283, 296,  
888, 944

Sensor, 30
Separation principle, 819, 830, 881
Sequential design example, 62–63, 150–153, 

232–235, 291–295, 370–372, 425–427, 508–
510, 589–591, 686–689, 781–782, 860–862, 
919–921, 982–984

Series connection, 143–146
series function, 143, 144, 146, 147
Settling time, 327, 393
Ship stabilization, 304
Signal-flow graph, 112–119, 183

block diagram models and, 194–204
models, 112–119

Simplification of linear systems, 349–352
Simplified model, 351–352
Simulation, 129, 183
Smart grid

control systems, 57–59
definition, 54, 57

Smart meters, 57
Social feedback model, 44
Social systems, 43–44
Solar cells, 119
Solar energy (green engineering), 55
Spacecraft, 161, 180, 214–221
Space shuttle, 608, 708–709, 988
Space station, 214–221
Space telescope, 345–349
Specifications, 46, 78
Speed control system, 265–267, 269–271, 285–288, 

309, 313, 314
for automobiles, 306
for power generator, 523
s-plane, 90, 183
for steel rolling mill, 265

Spring-mass-damper system, 83, 92, 94–95, 186
Stability, 395, 445

absolute, 395, 445
concept of, 395–399
in frequency domain, 622–727
of linear feedback systems, 394–445
of a sampled-data system, 996
of second-order system, 408–410
of state variable systems, 408–411
for unstable process, 395–397

using Nyquist criterion, 630–631
using Routh–Hurwitz criterion, 399–407, 411, 419

Stabilizable, 817, 881
Stabilizing controller, 831, 881
Stable system, 395, 445
State differential equation, 188–194, 255
State equation, transfer function from, 209–210
State-feedback, 812
State of a system, 185–188, 255
State-space representation, 189, 228–232, 255
State transition matrix, 191

time response and, 210–214
State variable models, 184

of dynamic system, 185–188
State variables, 185–188, 255

of dynamic system, 185–188
feedback, 248, 255, 837, 839–842, 881
system design using control design software, 

855–860
State variable systems, 408–411

stability of, 424–425
State vector, 189, 255
Steady-state, 92, 183

of response of, 92, 321, 322, 393
Steady-state error, 272–274, 320, 342

of feedback control system, 337–343
Steel rolling mill, 265, 655–656, 723, 724, 931
Steering control system

of automobile, 39, 615
of mobile robot, 339–342
of ship, 711–712

Step input, 337–338
optimum coefficient of T(s), 347
steady-state error, 337–338
test signal equation, 323

STM. See Scanning tunneling microscope (STM)
Submarine control system, 243, 245
Superposition, principle of, 85
Symbols, in MATLAB

used in book, 83
Synthesis, 46–47, 78
sys function, 140, 141
System design, approaches to, 730–731
Systems, 30, 78

bandwidth, 655
performance, 364–369
with uncertain parameters, 890–892

System sensitivity, 262, 320
to parameters, 884, 944
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T
Tables, 82

of Laplace transform pairs, 89
through- and across-variables for physical  

systems, 81
of transfer function plots, 690–697
of transfer functions, 104–107

Tachometer, 106
Taylor series, 86, 183
Temperature control system, 748–750
Test input signal, 322–324, 393
Thermal heating system, 107
Third-order system, 401–403
Through-variable, 80, 81
Time constant, 96, 183
Time delay, 655–659, 727
Time domain, 185, 255

design, 813
Time-domain specifications, 364–367
Time response

by a discrete-time evaluation, 210
and state transition matrix, 210–214

and state transition matrix, 210–214
Time-varying system, 95, 255
Tracked vehicle turning control, 411–413, 420–423
Tracking error. See Error signal
Trade-off, 46, 78
Transfer function, 95, 141–143, 183

of complex system, 118–119
of DC motor, 100–107
of dynamic elements and networks, 104–107
in frequency domain, 552, 621
of interacting system, 115–117
of linear systems, 95–107
in m-file script, 141, 144
minimum phase and nonminimum phase, 562, 564
of multi-loop system, 117–118
of op-amp circuit, 97–98
from the state equation, 209–210
of system, 98–100
table of dynamic elements and networks, 104–107

Transient response, 320, 322, 393
control of, 269–272
relationship to root location, 335–337
of second-order system, 326

Transition matrix, 191, 255
Twin lift, 72
Twin-T network, 562
Two state variable models, 202–204
Type number, 338, 393

U
UAVs. See Unmanned aerial vehicles (UAVs)
Ubiquitous computing, 37, 78
Ubiquitous positioning, 37, 78
Ultimate gain, 483
Ultimate period, 483
Ultra-precision diamond turning machine, 903–906
Uncertain parameters, 890–892
Underdamped, 85, 92
Unit impulse, 323, 393
Unity feedback, 144–146, 175, 177, 183, 518
Unmanned aerial vehicles (UAVs), 44–45
Unstable system, 395, 397, 403–404

V
Variables

models, two state, 202–204
for physical systems, 81

Vehicle traction control, 993
Velocity error constant, 338, 393
Velocity input, 308
Vertical takeoff and landing (VTOL) aircraft, 437, 

707, 879
Viscous damper, 83
VTOL aircraft. See Vertical takeoff and landing 

(VTOL) aircraft
Vyshnegradskii, I. A., 35

W
Water clock, 33
Water level control, 33–34, 70, 125–132, 174–175
Water-level float regulator, 34
Watt, James, 34, 38
Wearable computers, 53
Welding control, 405–407
Wind energy (green engineering), 55
Wind power, 51–53
Wind turbines, 659–663

rotor speed control, 493–496
Worktable motion control, 969–971

Z
Zero-order hold, 950, 952, 996
Zeros, 90–91, 183
Zettabytes (ZB), 37
Ziegler–Nichols PID tuning method, 479, 483–487, 

544
z-plane, 996

root locus, 965–966
z-transform, 951–955, 996
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